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Abstract: In the past years, the consumption of energy produced by wind turbines had an exponential  
growth.  This  requirement  gave momentum to  the development  of  larger  turbines  with  the  goal  of 
producing  more  energy  at  the  same  site,  reducing  the  initial  investment,  and  the  operation  and 
maintenance  costs.  In  order  to  achieve  this  objective,  longer,  lighter,  maintenance-free  blades  are 
required so that smaller loads are transferred to the other, more expensive, wind turbine components.  
The resulting larger flexibility, imposes new challenges to the blade and controller designs;  henceforth, 
new concepts are being developed to add more intelligence into these systems. During the last few years, 
the  electronics  industry  had invested  resources  into  the  research  and  development  of  practical 
applications for piezoelectric ceramic materials. The result of this effort was the development of high 
precision  piezoelectric  actuators  and  sensors,  which  achieve  forces  and  deformations  that  are 
compatible  with  the  ones  needed  for  the  control  of  aerodynamic  surfaces.  In  this  work,  the 
aeroservoelastic behavior of a wind turbine blade typical section equipped with an active smart flap is 
numerically simulated. The bending and torsion stiffness of the blade are modeled by means of two 
springs placed at  the shear center of the blade's section. The displacements associated to these two 
deformation modes are described by means of two discrete generalized coordinates. Structurally, the 
flap  is  modeled  as  a  continuous  beam,  with  fixed-free  boundary  conditions,  and  an  embedded 
piezoelectric  actuator.  The  bending  mode  of  the  flap  is  actively  excited  through  the  use  of  a 
commercially available piezoelectric actuator. The model response was compared to the data published 
by  the  actuator  manufacturer.  Aerodynamically,  the  blade-flap  system  is  modeled  assuming  the 
hypotheses of thin airfoil theory. The aerodynamic loads are determined by replacing the vortex sheet 
with a two dimensional (2D) version of the non-linear, unsteady, vortex lattice method. To capture the 
physical aspects from the control-fluid-structure interaction, the models are combined  using a strong 
coupling technique. The equations of motion of the system are integrated numerically and interactively 
in the time domain. In addition, the stability and sensitivity of the system for input perturbations are 
analyzed. The results show the feasibility of using this type of system in large horizontal wind energy 
turbines. 
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1 INTRODUCTION
In the past years, the consumption of energy produced by wind turbines had an exponential 

growth. This requirement gave momentum to the development of larger turbines with the goal 
of producing more energy at the same site, reducing the initial investment, and the operation 
and maintenance costs.  In order  to  achieve this objective, longer,  lighter,  maintenance-free 
blades are required so that smaller loads are transferred to  the other, more expensive, wind 
turbine components. The resulting larger flexibility, imposes new challenges to the blade and 
controller design, therefore new concepts are being developed to add more intelligence into 
these systems. 

There are many former studies about this subject applied, mostly to aircraft, and to wind 
turbines. A good review can be seen in Barlas and Kuik (2010).

Embedding an  active layer  of  piezoelectric  ceramic material  over  a  layer  of  a  passive 
material  allows  inducing bending in  the  composite  material,  permitting  a  smooth  control 
surface to be generated. This is of most importance in avoiding flow detachment.

During the last few years the electronics industry has invested resources into the research 
and development of practical applications for piezoelectric ceramic materials. The result of this 
effort was the development of high precision piezoelectric actuators, which achieve forces and 
deformations that are well-matched with those needed for the control of aerodynamic surfaces.

Modeling a typical section in motion exposed to unsteady aerodynamics is not an easy task. 
In a blade section the center of mass may have an offset from the shear center, so the resulting 
equations of motion are, in general, dynamically coupled. Moreover, the coupling between the 
heave and pitch motions results in a non-linear system. Furthermore, the unsteady flow around 
the airfoil gives rise to a wake that continuously modifies the pressure field around the airfoil. 
Finally, adding a flexible trailing edge, capable of modifying its own geometry by means of a 
piezoelectric effect, and doing it in such a fashion that reduces the fatigue producing loads, 
reveals the full complexity of the problem.

