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Abstract. This paper presents a study on the use of mataties for the treatment of the NP-hard
problem known as the Intercity Public Transporttfem. The study aimed at optimizing the bus
routes and frequencies through two basically dffietechniques: Genetic Algorithms and Simulated
Annealing. The complete implementation of the athons was carried out on MALLBA, where
traffic simulation was performed with SUMO (Simudat for Urban MODbility). The testing case was
an intercity passenger line linking the Argentindiies of Bahia Blanca and Punta Alta.
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1 INTRODUCTION

Every day thousands of commuters travel from otyetaianother for different purposes. In
many cases, users share the same intercity lina gignificant period of time. Therefore, a
careful planning of the transport system becomeseasingly essential. Due to the rising
demand, either increasing resources or reorganitiagfieet and staff allocation turn into
valid options. There are many studies and resuitsutathis alternative (Wren, 1999).
However, if it is impossible to incorporate new ésisand drivers to the line, a reasonable
policy consists in optimizing the bus routes arehjfrencies (Baaj and Mahmassani, 1991;
Desaulniers and Hickman, 2007) in order to impraignificantly the intercity transport
system. This possibility is generally regulatedthg government and it affects the resource
allocation task (Ceder and Wilson, 1986).

Even though it is similar to urban traffic, thedantity traffic also has the following main
differences that require special treatment: a)sually has fewer and more remote stops; b)
there is less interaction between vehicles reguitinfewer unplanned stoppages; c) there are
route segments with special features (e.g. higheed limits). Most of the research on route
planning is related to urban transport, insteadcoficentrating on the intercity traffic
(Guihaire and Hao, 2008, Su and Chang, 2010, Yah,e2006, Yan and Chen, 2002, Olivera
et al., 2009). In this group there are only a feapgrs that give the demand a stochastic
treatment (Yan et al., 2006, Olivera et al., 2009).

Among some of the studies about urban traffic, I8aiz (1980) models the frequency
design in order to minimize the fleet and waitingds for the users. Van Nes et al. (1988)
propose to evaluate all routes starting from zesmuency and increasing gradually the
frequency according to marginal efficiency. Howewvapore recent studies (Guihaire and Hao,
2008) concluded that it is appropriate to addréms groblem of frequencies and routes
altogether.

In view of the problem complexity, it is appropgato solve it through metaheuristic
procedures (Colorni et al., 1996). Nevertheles® particular technique is not well
determined. A Genetic Algorithm (GA) was effectiyepplied for the Traveling Salesman
Problem (Yan et al., 2008), but Geng et al. (2GLigceed in solving a similar problem with
Simulated Annealing (SA). Tan et al. (2001) alsaden comparisons between heuristics,
concluding that GA provides better results than &Athe expense of increased use of
computing time. Based on the conclusions reportegrievious research papers, we have
decided to explore the application of both techegjuThey are very popular, having been
used for various studies related to transit netwaekign problem. GAs are addressed in
Xiong and Schneider (1993), Chakroborty (2003)tr2ék et al. (1998), Fan and Machemehl
(2006), Ngamchai and Lovell (2003) and Dhingrale{2000), while SAs are employed by
Woch and Lebkowski (2009), Breedam (1995), and tval.g2010).

GA's (Pattnaik et al., 1998) and SA’s (Kirkpatriek al., 1983) procedural behavior has
been investigated in this paper. The generic puresdfor both algorithms were implemented
in MALLBA architecture (Alba et. al, 2007) in ordév test our model for the treatment of
intercity public transport problem (IPTP). Theirfsemance has been analyzed and compared
aiming at the improvement of an existing interditye between the Argentinian cities of
Bahia Blanca and Punta Alta. The actual traffiazvflwas considered by means of SUMO
(Simulator of Urban Mobility) (Krajzewicz et al.006) that enabled the simulation of real
scenarios.

The remainder of this paper is structured as falo8ection 2 presents the IPTP and the
proposed model. Section 3 introduces both algostlused for the treatment of an IPTP.
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Then, section 4 details results and comparisonsalllyj the concluding remarks and
suggestions for future research are summarizeédios 5.

2 THE INTERCITY PUBLIC TRANSPORT PROBLEM

The demand for intercity transport is steadily grayworldwide. This increase does not
correspond with an organizational structure becaudees not give the users a service that
meets their needs and it does not allow operatoreaximize their profits. In particular, a
disadvantage is that there are areas where onlppem@tor is responsible for connecting two
or more cities through a single interurban linekilng the cities to attain and maintain the
passenger flow. IPTP resolution focuses on estabfisthe bus routes and frequencies (Yan
et al., 2006; Yan and Chen, 2002) with a set ofl@ermined stops and interlocked in order
to optimize the bus route and the journey timesiash as possible.

