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Abstract. The basic concepts related to Isogeometric Analysis applied to Solid Mechanics are intro-

duced in this paper. Isogeometric Analysis is mainly concerned with exact discretization of the spatial

field by using the same technologies adopted in Computer Aided Design (CAD) for the computational

representation of geometric entities, which are also utilized to approximate the solution field. In addition,

the method preserves the same framework employed by numerical models based on the Finite Element

Method (FEM). In the present work, fundamental aspects on computational representation of geomet-

ric entities using B-Splines are briefly reviewed as a background for the introduction of Non Uniform

Rational B-Splines (NURBS). A numerical model for linear and geometrically nonlinear Elasticity is

formulated using the Bubnov-Galerkin weighted residual method and the isoparametric approach, where

a corrotational formulation is adopted for the kinematical description of the motion. Element assembly

procedures and evaluation of the stiffness matrix and load vector at local and global levels are described

utilizing analogies with the FEM. Gauss quadrature is adopted for numerical integration of element ma-

trices and relations among physical, parametric and parent fields are established. Classical examples are

analyzed using NURBS and the displacement formulation. Results obtained with the present model are

compared to benchmark predictions obtained from numerical schemes based on the FEM.
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1 INTRODUCTION

Isogeometric analysis is devoted to unify numerical procedures related to geometrical de-

sign and analysis by using a single framework where the same techniques are utilized in both

procedures. These tasks have been made independently with pre-processing programs based

on CAD technologies and numerical solvers based on the FEM. Pre-processing includes CAD

representation of physical prototypes, where a virtual model is obtained through a geometric

translation from the actual model. In addition, meshing and imposition of boundary conditions

and loads are also performed at this stage. However, it is observed that the finite element grid

obtained after the mesh generation is only an approximation of the CAD geometrical model

and poor approximations may be observed depending on the basis functions adopted during the

spatial discretization. Hence, meshing procedures for finite element analysis usually deteriorate

the CAD geometry, which is taken as “exact” when compared to the actual geometrical model.

The first step of a numerical analysis refers to the computational reproduction of a repre-

sentative geometrical model using CAD technologies, which are also responsible for producing

mesh information to be utilized in a finite element analysis. Although many technologies may

be employed to represent general geometries computationally, one can observe that most of the

commercial programs based on CAD adopts Non Uniform Rational B-Splines (NURBS) as a

basic tool. NURBS are very useful since they can exactly represent all conics such as circles,

ellipses, parabolas and hyperbolas.

An analysis procedure based on CAD formulation is referred to as Isogeometric Analysis.

Isogeometric analysis offers the possibility of integrating Finite Element Analysis (FEA) with

CAD tools by using B-Splines and NURBS parameterizations. Another important aspect related

to Isogeometric Analysis is associated to the isoparametric concept, since the solution space is

represented with the same basis functions utilized to represent the geometry. The general con-

cepts on Isogeometric Analysis were first introduced by Elguedj et al. (2005) and simulations

have been carried out, where very good results are observed for several applications in the field

of solid and fluid mechanics, including structural vibrations, structural problems with small and

large deformations and turbulent flows (see, for instance, Cottrell et al. (2006); Bazilevs et al.

(2007); Elguedj et al. (2008)). A comprehensive work on Isogeometric Analysis may be found

in Cottrell et al. (2009).

In the present work, a numerical model based on the Isogeometric Analysis is presented.

General concepts on computational representation of geometric entities are briefly reviewed as

a background for the introduction of Non Uniform Rational B-Splines (NURBS). Basic param-

eters such as knot vectors, control points and basis functions are also defined. An algorithm for

linear and geometrically nonlinear Elasticity is developed using the Bubnov-Galerkin weighted

residual method and the isoparametric approach applied on the equilibrium equation. Assembly

and evaluation of the stiffness matrix and load vector at local and global levels are described

utilizing analogies with the FEM. Gauss quadrature is utilized for numerical integration of el-

ement matrices and relations among physical, parametric and parent fields are established. In

order to verify the present formulation with respect to important computational aspects such as

accuracy and efficiency, comparisons are performed considering results obtained here for classi-

cal Elasticity applications and the corresponding predictions obtained from a numerical scheme

based on a finite element model using eight-node hexahedrals with one-point quadrature, where

benchmark results are also provided. All examples are modeled with NURBS surfaces and

solids and the displacement formulation is adopted for the equilibrium description.
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2 THEORETICAL ASPECTS

A set of statements referred to NURBS, Isogeometric Analysis, Corotational Kinematics and

Solid Mechanics are presented in the following.

2.1 Fundamental concepts on CAD representation

There are three forms to represent a function: explicit, implicit and parametric form, where

the explicit form is a particular case of an implicit form. The implicit form describes an implicit

relation between the involved quantities. In parametric form, each quantities is explicitly and

independently described as a function of parameters.

In order to describe complex curves, surfaces or solids, parametric representations are used.

NURBS parameterization is well suitable to describe physical domains. In this sense, they

can be used to describe the solution field. For beam, shell and solid brick structures, a curve

representation in the form

C (ξ) = (x (ξ) , y (ξ) , z (ξ)) (ξ) ∈ [0, 1] (1)

a surface representation in the form

S (ξ, η) = (x (ξ, η) , y (ξ, η) , z (ξ, η)) (ξ, η) ∈ [0, 1]× [0, 1] (2)

a solid representation in the form

G (ξ, η, ζ) = (x (ξ, η, ζ) , y (ξ, η, ζ) , z (ξ, η, ζ)) (ξ, η, ζ) ∈ [0, 1]× [0, 1]× [0, 1] (3)

are looked for, respectively.