In this work, the aeroservoelastic behavior of a wind turbine blade typical section equipped 
with an active smart flap is numerically simulated in the time domain. The bending and torsion 
stiffness are modeled through two springs placed at the shear center of the typical section. The 
displacements associated to these deformation modes are described by means of two discrete 
generalized coordinates.

In the structural model, the flap is modeled as a continuous beam, with fixed-free boundary 
conditions, and an embedded piezoelectric actuator. The flap deflection relative to the body of 
the blade is described using the assumed modes method.  The bending mode of the flap is 
actively excited  by means  of  a  commercially available  piezoelectric  actuator.  The  model 
response was compared to the data published by the manufacturer.

In the aerodynamic model, the blade-flap system is modeled assuming the hypotheses of thin 
airfoil  theory;  that  is,  as  a  vortex  sheet  attached  to  the  airfoil  mean  camber  line.  The 
aerodynamic loads are determined by replacing this vortex sheet with a 2D version of the non-
linear, unsteady, vortex lattice method.

To capture the physical aspects from the control-fluid-structure interaction, the models are 
combined using a strong coupling technique. The equations of motion of the aeroservoelastic 
system are integrated numerically and interactively in the time domain. 

In  addition,  the  stability and sensitivity of  the  system for  air  inflow and control  signal 
perturbations are analyzed. The results show the feasibility of using this type of system in large 
horizontal wind energy turbines.
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2 AEROELASTIC MODEL

2.1 Coordinate systems and nomenclature:
N: inertial (Newtonian) system.
B: body system that moves with the rigid airfoil and it is centered at the shear center. 
A: flap system; same as system B but it is located at the origin of the flap.
h is the plunging displacement.
θ is the pitching displacement.
v is the flap deflection relative to the rigid airfoil.
m is the airfoil lumped mass.
I is the airfoil lumped second moment of inertia.
d1 is the offset of the center of mass from the shear center.
d2 is the offset of the flap origin from the shear center.

Figure 1: Model Layout

2.2 Structural model

2.2.1 Airfoil model:
The airfoil is structurally modeled as a rigid body with its mass and inertia lumped at the 

mass center. The mass center can be displaced from the shear center. Two discrete springs are 
attached at the shear center to account for bending and torsional stiffness. The spring stiffness 
can be determined from the frequencies typical of wind turbine blades. 

k h=mωh
2 k θ=I ωθ

2
                                                                 (1)

where: 
ωh and ωθ are the uncoupled plunging and pitching frequencies, respectively; and 
kh and kθ are the plunging and pitching spring stiffness, respectively.
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The position vector of the lumped mass (R) is given by:
R=h n̂2+d 1 b̂1                                                            (2)

And its velocity:
Ṙ= ḣ n̂2+θ̇d 1 b̂2                                                            (3)

The kinetic energy is:

T a=
1
2

m [ Ṙ⋅Ṙ]+
1
2

I θ̇2                                                     (4)

Hence, introducing (3) in (4):

T a=
1
2

m ḣ2+
1
2

I a θ̇
2+S a cosθ ḣθ̇                                            (5)

where:
Sa=m d 1

I a=I+md 1
2                                                              (6)

The elastic potential energy is:

U a=
1
2

k h h2+
1
2

kθθ
2                                                     (7)

2.2.2 Flap model:
The flap is modeled as a continuous beam, with fixed-free boundary conditions. 
It is assumed that the mass is evenly distributed along the free span, so a constant mass per 

unit length (μ) is considered.
The position vector for a general point in the flap is:

R(η , t)=h n̂2+d 2 b̂1+η â1+v (η , t )â2                                        (8)

The velocity vector is:
Ṙ(η , t)=ḣ n̂2+θ̇ d 2 b̂2+θ̇η â2+ v̇ (η , t) â2−θ̇v (η ,t ) â1                      (9)

The kinetic energy is given by:

T flap=
1
2 ∫flap

Ṙ⋅Ṙ dm                                                       (10)

Hence, replacing (8) into (9), results:

T flap=
1
2 ∫flap

ḣ2 dm+
1
2∫ flap

θ̇2[v2(η , t )+(d 2+η)2]dm+...