Bahia Blanca is an Argentinian city with 400,00B&bitants, two national universities,
some governmental buildings and a populated sud&2e47 knf. Punta Alta is a town with
60,000 inhabitants, an important Naval Base cafledrto Belgrano and a populated surface
of 1312 knf. Both are located to the South of Buenos Airevipae. The distance between
them is about 30 km. They are communicated thra@urgimterurban line with an approximate
demand of two thousand commuters per day. AlthdbgHine is currently in operation, we
could not get any official information about thesbwutes and frequencies. In this study we
had to resort to making inquiries through the welssof both municipalities and among line
users in order to set stops and frequencies riealigt

The study case has a set of 22 stops that shagde¢heoute linking Bahia Blanca and
Punta Alta. Buses should start at a stop, visithalothers and conclude in a final stop. The
objective is to find the path whose cost is thesteahile establishing the vehicular frequency,
which has been imposed between 25 and 50 minutesuibycipal regulations. The case was
analyzed by comparing metaheuristics. IPTP beldaghe NP-hard class; then, solving this
problem by an exhaustive search method would regaim enormous processing time.
Therefore, it is desirable to employ metaheuristicerder to obtain satisfactory responses in
a reasonable amount of time. Moreover, it shoulehdited that its computational complexity
increases exponentially by increasing the numbestops. With a view to algorithmic
comparison, the same representation of the prolas employed in order to encode all
possible solutions and the same fitness functios ei@sen to evaluate the solution quality.

2.1 Solution representation

A solution to an IPTP is a sequence of stops; re@esented by a vector nfelements,
wheren is the number of stops to be visited by the bas [&able 1). It also conserves another
vector, indicating which city belongs to each stop.

LA A ] A ] ] A ] AL

Table 1: Representation of a solution.

For our problem:
Ai={1, 2} where 1=Bahia Blanca and 2=Punta Alta;
i={1, 2, 3, ... n} wheren=22.

2.2 The fitness function

The users’ and operators’ interests are represdmtedeans of the fitness function Z (see
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Eq. 1). Finding the routes and frequencies is fdated as an optimization problem that
consists in minimizing the bus travel time, theteouost for the vehicle and the vehicular
number that satisfactorily complies with the impbfequencies.

Min 7z = 0 *R+ST) (1)
V
Symbols
ti  The total travel time of a busn seconds
T X5t
vi Abusi

V  The number of vehicles that reach their destinies
NV The number of vehicles that do not arrive atrtdestinies
r, The route amount for the vehidle

R Zi,7"ri
s The number of times that a vehicle must stop.
ST LiEst

S The total simulation time

For the fitness values associated with a feasillgisn, we have made use of an available
simulator called SUMO (Krajzewicz et al., 2006).i9 boftware lets one run simulations that
emulate vehicular mobility at the microscopic lewelis open source, highly portable and
capable of supporting full maps of real citieselithose obtained through GoogleMaps or
OpenStreetMap (see Figure 1). It is possible tidgiroperties by means of SUMO, such as
vehicular acceleration and deceleration, driveBgity, maximum vehicular speed, street
directions, and waiting times. In this way, SUMQowls the accurate simulation of traffic
behavior by providing all the data necessary towate the fithess of each solution.

OPENSTREETMAP SUMO

Figure 1: Bahia Blanca and Punta Alta cities: OpexgViap view (left) contrasted with the SUMO resul
(right).

There are many studies related to the use of matiskies for optimization problems. In
the next section we have introduced the most raetecharacteristics of the GA and SA
approaches related to the problem under study.
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3 METAHEURISTIC ALGORITHMS

Metaheuristics are non-deterministic algorithmst tbitain high-quality solutions in a
reasonable amount of time. Their main convenieatuies are their ability to escape local
optima, their adaptability to changes and theibfm independence.

In addition to their prestige, the present choi€éebath GA and SA metaheuristics is
strongly linked to their marked differences. Thesghniques differ in the number of solutions
processed at the same time and in the quantityeofony they use. On the one hand, GA is a
population-based approach describing the evoluifanset of points in the search space; as it
progresses, it uses a history of previous sear€@weshe other hand, the SA is a method based
on the trajectory that uses only one solution taha, marking a trajectory in the search space;
its action is exclusively determined by the stdteusrent information.

3.1 Genetic algorithm (GA)

GA is a search algorithm based on the principlBarwin’s biological evolution (Darwin,
1859). The algorithmic initialization is a set afdividuals who constitute the population.
Each represents a possible solution. Like in naiaddviduals are selected favoring the best
qualities, valued by means of a fitness functioher, these individuals are usually crossed
and their descendants take part of the new populalihese offspring often mutate. This is
repeated through generations until it reaches ftigerithmic stopping point. This end
condition may be either a predetermined numbertariions or when the algorithm has
converged to a satisfactory solution.