Computational modeling of geometric entities may be easily performed using polynomials

as a basic tool. Polynomials are very useful since they can approximate a large number of

functions. In addition, they can be easily differentiated and integrated.

A specific form to represent any given function is obtained by using Bernstein polynomi-

als (Bernstein, 1912), where the Bernstein basis can be identified. A general formulation for

Bernstein polynomials associated to a given degree n is defined as

Bi,n (ξ) =

(
n

i

)
(ξ − a)i (b− ξ)n−i

(b− a)n
, with

(
n

i

)

=
n!

i! (n− i)!
(4)

where the parameter ξ of Bernstein bases must be defined over an interval, i.e., ξ ∈ [a, b]. For

mathematical convenience, it is usually considered that Bi,n (ξ)
def
= 0 if i < 0 or i > n.

Bernstein polynomials, restricted to interval [0, 1], are utilized to form Bézier curves (Bézier,

1966, 1967, 1972). Considering that restriction, the Bernstein polynomials corresponding to

degree n must be rewritten as follows:

Bi,n (ξ) =

(
n

i

)

ξi (1− ξ)n−i
(5)

A recursive definition of Bernstein polynomials is obtained observing that they can be also

defined by blending together two Bernstein polynomials of degree n− 1, that is

Bi,n (ξ) = (1− ξ)Bi,n−1 (ξ) + ξBi−1,n−1 (ξ) (6)
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The most important properties associated to Bernstein polynomials are concerned to satis-

fying symmetry with respect to ξ = 1
2
, nonnegativity and partition of unity, which may be

represented with the following expressions:

Bi,n (ξ) = (1− ξ)Bn−i,n (ξ) Bi,n (ξ) > 0
n∑

i=0

Bi,n (ξ) = 1 (7)

In order to obtain a stable numerical scheme to evaluate polynomials in Bernstein form,

DeCasteljau’s algorithm is usually employed (see Piegl and Tiller (1997); DeCasteljau (1959)).

A parametric formulation was introduced by Bézier (1966, 1967, 1972) to describe curves

employing Bernstein polynomials, which are referred as being Bézier curves. A Bézier curve

of degree n may be written as follows

C (ξ) =
n∑

i=0

Bi,n (ξ)Pi (ξ) ∈ [0, 1] (8)

where Pi are geometrical parameters (coordinates) defining the geometry in the physical space,

which are known as control points, and Bi,n (ξ) are Bernstein polynomials of degree n given as

functions of variable ξ in the parametric space. The polygon defined with the control point is

referred as being the control polygon (see Figures 1 and 2).

The Bézier parameterization to describe curves can be extended to surfaces by using the

tensor product concept. The basis functions are now given as bivariate functions of parametric

variables ξ and η, which are obtained from the product of univariate basis functions of degree n

and m, respectively. In addition, a bidirectional grid of control points with dimensions (n+ 1) ·
(m+ 1) must be also specified. Consequently, a Bézier surface is obtained taking into account

a bidirectional grid of control points, Pi,j , and the product of Bernstein univariate polynomials,

that is:

S (ξ, η) =
n∑

i=0

m∑

j=0

Bi,n (ξ)Bj,m (η)Pi,j (ξ, η) ∈ [0, 1] (9)

In order to obtain a Bézier solid, the tensor product of univariate basis functions is em-

ployed to generate trivariate functions of parametric variables ξ, η and ζ of degree n, m and

l, respectively. Considering a three-directional grid of control points, Pi,j,k, with dimensions

(n+ 1) · (m+ 1) · (l + 1), and the product of Bernstein univariate polynomials, as follows:

G (ξ, η, ζ) =
n∑

i=0

m∑

j=0

l∑

k=0

Bi,n (ξ)Bj,m (η)Bk,l (ζ)Pi,j,k (ξ, η, ζ) ∈ [0, 1] (10)

Nevertheless, it is well known that complex geometric entities cannot be represented using

just one polynomial function. Therefore, polynomials by parts have been employed to describe

curves, surfaces and solids, where continuity at the breakpoints is enforced up to some desired

order, which define the end points for every subdomain. These breakpoints are related to the

knot vectors of the respective curve, surface or solid, in each direction. In this sense, B-spline

geometries were introduced considering a linear combination of B-spline basis functions pre-

senting minimal support with respect to a given degree, smoothness and domain partition.

The Cox-deBoor recursive formulation (Cox, 1972; deBoor, 1972) is usually adopted to

evaluate B-spline basis functions, which are obtained considering a given knot vector (Ξ,H,Z),
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which are defined over the parametric space, the number of control points (n+ 1,m+ 1, l + 1)
and the polynomial degree (p, q, r), over the respective directions of the parametric space ξ, η

and ζ .

The knot vector is a set of numerical values describing the knot coordinates in the parametric

space, where a nonmonotonic sequence of increasing values must be chosen. Depending on

the geometric topology, knot spans may represent points, lines or surfaces. After the knot

coordinates are established, the knot spans are then defined and the extent of control of the

control points over the geometry is also determined. Knots spans are always bounded by two

consecutive knots, constituting the basic entities for Isogeometric Analysis in the same manner

as elements are basic entities for Finite Element Analysis (FEA). Hence, the knot spans are also

referred to as elements in Isogeometric Analysis.