...+1
2∫ flap [2θ̇ (d 2+η) v̇ (η , t)−2 ḣ θ̇v (η ,t )sinθ+2 ḣθ̇ (d 2+η)cosθ] dm+...

...+1
2∫ flap

v̇2(η ,t )dm+1
2∫flap

2 ḣ v̇ (η ,t )cosθ dm

       (11) 
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Defining the following identities:
m flap=∫ flap

dm
I flap= ̄I flap+ ̄̄I flap

̄I flap=∫flap
(d 2+η)2 dm

̄̄I flap=∫flap
v2(η , t)dm

S flap= ̄S flap cosθ− ̄̄S flap sinθ
̄S flap=∫flap

(d 2+η)dm
̄̄S flap=∫ flap v (η ,t )dm
̃S flap=∫flap

(d 2+η) v̇ (η , t)dm

                                           (12)

The flap deflection, relative to the body of the blade, is described using the assumed modes 
method,  where the displacement  field can be described by the superposition of an infinite 
number of shape functions weighted by coefficients that are functions of time, as follows:

 

v (η ,t )=∑ φi(η)qi(t )
v̇ (η ,t )=∑ φi(η) q̇i(t )
v2(η ,t )=∑i∑ j

φi(η)φ j(η)qi( t)q j (t)
v̇2(η ,t )=∑i∑ j

φi(η)φ j(η) q̇i( t) q̇ j (t)

                                   (13)

Replacing (12) into (11):
I flap= Ī flap+∑∑ ̄̄I flap(ij )qi(t )q j(t )
̄̄I flap(ij)=∫flap

φi(η)φ j(η)dm
S flap=S̄ flap cosθ−sinθ∑ ̄̄S flap(i )q i(t )
̄̄S flap(i)=∫flap

φi (η)dm

S̃ flap(i)=∫flap (d 2+η)φi(η)dm

                                     (14)

Finally, replacing (11) and (13) into (10) results:

T flap=
1
2

m flap ḣ2+
1
2
[ Ī flap+∑∑ ̄̄I flap(ij )q i(t)q j(t)] θ̇

2+...

...+1
2
[∑∑ ̄̄I flap(ij) q̇ i(t) q̇ j(t)]+...

...+ ḣ θ̇[ S̄ flap cosθ−sinθ∑ ̄̄S flap(i )qi(t )]+ḣcos θ∑ ̄̄S flap(i ) q̇i(t )+θ̇∑ S̃ flap(i) q̇i( t)

 (15) 
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2.2.3 Piezoelectric material model:
In this work, following Preidikman et al (2006), a simple linear model is used. It is assumed 

that the piezoelectric layer is polarized in its thickness direction. The free deformation (Λ) is 
given by:

Λ=
d
t c

V                                                                  (16)

where:
d is a material constant that defines the piezoelectric strength;
tc is the thickness of the layer; and
V is the control voltage.

The properties of the piezoelectric and support  layers were taken from a data sheet of a 
commercially available actuator (see THUNDER datasheet).

The actuator is a composite material where the bottom layer is made from steel and  the 
upper  layer is made from a piezoelectric PZT ceramic. The beam has fixed-free boundary 
conditions and its bending deflection is approximated by equation (13).

Figure 2: Flap Layout

The strain energy of the flap is given by, 

U flap=
1
2∫σεdvol=1

2∫∫ E ε2 dA d η                                   (17)

Euler-Bernoulli slender  beam hypotheses  are  considered  and only the  strain from pure 
bending is included.

ε=−(z−ze)
∂2

∂η2 v+Λ=−(z−z e)v ' '+Λ

ze=
E c t c(t b+

tc

2
)+Eb t b(

t b

2
)

Ec t c+Eb tb

                                 (18)

Combining (13) and (19) results:
ε=−(z−ze) [∑φi

' ' (η)qi(t )]+Λ                                       (19)
and:

ε2=(z− ze)
2[∑∑ φi

' ' (η)φ j
' ' (η)qi(t )q j( t)]−2( z−z e)∑ φi

' ' (η)q i(t)Λ+Λ2     (20)

L

tb,Eb

tc,Ec

η

z

PZT Layer

Steel Layer
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The integral over the thickness is evaluated in two separate regions, the steel layer and the 
PZT layer, which results in: 

U flap=
1
2 ∑∑ q i(t)q j(t) K̄ ij+

1
2 ∑∑ qi( t)q j (t) ̄̄K ij+...