GA Algorithm:
t:=0;
initialize P(t); /[ a random population is genéed
evaluate P(t); /l the quality of each solutiorcédculated
while not enddo /I the number of generations has not been reached
t=t+1;
P(t):=select P(t-1); /I the best solutions are el
recombine P(t); /l solutions are crossed
mutate P(t); /Il the offsprings are mutated
evaluate P(t) /Il the quality of each solutisrcalculated
end while

Table 2: Pseudo-code for Genetic Algorithm.

The algorithm starts with a randomly generated temiu The following three basic
operators are used in each of the iterations:

Selection Operator that chooses individuals (i.e., solu)otinat will constitute the new
population. For our particular case, we used rtailatheel selection (Baker, 1987), which
consists in associating each individual with a gghwoportional to its fitness with respect to
others in the population. Thus, individuals of betfithness have higher chances of being
selected.

Crossover Operator that allows passing genetic informatwi an original pair of
chromosomes to their offspring, thus generatingegierdiversity. In our algorithm we have
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selected the PMX (Partially Mapped Crossover) (Geid, D. E. and Linge, R, 1985), which
produces children from two valid solutions by chiagstwo random cut points to form a
subsequence of the mobile path; then, this infaonas exchanged between parents.

Mutation Operator that exchanges two genes at random.allbiws the intensification of
a particular space touring neighboring places. ther IPTP in particular, we have made a
small variation of the mutation by incorporatinglpiem-specific knowledge to this operator,
thus promoting exchanges between stops locateiffénenht cities.

3.2 Simulated Annealing (SA)

SA is a search method that is conceptually basd@tiephysical process of heating a solid,
followed by a gradual cooling, until a crystalliséate with an almost perfect structure is
reached (Goldberg, D. E. and Linge, R, 1985).

The algorithm uses a variable called temperafyr@hose value indicates the extent that
states the limit in order to accept a solution waisan the present one. This variable starts
with a high value and it is reduced in each ofitBetions, according to a cooling variable
There is a set of neighbors with their correspogdimess function. Whenever an individual
is generated, the acceptance criterion is apptiethéck whether the current solution should
be replaced. The criterion consists in acceptiegnisighboring solution if it is better than the
current one- like in a classical search method. Wthe generated solution is worse than the
best current solution, it is possible to accepasitthe new current solution depending on the
difference in quality between the two solutiods,(and the temperaturd&)( This difference
(Paccep) is evaluated in Eq. 2, which enables escaping fomal optima.

%)

Pcept =€ T 2

From the pseudo-code, it can be noticed that thkehnithe temperature, the greater the
possibility of accepting worse solutions. This ascun the first iterations (exploration),
decreasing progressively as they advance (exptmijatin addition, the smaller the difference
in quality, the greater becomes the probabilityactepting a worse solution. When an
iteration has ended, the temperature decreaseseximaly to move towards the next.

SA Algorithm:
Sict < Initialization () /I a random solution is initiaded
T« To /la temperature is initialized
while not enddo // the number of generations has not been rahche
for Cont=1 to L(t )do // cooling speed

Sand<— SelectSolutionN({g) // neighbor selection
& « cost(Qang-cost(Qc) // difference between current and neighboring

solution
if (U(0,1)< & ¥T)) O (&<0) then // the criterion of acceptance is applied
Sact — Sand /l the solution is updated
end if
T — a(t) // cooling mechanism
end for
end while

Table 3: Pseudo-code for Simulated Annealing.
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4 DISCUSSION

For the analyses of both algorithms in this paper ave accomplished a series of
empirical tests in order to adjust the parametéesaoh algorithm. 20 independent runs were
carried out with the configuration shown in Tabfesnd 5. Implementations were made in
MALLBA with C++ and they were run on a PC Intel @3 Duo, with a 2.53 GHz processor
and 1GB of RAM.

Generations Individuals Offsprings Crossover, Motati
100 50 100 0.7 0.01

Table 4: Configuration parameters for the GenetgoAthm.

Evaluations Markov-Chain Length Temperature Decay
300 10 0.99

Table 5: Configuration parameters for Simulated éalimg.

Before making comparisons, the results of both heidstics were analyzed with respect
to the simulator usage in the calculation of theefs function, as well as to limitations of
currently available software for academic use. Age tbeginning of the testing, the
measurements for both algorithms indicated thatapmately 95% of the execution time
was consumed in the fitness calculation. As tosihmulator usage inside the fitness function,
the stage that involves loading the test map ar@s detected as the most time consuming
step. Since this step is made every time the ftrezdculation is called, it is natural to
establish guidelines to reduce the number of sitiula for each generation. These patterns
are directly related to the similarities among itigividuals to be evaluated. We implemented
a matrix assistant in order to reduce the timeaatsd with fitness calculation. The goal was
to store in the auxiliary memory the solutions wtiile highest probability to be chosen as the
new solution. The choice is carried out by therimi methods in each algorithm. By means
of this auxiliary memory, the fitness calculatieraivoided for many solutions.