The B-spline basis functions, in recursive form, are defined as:

Ni,0 (ξ) =

{

1 if ξi 6 ξ < ξi+1

0 otherwise

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (11)

over the following knot vectors, in ξ, η and ζ directions, respectively:

Ξ = {0, . . . , 0
︸ ︷︷ ︸

p+1

, ξp+1, . . . , ξsp−p−1, 1, . . . , 1
︸ ︷︷ ︸

p+1

}, with sp = n+ p+ 1

H = {0, . . . , 0
︸ ︷︷ ︸

q+1

, ηq+1, . . . , ηsq−q−1, 1, . . . , 1
︸ ︷︷ ︸

q+1

}, with sq = m+ q + 1 (12)

Z = {0, . . . , 0
︸ ︷︷ ︸

r+1

, ζr+1, . . . , ζsr−r−1, 1, . . . , 1
︸ ︷︷ ︸

r+1

}, with sr = l + r + 1

When knots are equally spaced in the parametric domain they are referred to as uniform.

Otherwise, they are called non uniform. By changing the knot span lengths, more sample points

can be used in regions where the curvature is high. A knot vector is considered as being open

(or nonperiodic) when the first and last knots are defined p + 1 times, implying that the first

and last control points interpolate the geometry. In addition, when consecutive knots present

the same value, knot spans of zero length are defined and knot multiplicity is obtained. The

knot multiplicity is limited to the order of the basis function, when the basis function becomes

interpolatory, i.e., when a knot value has multiplicity p + 1 a subdivision is obtained. It is also

important to notice that the support of each basis function over the knot spans is p+ 1.

Derivatives of the B-spline basis functions are represented in terms of B-spline lower order

bases owing to the recursive definition of the basis functions. The derivative of the i-th basis

function with respect to the parametric coordinate is defined as:

d

dξ
Ni,p (ξ) =

p

ξi+p − ξi
Ni,p−1 (ξ)−

p

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (13)

For higher derivatives, the following generalization may be adopted:

dk

dξk
Ni,p (ξ) =

p

ξi+p − ξi

(
dk−1

dξk−1
Ni,p−1 (ξ)

)

−
p

ξi+p+1 − ξi+1

(
dk−1

dξk−1
Ni+1,p−1 (ξ)

)

(14)
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The derivatives of B-spline basis functions are defined over the same knot vector. Algorithms

for numerical evaluation of derivatives of B-spline basis functions may be found in Piegl and

Tiller (1997).

The most important properties related to B-spline may be summarized as follows:

• In the absence of repeated knots, continuous derivatives of order p− 1 are maintained;

• The basis functions are nonnegative over the entire parametric domain;

• The basis functions constitute a partition of unity, that is:
∑i

j=i−p Nj,p (ξ) = 1 ∀ ξ ∈ [ξi, ξi+1);

• The number of continuous derivatives is decreased by k when a knot is repeated k times;

• The affine covariance property guarantees that any transformation on a B-spline curve is

obtained applying the transformation directly to the control points.

Given n + 1 basis functions Ni,p of degree p and the corresponding control points Pi, a

B-spline curve may be described as:

C (ξ) =
n∑

i=0

Ni,p (ξ)Pi (15)

where the knot vector (Ξ) is specified as expressed previously. B-spline surfaces are obtained

considering a tensor product of univariate B-spline basis functions and a bi-dimensional net of

control points Bi,j , with 0 6 i 6 n and 0 6 j 6 m, that is:

S (ξ, η) =
n∑

i=0

m∑

j=0

Ni,p (ξ)Nj,q (η)Pi,j (16)

where Ni,p and Nj,q are B-spline basis functions of degree p and q, respectively, and the knot

vectors (Ξ,H) are specified as expressed previously. B-spline solids are obtained analogously

to B-spline surfaces, by considering a three-dimensional net of control points Bi,j,k, with 0 6

i 6 n and 0 6 j 6 m and 0 6 k 6 l, where Ni,p, Nj,q and Nk,r are B-spline basis functions

of degree p, q and r, respectively and the knot vectors (Ξ,H,Z) are specified as expressed

previously:

G (ξ, η, ζ) =
n∑

i=0

m∑

j=0

n∑

k=0

Nk,r (ξ)Nj,q (η)Nk,r (ζ)Pi,j,k (17)

Geometrical entities can be also represented using rational polynomials, where conic sec-

tions such as circles and ellipses are exactly constructed taking into account projective trans-

formations of piecewise quadratic curves (Roberts, 1965; Riesenfeld, 1981; Patterson, 1985).

A rational function is defined as any function which can be written as the ratio of two polyno-

mial functions. Homogeneous coordinates may be utilized to represent rational polynomials in

a n-dimensional space by using a polynomials in n+1-dimensional homogeneous space. Ho-

mogeneous coordinates were proposed by Roberts (1965); Riesenfeld (1981). Computational

algorithms in homogeneous coordinates are very efficient and they can be found in Piegl and

Tiller (1997).
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When the rational concept is applied to non uniform B-spline, Non Uniform Rational B-

spline (NURBS) are obtained, which represent a significant improvement over standard B-

spline, since complex objects cannot be exactly represented using simple polynomials. NURBS

entities are then obtained by a projective transformation of B-spline entities.