...−∑ qi(t )Fe i+Ec L b t cΛ
2

K̄ ij=∫0

L
φi

' ' (η)φ j
' ' (η)Eb I b d η

I B=∫Ab
(z−z e)

2 dA

̄̄K ij=∫0

L
φi

' ' (η)φ j
' ' (η)Ec I c d η

I c=∫Ac
( z−ze )

2 dA

Fei=∫0

L
φi

' ' (η)E c S cΛ d η

Sc=∫tb

tb+t c

(z−ze)dA

                (21)

2.3 Unsteady Aerodynamics:

A thorough explanation of this model can be found in Katz & Plotkin (1991).
The airfoil is modeled assuming the hypotheses of thin airfoil theory; that is, as a vortex 

sheet attached to the airfoil mean camber line. 
It is assumed that the flow surrounding the airfoil and its wake is inviscid, irrotational and 

incompressible, hence there is a  velocity potential that  fulfills the Laplace equation,  which 
describes its spatial distribution:

∇2Φ=0                                                                     (22)
In order to have a unique solution, three additional conditions must also be satisfied:
1. The flow is tangent to the airfoil boundaries (zero normal flow): 

(∇Φ+ v⃗ )⋅⃗n=0
v⃗=−[ v⃗∞+ ⃗vbody]

 (23)

2. The flow disturbances vanish far from the body:
lim
d →∞

∇Φ=0 24)
3. The total circulation is constant for all t:

d
dt

Γ=0          (25)

The second condition is fulfilled by selecting the lumped vortex solution, where the airfoil 
vortex sheet is discretized with panels as the one shown in figure 3.

¼ C

¾ C

I J
Control 
point

Vortex 
point
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Figure 3: Panel element

The vorticity is lumped into a single vortex at the panel quarter-chord. The induced velocity 
is evaluated at the control point located at the panel three-quarter-chord. The velocity induced 
by a single vortex can be written in the following matrix form:

∇Φ=(u
w)= Γ

2π r 2 ( 0 1
−1 0)(xc−xv

zc−z v)=a⃗cvΓ

a⃗cv=
1

2π r 2 ( 0 1
−1 0)(xc−xv

z c− zv)
r 2=( xc−xv)

2+(z c− zv)
2

                                 (26)

where (xc,zc) are the coordinates of the control point and (xv,zv) are the coordinates of the 
concentrated vortex.

It is further assumed that there is no flow separation (no stall) and the boundary layer 
thickness is sufficiently small so its influence on the airfoil geometry can be neglected.

Now the velocity potential can be divided into an airfoil potential and a wake potential.
Φ=Φairfoil+Φwake                                                        (27)

Replacing (27) into (23) results:

(∇Φairfoil+∇ Φwake−v⃗∞− ⃗vbody)⋅⃗n=0
→∇Φairfoil⋅⃗n=−(∇Φwake+v⃗∞+ ⃗vbody)⋅⃗n

                                    (28)

And taking into account that the total potential at any point is the sum of all the vortex 
contributions:

∇Φairfoil(i )=∑ j
a⃗ ijΓairfoil(i)                                               (29)

From the third boundary condition, the vorticity in the wake has to be constant in time, 
therefore its value is known at each time step.

 Replacing (29) into (28) and expressing the result in matrix form yields:
AΓairfoil=−(∇ Φwake+v⃗∞+ ⃗vbody)⋅⃗n= ⃗RHS
⃗RHS=−(∇Φwake+ v⃗∞+ ⃗vbody)⋅⃗n

                                    (30)

where A is the matrix of aerodynamic influence coefficients:
 A(ij )=(∑ j

a⃗ ij)⋅n⃗i                                                      (31)
When the airfoil is accelerating from rest, a starting vortex is shed from its trailing edge to 

cancel the airfoil circulation, so an additional vortex is present at the flow field. This requires 
the introduction of an additional equation.