Based on empirical tests, we decided to use adiayxmemory whose size was equal to
twice the number of stops. The mechanism of satusielection included in the auxiliary
memory consists in keeping solutions with the Hgsess values and the latest solutions
generated. As a result of this modification, we enawanaged to avoid about 30% of the
simulator calls, thus significantly reducing thatimes of the algorithms.

There is an extensive literature about GAs and 8s$ aim at solving transportation
problems; in general, GA has been accepted ag iette SA for a wide variety of problems.
Nevertheless, SA has exhibited an excellent pedoga in various small problems (Mayer et
al., 1999).

In this computational study, the GA provided saiisbry results for the resolution of this
problem; even before reaching the 100 generatgees Figure 2a).

However, we have detected two situations well werttphasizing:

1) When calculating the fitness solution, the excessiymputation time of the algorithm
is directly affected by the execution of the sinbtofaAs GA is a population-based
approach, this calculation is made on many occasiahich implies a higher
processing time that we seek to reduce in orderd®ase the number of generations
in search of a better solution.
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2) The benefit of adding problem-specific knowledge the mutation operator is
remarkable. The main feature introduced aimed abwaging the exchange of
poorly located stops, taking advantage of the faat we know in advance the

locations of the stops for each city.

In contrast, SA is a trajectory method that makasef evaluations by iteration, thus
reducing the computing time. Besides, it allowdaigxtend the number of iterations to 300,
thus leading us successfully to obtain better tegshln through GA (see Figure 2b).

Genetic Algorithm

250000
|

200000
|

Fitness

150000
|

100000
|

Generations

(a)

Fitness

Simulated Annealing

300000 400000
!

200000
!

100000

0 50 100 150 200 250 300

Evaluations

(b)

Figure 2: Example of evolution of Genetic Algoritl{a) and Simulated Annealing (b) in ten runs.

In order to provide statistically meaningful compans, we have applied a Signed Ranked
(Wilcoxon) test (Wilcox, 1987) to the numerical tilsutions of the results, instead of
concentrating on other popular measures, like teamand the standard deviation (Sheskin,
2007). Table 6 shows the corresponding values.cbnédence level was set to 95%, which
allows us to ensure that all these results arasstally different if they result in p-
value<0.05. For Bahia Blanca-Punta Alta intercityel the differences between the
distributions of GA and SA for 20 independent ruesulted in p-values much lower than 0.5.
Therefore, it can be inferred that our SA obtairs¢akistically better results than GA. A
summary of these results can be seen in the bogptatn in Figure 3. In this boxplot, we can
confirm that SA shows better low and upper quartitan GA.

Mean Median Staf‘d?“d

Deviation
GA 1.35E+05 1.32E+05 2.82E+04
SA 1.14E+05 1.06E+05 3.93E+04

Table 6: Mean, median and standard deviation foeds values obtained by GA and SA in 20 runs &Ti8
Blanca and Punta Alta instance.
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Bahia Blanca - Punta Alta Intercity Line
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Figure 3: Boxplots of the results obtained with @#d SA.

The algorithms work by modifying the travel frequess between 25 and 50. Nevertheless,
the bus frequencies do not affect the quality sblation directly, since the variables involved
in the fitness function are compensated when thguincy changes. In fact, among the high
quality solutions we found, some emerged with higlguency and others often appeared
scarcely. If the frequency is low, there are fewahicles with a shorter covered distance, but
more vehicles arrive to their destination with fevetops. Therefore, in our algorithm the
correct location of the stops really determinessthiation quality.

5 CONCLUSIONS

For the Intercity Public Transport Problem (IPTPE vmave evaluated two famous
metaheuristics: Genetic Algorithm (GA) and Simuta#nnealing (SA). Both GA and SA
provide high-quality solutions; the former convesgeith fewer iterations, while the latter
requires less computational time.

Based on this analysis, we can recommend the use& &A procedure to solve simple
versions of an IPTP. SA proved to exhibit bettemmand median than GA. However, the
application of GA should not be dismissed, esplcialmore complex instances of the IPTP.

It should be remarked that this is an introductstiydy on a complex research problem.
Some key issues remain to be analyzed, such assénes demand for the service and the bus
capacity. In addition, it is important to point dbiat at present we are developing a parallel
version of the GA metaheuristics in order to obtaatter solutions with less processing time.
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