Transformations are performed by projecting every point (xw, yw, zw,w) = (X, Y, Z,W )
belonging to the curve, surface or solid onto a hyperplane W = 1 through a line passing by the

origin, i.e., the mapping is performed by (x, y, z) = (X
W
, Y
W
, Z
W
) and this mapping generates

the rational functions. The control points for NURBS are obtained by performing the same

projective transformation to the control points of the B-spline, such that Rd+1 map
−→ R

d, where

d is the euclidean space dimension (see Figure 1). The control points for NURBS curves are

Figure 1: Curve representations using NURBS (Cottrell et al., 2009).

obtained by mapping, Pw map
−→ P, using the following expression:

(Pi)j =
(Pw

i )j
wi

1 6 j 6 d; wi = (Pw
i )d+1 (18)

where (Pi)j is the j-th component of the vector of control points Pi, wi is referred to be the

i-th weight and the P
w
i are associated to the projective control points. Dividing the projective

control points by the weight is equivalent to applying the projective transformation to them.

The homogeneous concept allows an efficient approach to work with these entities, i.e., the
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NURBS curve in homogeneous coordinates is defined as:

C
w (ξ) =

n∑

i=0

Ni,p (ξ)P
w
i (19)

while the NURBS surface and solid in homogeneous coordinates are defined as

S
w (ξ, η) =

n∑

i=0

m∑

j=0

Ni,p (ξ)Nj,q (η)P
w
i,j (20)

and

G
w (ξ, η, ζ) =

n∑

i=0

m∑

j=0

n∑

k=0

Nk,r (ξ)Nj,q (η)Nk,r (ζ)P
w
i,j,k (21)

where (p, q, r), (n+ 1,m+ 1, l + 1), (i, j, k), (Ni,p (ξ) , Nj,q (η) , Nk,r (ζ)) are the degrees, the

numbers of B-spline basis functions, the control points index, and the basis functions according

to directions ξ, η and ζ , respectively. Note that the number of B-spline basis functions is iden-

tical to the number of control points. The control points in homogeneous coordinates are given

in the following form:

• For curves Pw
i = (wixi, wiyi, wizi, wi);

• For surfaces Pw
i,j = (wi,jxi,j, wi,jyi,j, wi,jzi,j, wi,j);

• For solids Pw
i,j,k = (wi,j,kxi,j,k, wi,j,kyi,j,k, wi,j,kzi,j,k, wi,j,k).

A curve C (ξ) is related to its projective curve C
w (ξ) by the following expression:

(C (ξ))j =
(Cw (ξ))j
W (ξ)

1 6 j 6 d; W (ξ) =
n∑

i=0

Ni,p (ξ)wi (22)

where W (ξ) is the weighting function and Ni,p is the standard B-spline basis function. NURBS

basis functions are finally defined as follows:

R
p
i (ξ) =

Ni,p (ξ)wi
n∑

î=0

Nî ,p (ξ)wî

(23)

A NURBS curve of degree p is defined using Eq. (23) in conjunction with the control points

defined by Eq. (18), that is:

C (ξ) =
n∑

i=0

R
p
i (ξ)Pi (24)

Rational surfaces and solids are analogously defined considering tensor products of rational

basis functions given, respectively, by

R
p,q
i,j (ξ, η) =

Ni,p (ξ)Nj,q (η)wi,j
n∑

î=0

m∑

ĵ=0

Nî ,p (ξ)Nĵ ,q (η)wî ,ĵ

(25)
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and

R
p,q,r
i,j,k (ξ, η, ζ) =

Ni,p (ξ)Nj,q (η)Nk,r (ζ)wi,j,k

n∑

î=0

m∑

ĵ=0

l∑

k̂=0

Nî ,p (ξ)Nĵ ,q (η)Nk̂ ,r (ζ)wî ,ĵ ,k̂

(26)

If the weights are equal to one, then Ri,p = Ni,p. Hence, B-splines may be considered as a

special case of NURBS.

Derivatives of NURBS basis functions are obtained according to the following expression:

d

dξ
R

p
i (ξ) = wi

W (ξ)N ′

i,p (ξ)−W ′ (ξ)Ni,p (ξ)

(W (ξ))2
(27)

where N ′

i,p (ξ)
def
=

d

dξ
Ni,p (ξ) and W ′ (ξ)

def
=

n∑

i=0

Ni,pwi (ξ)

For higher order derivatives, Piegl and Tiller (1997) suggest the following expression:

dk

dξk
R

p
i (ξ) =

A
(k)
i (ξ)−

k∑

j=1

(
k
j

)
W (j) (ξ)

d(k−j)

dξ(k−j)
R

p
i (ξ)

W (ξ)
(28)

where A
(k)
i = wi

dk

dξk
Ni,p (ξ) (no sum on i); W (k) (ξ) =

dk

dξk
W (ξ). Additional information on

NURBS may be found in Piegl and Tiller (1997); Espath (2009).

2.2 Fundamental concepts on IsoGeometric Analisys

Elements in Finite Element Analysis (FEA) are represented using the parent and physical

domains, where geometry and degrees-of-freedom are defined in terms of their nodal values.

In addition, finite element basis functions are usually interpolatory, which may assume positive

as well as negative values (see, for instance, Bathe (1995)). On the other hand, Isogeometric

Analysis utilizes NURBS basis functions and two concepts about numerical meshes can be

identified: the control and physical meshes. Control points are defined in order to control the

geometry and they do not conform to the actual geometry. The control mesh looks like a finite

element mesh constructed with multilinear elements. Geometry and degrees-of-freedom are

represented in terms of their respective values defined at the control points.

Two definitions can be also observed for the physical mesh: the patch and knot meshes.