Γ( t)−Γ(t−Δ t )+Γw=0
Γ( t)=∑ Γairfoil(i)

                                              (32)

At each time step, a linear system of algebraic equations is solved in order to evaluate the 
circulation around the airfoil.

Having defined the system completely, the induced velocities at the airfoil and its wake are 
then calculated. Having this information, the airfoil tangential velocities and pressures are 
determined using the unsteady version of the Bernoulli equation. This is needed due to fact 
that the equations are solved in a local coordinate system and the Bernoulli equation is valid on 
an inertial coordinate system.
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Δ p j=ρ(U ∞

Γ j

Δ l j
+∂
∂ t ∑1

j

Γk )                                               (33)

Once the panel pressures are calculated the wake is reconfigured using the total velocity 
field; then, time is incremented, and all the previous steps are repeated.

2.3.1 Generalized forces

Figure 4: Pressure loads

The virtual work done by the pressure field acting on the typical section is given by:
̄δW=∫airfoil

f⃗ 1(ξ , t)⋅δR1(ξ , t)d ξ+∫flap
f⃗ 2(η ,t)⋅δ R2(η , t)d η= ̄δW 1+ ̄δW 2      (34)

R2

R1f1

f2

Airfoil Flap
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where:
f⃗ 1(ξ , t)=− f 1(ξ , t) b̂2

R1=h n̂2+ξ b̂1

δ R1=δh n̂2+ξδ b̂1

δ b̂1=δθ b̂3×b̂1=δθ b̂2

δ R1=δh n̂2+ξδθ b̂2

f⃗ 1(ξ , t)⋅δ R1=− f 1 cosθδh− f 1ξδθ
f⃗ 2(η , t)=− f 2(η , t)(sinβ b̂1−cosβ b̂2)
R2=h n̂2+(d 2+η)b̂1+v b̂2

δ R2=δ h n̂2+(d 2+η)δ b̂1+δv b̂2+v δ b̂2

δ b̂1=δθ b̂3×b̂1=δθ b̂2

δ b̂2=δθ b̂3×b̂2=−δθ b̂1

δ R2=δ h n̂2+((d 2+η)δθ+δv )b̂2−v δθ b̂1

f⃗ 2(η , t)⋅δ R2=− f 2 cos(θ+β)δh− f 2[sinβ v+cosβ(d 2+η)]δθ− f 2 cosβδ v

 (35)

and recalling (13):
δv=∑i

φi(η)δqi( t) (36)

Replacing (34) into (35) and using (36) yields:

δ W̄=δW̄ 1+δ W̄ 2=Qh⋅δ h+Qθ⋅δθ+∑i
Qq(i )⋅δqi

Qh=−∫airfoil f 1 cosθd ξ−∫flap f 2cos (θ+β)d η

Qθ=−∫airfoil f 1ξd ξ−∫flap f 2[sinβ∑i φi(η)qi( t)+cosβ(d 2+η)]d η

Qq(i)=−∫ flap
f 2 cosβ∑i

φi (η)d η

     (37)
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2.4 Combining the models - equations of motion
The expressions for the kinetic and potential energies, along with the expression for the 

generalized forces are now replaced into Lagrange’s equations leading to,

d
dt

∂
∂ q̇ i

(T a+T flap)−
∂
∂ qi

(T a+T flap)+
∂
∂ qi

(U a+U flap)=Qi (38)

The resulting differential equations of motion, in matrix form, are:

[mhh mhθ mh q1
mh qi

mθh mθθ mθq1
mθqi

mq1 h mq1θ
mq1 q1

mq1 qi

mqi h mqiθ
mqi q1

mqi qi

]⋅(ḧ
θ̈
q̈1

q̈i
)+[K h 0 0 0

0 K θ 0 0
0 0 ( K̄11+ ̄̄K11) (K̄ 1i+ ̄̄K 1i)
0 0 ( K̄ i1+ ̄̄K i1) (K̄ ii+ ̄̄K ii)

]⋅(h
θ
q1

qi
)=(Qh

Qθ

Qq1

Qqi

)−(Bh

Bθ

Bq 1

Bq i

)
mhh=m+m flap

mhθ=(Sa+ ̄S flap)cosθ−∑i
̄̄S flap(i)

mhqi=cosθ ̄̄S flap(i )

mθθ=I a+ ̄I flap+∑∑ ̄̄I flap q i(t)q j(t)
mθqi

= ̃S flap(i)

mqi q j
= ̄̄I flap(ij)

Bh=−θ̇2[(Sa+ ̄S flap)sinθ+(∑ ̄̄S flap(i)q i(t))cosθ]−2 θ̇sinθ∑ ̄̄S flap( i) q̇ i

Bθ=[∑∑ ̄̄I flap(ij)( q̇i q j+qi q̇ j)]θ̇
Bqi=−θ̇2∑ ̄̄I flap(ij )q j( t)

(39)
This system is integrated in the time domain using a step-by-step Euler algorithm.

For the test cases analyzed in this work the angle β is assumed to be zero. Therefore the 
aerodynamic loads are normal to the airfoil chord. For the flap tip displacement resulting from 
the test cases (5 mm), the error generated from this assumption is minimum. 
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3 RESULTS

3.1 Validation
In order to validate the predicted results, the aerodynamic model is first tested against the 

steady state thin airfoil theory. The wind inflow is set at 10 m/s and 10º of angle of attack. 
From thin airfoil theory hypotheses, the force and aerodynamic moment, measured at the 
quarter chord, for a flat plate are:

L=Pdyn cC l=67,167 N

Pdyn=
1
2
ρV ∞

2 =61,25 Pa

C l=2πα=2π ( 10º
180º

π)=1,0966

M c/4=Pdyn c2 Cmc /4
=0 Nm

Cmc /4
=0

(40)

To select the number of panels required for the aeroservoelastic simulations three runs were 
performed and the results are shown in Table 1.

Nº of panels L (N)

10 63,95

50 64,94

100 65,76

Table 1: Model convergence on number of panels.

Results after 4 seconds (200 steps of 20 msec) and using 100 panels:
L=65,76 N
M c/4=0,001651Nm

The model results and the wake geometry are shown in figure 5.

Figure 5: Aerodynamic model test results.
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To validate the algorithm used to take into account the interaction between the models, the 
work of Johansen (1999) is used as reference. In the reference the typical section is modeled 
as a rigid airfoil and the aerodynamic is modeled using CFD. 

One dimensional model tests are carried out and compared to Johansen (1999) results. In 
figure 6 pitch angle oscillations and plunge displacement from the reference data is shown. In 
figures 7 and 8 the displacement, forces and wake geometry from the model are presented. 

In this test the shear center is located at the quarter-chord and the system properties are the 
following: m=64,65kg/m, I=29,09 kg.m, Vinf=28,15m/s, Rho=1,293kg/m3, c=1m, d1=0,15.  

For the plunge test, a 0,1 initial displacement is applied, while for the pitching test, a 6º 
initial pitch is used. 

Figure 6: Single degree of freedom test from reference.

Figure 7: Single (pitch) degree of freedom test  results from present model.

Figure 8: Single (plunge) degree of freedom test results from present model.
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Damping calculation: one of the objectives of adding a control surface to this system is to 
reduce vibrations. So it is reasonable to determine the critical damping ratio for the reference 
case as well as the other cases.
Damping can  be  measured  by means  of  the  logarithmic  decrement  and  then  the  critical 
damping ratio can be estimated from this value. The formulas for each value are defined next:

δ=1
m

ln(
h0

ht+mΔT
)

ε= δ
2 π

100
(41)

where: 
δ is the logarithmic decrement.
m is the number of cycles between measurements.
hi is the displacement at time i.
ε is the critical damping ratio in %.