Patches may be considered as macro-elements, which have representations in the parent and

physical domains. Each patch can be decomposed into knot spans and Knots may be points,

curves and surfaces in one-, two- and three-dimensional topologies, respectively. Knots define

knot spans and element domains, where basis functions are smooth (C∞). Across the knots,

basis functions are Cp−m continuous, where p is the polynomial degree and m is the multiplicity

of the knot. Knot spans also define the domain where numerical quadrature takes place, being

represented in the parent and physical domains. Another important concept is related to the

index space of a patch, which identifies each knot and determinates knots having multiplicity

greater than one. In Figure 2, a simple case of surface parameterization with NURBS is shown.

The isoparametric concept is very important for Isogeometric Analysis, since the basis func-

tions utilized to exactly represent the geometrical model are also employed to approximate the
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Figure 2: General concepts involving Isogeometric Analysis (Cottrell et al., 2009).

solution space. On the other hand, when the isoparametric concept is applied to the Finite Ele-

ment Analysis (FEA), the basis adopted to approximate the unknown solution field is then used

to approximate the geometrical model.

The maximum level of continuity across an element boundary, for example, is determined

by continuity of the basis across the corresponding knot span. If the level of refinement is

insufficient, the basis must be refined. However, it is important to notice that the refinement

procedure maintains both, the geometry and the parameterization, unchanged.

Any function is represented over the entire parametric domain by using the following ex-

pression

u (ξ)
def
=

nnp∑

i=1

Na (ξ) da (29)

where nnp is the total number of control points in the control mesh, Na is the NURBS ba-

sis function associated to control point a, with a ∈ [1, nnp], considering that coordinates and

unknowns are defined in the vector of control variables da.

2.3 A numerical model for linear and geometrically nonlinear elasticity

Problems on Elastostatics may be formulated as a special case of the first Cauchy’s law

of motion, which is usually referred to as the equilibrium equation. In addition, mass and

energy conservation must be enforced over the volume enclosing the body (see Malvern (1969)).

Considering a classical Lagrangian kinematical description in the Cartesian coordinate system

and in the absence of temperature changes and inertial forces, the conservation equations are
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reduced to the following expressions:

∫

Ω0

ρ (X, t0) dΩ =

∫

Ω

ρ (x, t) dΩ

div σ + b = 0 in Ω (30)

where div σ = ∇Tσ and ∇ is the nabla differential operator, X and x are vectors containing

components of the material (Xi) and spatial (xi) coordinates in the Cartesian coordinate system,

respectively, t represents time, ρ is the specific mass, b is the body force vector and σ contains

components of the Cauchy stress tensor. It is important to notice that the equilibrium equation,

which is derived from the Cauchy’s equation of motion, is defined taking into account the

current deformed configuration of the body (Ω).

When infinitesimal displacements and rotations are observed, the geometrical linear ap-

proach can be utilized, where the undeformed configuration of the body is taken as reference

throughout the analysis. In addition, the Cauchy stress tensor and the infinitesimal strain tensor

are adopted in order to describe the stress-strain relation. On the other hand, when displace-

ments and rotations are large, a special treatment must be considered in order to obtain accurate

results for the strain field.

In the present model, geometrically nonlinear problems are analyzed considering a corota-

tional formulation for the kinematical description of the continuum, where stress and strain are

described according to a coordinate system locally attached to every element of the physical

mesh. A linear hypoelastic constitutive model restricted to small strains is adopted in order

to relate strain and stress measures in the elastic regime, which may be written as σ = D
eǫ,

where ǫ contains components of the strain tensor and D
e is the constitutive matrix containing

components of a fourth order tensor. Stress updates are performed by using the Truesdell rate,

which may be written as follows:

σ̇tr = σ̇ − Lσ − σLT + σtr (ǫ) ; L = ǫ̇+ ω̇ (31)

where ǫ̇ and ω̇ are the strain and spin tensors, respectively. Increments of the strain rate and spin

rate tensor components are evaluated employing the mid-point integration within the increment

interval [tn, tn+1], that is:

tn+1∫

tn

Ldτ = ∆ǫ+∆ω =
1

2

[

∂∆u
def

∂x̂n+1/2

+

(
∂∆u

def

∂x̂n+1/2

)T
]

+
1

2

[

∂∆u
def

∂x̂n+1/2

−

(
∂∆u

def

∂x̂n+1/2

)T
]

(32)

with

∆û
def = R

T
n+1/2∆u

def = x̂n+1 − x̂n (33)

where ∆u
def is the deformation part of the total displacement field and x̂n and x̂n+1 are body

configurations defined in the corotational coordinate system at t = tn and t = tn+1, both being

expressed as follows:

x̂n = R
T
nxn; x̂n+1 = R

T
n+1xn+1 (34)

where Rn, Rn+1/2 and Rn+1 are orthogonal tensor performing objective transformations be-

tween the global coordinate system to the corresponding corotational systems, which are de-

fined at t = tn, t = tn+1/2 and t = tn+1, respectively. The rotation matrices are evaluated in this

Mecánica Computacional Vol XXX, págs. 1955-1975 (2011) 1965

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



work considering the classical polar decomposition based on the left stretch tensor. Additional

information on the corotational formulation utilized in the present paper may be found in Braun

and Awruch (2008).

Applying the Bubnov-Galerkin weighted residual method in conjunction with the Green-

Gauss theorem over the momentum equation (given in Eq. (30)), the following expression is

obtained:
∫

Ω

(∇δu)T σdΩ =

∫

Ω

δuT
bdΩ +

∫

Γ

δuT
tdΓ (35)

where t is the surface traction vector and Ω and Γ are, respectively, volume and boundary

surface referred to the physical space where the problem takes place. In order to define the

element concept in the context of Isogeometric Analysis, geometry as well as displacements

and displacement variations are represented with the following expressions:

x (ξ) =

nnp∑

a=1

Ra (ξ)xa; u (ξ) =

nnp∑

a=1

Ra (ξ)ua; δu (ξ) =

nnp∑

a=1

Ra (ξ) δua (36)

where Ra is the NURBS basis function related to control point a, which is defined as function

of the vector of parametric coordinates ξ = {ξ, η, ζ}, and nnp is the number of global basis

functions. Knot vectors corresponding to the different directions in the parametric space must be

specified defining the non-zero knot spans where elements are then identified. Notice that unlike

finite element models, where geometry and solution fields are approximated at element level,

the respective approximations given by Isogeometric Analysis (see Eq. (36)) are valid for the

entire parametric space, although NURBS basis functions present localized support. Some basis

functions and their respective control points may belong to different elements simultaneously,

since the basis functions are extended over p+ 1 knot spans, where p is the polynomial degree.

Consequently, Eq. (35) can be rewritten as:

nel∑

e=1

(∫

Ωe

(∇δu)T σdΩe

)

=

nel∑

e=1

(∫

Ωe

δuT
bdΩe +

∫

Γe

δuT
tdΓe

)

(37)

where Ωe and Γe are, respectively, volume and boundary surface corresponding to element e

in the physical mesh. Considering n + 1, m + 1 and l + 1 as the number of basis function

corresponding to the parametric directions ξ, η and ζ , respectively, and their respective polyno-

mial degree defined by p, q and r, element e is defined by determining the indices at which the

corresponding non-zero knot span begins in the index space (see Figure 2), that is:

e ∈ [ξi, ξi+1]× [ηi, ηi+1]× [ζi, ζi+1] (38)

where p + 1 6 i 6 n, q + 1 6 j 6 m and r + 1 6 k 6 l. The total number of elements in

which the spatial field is discretized in the parametric domain is defined as:

nel = (n− p+ 1) · (m− q + 1) · (l − r + 1) (39)

The index space also determines the NURBS coordinates, which are related to the indices

of a knot that define a knot vertex in the physical mesh. Consequently, by examining the index
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space, it is possible to determine exactly which basis functions have support in element e with

the following expressions:

Nα (ξ) over Ξ have support for α ∈ [i− p, i]

Nβ (η) over H have support for β ∈ [j − q, j] (40)

Nγ (ζ) over Z have support for γ ∈ [k − r, k]

NURBS coordinates are also utilized to specify the knot at which the support of a basis

function begins. Taking into account these NURBS coordinates, a global numbering scheme

for trivariate basis functions and the respective control points may be formulated as follows:

ÑA (ξ, η, ζ) = Ni (ξ)Nj (η)Nk (ζ) (i, j, k) ∈ [0, n]× [0,m]× [0, l] (41)

where

A = (m+ 1) (n+ 1) k + (n+ 1) j + i+ 1

(ξ, η, ζ) ∈ [ξi, ξi+p+1]× [ηj, ηj+q+1]× [ζk, ζk+r+1] (42)

A numbering scheme to assign element numbers may be defined with:

e = (k − r) (m− q + 1) (n− p+ 1) + (j − q) (n− p+ 1) + (i− p+ 1) (43)

The total number of control points and their respective NURBS basis functions are given

observing the number of components in the knot vectors and the polynomial order defined for

the basis functions. Hence, refinements can be obtained by including components in the knot

vectors, which leads to increasing the number of control points or the polynomial degree. In the

present work, only single patches and open knot vectors are considered.

In order to establish a local framework for assembling the global matrix formulation in ac-

cordance with the FEM practice, the local dimensions of matrices and vectors are first specified

taking into account that the number of basis functions acting locally on an element is determined

by:

nen = (p+ 1) (q + 1) (r + 1) (44)

A local numbering scheme for identifying the basis functions is then formulated, which is

based on the NURBS coordinates utilized to determine the location of a given element. With

the element number determined, local function number 1 is assigned to the global basis func-

tion with NURBS coordinates (i, j, k), which define the element position in the index space.

The remaining global basis functions of the present element are then enumerated by assign-

ing numbers from 2 up to nen, where a descendent sequence over the global basis functions is

considered. These local numbers are assigned working backwards in ξ direction until A − p is

obtained, with A determined by Eq. (42). The parametric directions η and ζ are then run using

the same descendent characteristic. Since some of the global basis functions are extended over

different elements, the corresponding control points determine element connectivities, which

are utilized to assemble the global system of governing equations in matrix form. Figure 3

illustrates the process of local numbering for a simple case

By substituting the NURBS approximation related to the displacement field, given by Eq.

(36), into the constitutive equation, an element level approximation for the stress-strain relation

is obtained, where the strain components are given by:

ǫ = Bu (45)
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Figure 3: The local numbering scheme.

being B the gradient matrix. For geometrically nonlinear analysis, B must be evaluated consid-

ering the current configuration of the body in the corotational coordinate system.