For the reference case (plunging):

For only one cycle:
δ=ln(

h0

ht+ΔT
)=ln( 0,1

0,07724
)=0,25825

ε=4,11

For 9 cycles:
δ=1

9
ln(

h0

ht+9ΔT
)=1

9
ln( 0,1

0,01042
)=0,25127

ε=3,999

For the reference case (pitching):

For only one cycle:
δ=ln(

θ0

θt+ΔT
)=ln( 0,10472

0,1051
)=−3,6−3

ε=−0,06

For 8 cycles:
δ=

1
8

ln (
θ0

θt+8ΔT
)=

1
8

ln( 0,1047
0,08897

)=0,02035

ε=0,324
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3.2 Plunging motion and deformable flap coupling (passive)
In this test only the pitching motion is constrained. The same properties as in the reference 

case are used, so that the effect of having a flap is emphasized.
Since the  flap has greater  stiffness than the  plunge spring, the time step  is reduced to  

1.5msecs.
The results of these simulations are shown in figure 9.

Figure 9: Plunge and passive flap coupling results.

The flap vibration can be perceived in the wake shed into the flow.
The resulting damping values are:

δ=
1
2

ln(0,1
0,06126

)=0,245

ε=3,899

3.3 Plunging motion and deformable flap coupling (active)

Now, a simple feedback control law is added to the flap. 
V =Vmax⋅ḣ (42)

 Figure 10: Plunge and active flap coupling results.

The resulting damping values are:

δ=
1
2

ln(0,1
0,04268

)=0,4257

ε=6,77
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3.4 Pitching motion and deformable flap coupling (passive)
In this test the plunging motion is inhibited. The same properties as in the reference case are 

used, so that the flap effects can be highlighted.
Since the  flap has  greater  stiffness than  the  pitch  spring,  the  time step  is  reduced  to 

1.5msecs.
The results are shown in figure 11

Figure 11: Pitch and passive flap coupling results.

The flap vibration can be seen in the wake shed into the flow.
The resulting damping values are:

δ=
1
3

ln(0,1047
0,09767

)=0,023168

ε=0,369

3.5 Pitching motion and deformable flap coupling (active)

In this case,  the same feedback control law is added to  the flap but  using the pitching 
velocity instead. 

V =Vmax⋅θ̇ (43)

 Figure 12: Pitch and active flap coupling results.

The resulting damping values are:

δ=
1
2

ln(0,1047
0,08801

)=0,05788

ε=0,921
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4 CONCLUSIONS
In this work, the aeroservoelastic behavior of a wind turbine blade typical section equipped 

with  an  active  smart  flexible flap  is  numerically simulated.  The  unsteady aerodynamic is 
modeled by means of thin airfoil theory and the resulting equations are discretized using the 
unsteady version of the vortex lattice method. The geometry of the wake is found, iteratively, 
using a time-stepping technique. The flap is modeled as a multilayered flexible beam with some 
layers having piezoelectric properties. This allows a control law to be applied evenly over the 
entire flap. The bending and torsion stiffness are modeled through two linear springs placed at 
the shear center of the typical section. In this model, the structural damping is not taken into 
account. The equations of motion of the aeroservoelastic system are integrated numerically and 
interactively in the time domain using a step-by-step Euler  algorithm. 

The aerodynamic model is validated against thin airfoil theory for a flat plate in steady state 
condition.  The  aeroelastic  model  predictions  of  a  rigid  typical  section  are  compared  to 
available results from other authors.

The addition of a passive flexible flap with a chord of 10% of the airfoil chord does not 
seem to introduce considerable changes in the uncoupled (plunge or pitch) system damping 
behavior. The results show that adding a simple plunge velocity feedback control law in the 
piezoelectric layers can increase bending damping up to 73%. Greater effects are seen for the 
pitching motion by a simple pitch velocity feedback control law. In the latest  case a 150% 
increase in damping is observed, against the critical damping of 0,39% measured in the passive 
case. From the results, it is also seen that the dynamics of the flap introduces high frequency 
vibration into the system that should be taken into account when analyzing a more complex 
feedback rule.

These results show the feasibility of using this type of system in large horizontal axis wind 
turbines. 
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