Introducing the expansions of displacements components and their corresponding variations,

given by Eq. (36), and the relationship given in Eq. (45) into Eq. (37), a matrix equation

representing a system of linear algebraic equations is obtained for the equilibrium equation,

which may be expressed as:

nel∑

e=1

K
e
u =

nel∑

e=1

f
e (46)

where Ke is the element stiffness matrix and F
e is the force vector at element level. The matrix

and vector dimensions associated to K
e and F

e are specified as (neq · neq · neq) and (neq), re-

spectively, where neq = nen · ndof , with ndof denoting the number of degrees of freedom at the

control points level. The summation symbol indicates the assembling procedure to evaluate the

global system of equations, considering the element contributions given according to connec-

tivity relations established previously. The global stiffness matrix is always sparse because the

support of each basis function is highly localized. In the geometrically nonlinear regime, the

momentum equation (Eq. (35)) must be iteratively satisfied using the incremental approach (see

Bathe (1995)), since internal forces are given now as functions of the current configuration of

the body. The nonlinear equilibrium equation is obtained employing a linearization procedure

given by the Newton-Raphson method, where the residual vector is submitted to a Taylor series

expansion within the increment interval [t, t+∆t]. Eq. (46) is then rewritten as follows:

nel∑

e=1

K
e
tan (u

e)u =

nel∑

e=1

f
e −

nel∑

e=1

f
e
int (u

e) (47)

where K
e
tan is the tangent stiffness matrix. At each iterative step, the tangent stiffness matrix

and the internal force vector are initially evaluated in the corotational coordinate system with

the following expressions:

K̂
e
tan =

∫

Ω̂e

B
T
(

D+ D̂

)

BdΩ̂e; f̂
e
int =

∫

Ω̂e

B
TσdΩ̂e (48)
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Figure 4: The physical, parametric and parent spaces utilized in the numerical integration of the

stiffness matrix (Cottrell et al., 2009).

where Ω̂e is referenced to the current configuration of element e in the corotational coordinate

system, D̂ and σ are stress tensors related to the Truesdell rate tensor and the corotational

Cauchy stress tensor, respectively, with both evaluated in the corotational coordinate system. In

order to solve the system of nonlinear equilibrium equations, the tangent stiffness matrix and

the internal force vector must be obtained in the global coordinate system through an objective

transformation from the corotational system, that is:

K
e
tan = RK̂

e
tanR

T ; f
e
int = Rf̂

e
int (49)

The numerical integration associated to the evaluation of the element stiffness matrix is per-

formed using Gaussian quadrature. Integrals defining the matrix terms, which are initially de-

fined in the physical space, are transferred to the parametric space and then to the parent space,

where the numerical integration is actually performed. Considering that coordinates in the

physical, parametric and parent spaces are denoted by x, ξ̂ and ξ̃, respectively, elements can be

similarly denoted as Ωe , Ω̂e and Ω̃e in the physical, parametric and parent domains (see Figure

4). The transformation from the physical space to the parent space, where Gaussian quadra-

ture is carried out, is achieved by using a composition of two consecutive transformations: the

physical space is transferred first to the parametric space through a geometrical mapping and

then to the parent space through a second mapping, which is affine. Spatial derivatives of basis

functions with respect to Cartesian coordinates are substituted by the corresponding derivatives

with respect to the parametric coordinates as follows:

∂R

∂xi

=
∂R

∂ξ̂j

∂ξ̂j

∂xi

(50)

where (ξ̂1, ξ̂2, ξ̂3) = (ξ̂1, η̂2, ζ̂3) and the second term on the right-hand side of Eq. (50) represents

the inverse of the Jacobian matrix. Since the numerical integration is performed in the parent

domain, the Jacobian determinant is evaluated with:

J =

∣
∣
∣
∣
∣

∂xi

∂ξ̃j

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∂xi

∂ξ̂k

∂ξ̂k

∂ξ̃j

∣
∣
∣
∣
∣

(51)
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where (ξ̃1, ξ̃2, ξ̃3) = (ξ̃1, η̃2, ζ̃3). The parametric coordinates (ξ̂1, η̂2, ζ̂3) related to the quadra-

ture points defined in the parent domain (ξ̃1, η̃2, ζ̃3) can be obtained considering the NURBS

coordinates (i, j, k) associated to element e ∈ [ξi, ξi+1]× [ηj, ηj+1]× [ζk, ζk+1], that is:

ξ̂ = ξ̂i + (ξ̃ + 1)
ξ̂i+1 − ξ̂i

2

η̂ = η̂i + (η̃ + 1)
η̂i+1 − η̂i

2
(52)

ζ̂ = ζ̂i + (ζ̃ + 1)
ζ̂i+1 − ζ̂i

2

Although the present integration scheme is only approximated, it is important to notice that

the classical Gaussian quadrature over rational functions is an approximation as well.

When a numerical model based on Isogeometric Analysis is formulated with Bubnov-Galerkin

method and NURBS basis functions, homogeneous boundary conditions are exactly enforced

by setting the corresponding control variables (basis functions) as zero. A trivial procedure for

imposition of essential boundary conditions is then obtained, which is similar to that utilized by

finite element models. In the present model, the Kroenecker delta property of the NURBS basis

functions can be applied on the displacement field as follows:

u (xb) =

nnp∑

a=1

Ra (ξb)ua = 0 with Ra (xb) = δab (53)

where vector xb specifies Cartesian coordinates of control points with parametric coordinates

defined by ξb, which are located at boundary knots with essential boundary conditions.

Unfortunately, for general inhomogeneous essential boundary conditions, significant errors

may be obtained if these boundary conditions are applied directly to the control variables. Un-

like FEA, where nodal points are located on the boundary surfaces, Isogeometric Analysis is

usually carried out considering control points located outside the physical boundary surfaces.

In addition, it is important to notice that NURBS basis functions are not interpolatory functions.

For additional information on this subject, readers are addressed to a recent work presented by

Wang and Xuan (2010).

2.4 Numerical applications

In this section two examples of elastic linear structural analysis and one example of an elas-

tic geometrically nonlinear structural analysis are presented. The first example is a simply sup-

ported plate (Dirichlet boundary conditions are applied in the boundary of the middle surface

of the solid) with an uniform normal load applied over the whole middle surface. The second

example is known as the pinched cylinder problem. The pinched cylinder is subjected to equal

and opposite concentrated forces at its midspan. At the ends, where structure is supported by

rigid diaphragms the Dirichlet boundary conditions are applied. Only one octant of the cylinder

is modeled. The nonlinear example is performed using a cantilever beam which is subjected to a

constant bending moment. The moment is chosen such that a tip rotation of 2π rad is expected,

i.e., the straight beam shall be bent to a circle.

2.4.1 Linear elastic plate

The simply supported plate is modeled as a solid and is analized using 3 × 3 elements in

its surface and 2 elements through the thickness. In the plate surface the basis is chosen as a
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quintic-NURBS, and through the thickness three cases are tested, linear-, cubic- and quintic-

NURBS.

The plate (Figure 5) with a thickness equal to 0.1 and an area of 10 × 10 is submitted to an

uniform load equivalent to 500. The material properties are: E = 2.1 · 1011 and ν = 0.3.

The geometry is presented in Figure 5. Result of displacement is shown in 6a and deformed

Figure 5: Geometry.

plate for one half of geometry is shown in 6b. The analytical solution for this problem has

(a) Displacement (b) Half deformed plate

Figure 6: Plate simply supported.

a maximal displacement equal to 0.010556. In this example the maximal displacement using

Isogeometric Analysis is 0.010569. Although the mesh used has a poor quality, for analyses

carried out with cubic- and quintic-NURBS through the thickness the response is satisfactory. In

these cases results are indistinguishable. For linear-NURBS through the thickness unacceptable

results were obtained, with an error of 5% approximately. Using a more fine discretization,

16× 16 elements in the surface, this error is reduced to 2.5%.

2.4.2 Linear elastic shell

A pinched cylindrical shell mounted on rigid end diaphragms was modeled as a solid and

it is analized using 16 × 16 elements in its surface and 2 elements through the thickness. The

pinched cylinder is subjected to equal and opposite concentrated forces at its midspan, equal to

1.0, (see Figure 7a).
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The shell (Figure 7a) has a thickness equal to 3.0, being the radius equal to 300 and the length

equal to 600. The material properties are: E = 3.0 · 106 and ν = 0.3. The maximal difference

(a) Undeformed shell (b) Deformed shell (c) Displacement

Figure 7: Pinched cylinder.

obtained in the displacement (see Figure 7c) when compared with the analytical solution (see

Cottrell et al. (2009)) is 0.1%. To obtain this result, the necessary mesh is at least formed by

16 × 16 elements. These simulations have been carried out for cubic- and quintic-NURBS

through the thickness and the results are practically the same. However, results produced by

linear-NURBS through the thickness are unacceptable for this mesh, 16× 16.

2.4.3 Geometrically nonlinear elastic beam

A tip rotation of 2π rad is obtained for a cantilever beam under a tip bending moment M =
2πEI

L
, where E is Young’s modulus and I is the moment of inertia. Since there are no rotational

degrees of freedom, the moment is modeled by pairs of path forces (see Figure 8).

The beam has a the thickness equal to 0.1, the width is equal to 1.0 and the length is equal

to 10. The material properties are: E = 1.2 · 105 and ν = 0.0. Results are presented in

Figure 9, which show the geometries and displacements when the moment is increased step-

by-step. The geometries correspond to 0%, 25%, 50%, 75% and 100% of the total moment.

The load history is shown in Figure 10, where dots are the exact solution and the continuous

lines was obtained with the corotational approach. These curves are the vertical and horizontal

displacement, following sinusoidal functions. Two meshes were analized: 16 quintic-NURBS

elements in length direction, 1 linear-NURBS through the thickness and in the width direction;

the second mesh is slightly different, having 32 quintic-NURBS elements in length direction.

Results for displacements, shown in Figure 10, are obtained with the second mesh. However,

the first mesh yields results with an error which is less than 2.5%.

3 CONCLUSIONS

Some tests were performed in this work for linear and geometrically nonlinear structures,

and good results were obtained. For the elastic linear structures excellent results were obtained

with quintic-NURBS in the structural surface (even for very poor meshes), although it was

necessary to use at least cubic-NURBS through the thickness. When linear-NURBS are used

through the thicknessrelatively high errors occur. The geometrically nonlinear problem gives
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(a) Geometry and boundary conditions (b) Moment as a two pair of path forces

Figure 8: Beam bent to a circle.

Figure 9: Circle beam.
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Figure 10: Load history (Vertical and Horizontal displacement vs. load).

the same results when compared with analytical solution. In this case, it is not necessary to use

cubic-NURBS, or higher degree, through the thickness. Results were indistinguishable for any

degree of NURBS through the thickness, then results presented for this example were obtained

for linear-NURBS through the thickness

Finally, aims achieved in this work are listed below:

• Introduce basic concepts of NURBS and Isogeometric analysis;

• The shells, plates and beams could be easily modeled as solids, in displacement approach;

• An accurate kinematic description, using a corotational approach, was developed based

on polar decomposition.
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