Asociacion Argentina AMCL

de Mecanica Computacional

Mecéanica Computacional Vol XXX, pags. 3033-3044 (articulo completo)
Oscar Moller, Javier W. Signorelli, Mario A. Storti (Eds.)
Rosario, Argentina, 1-4 Noviembre 2011

CONSIDERING PURE GPU MODEL FOR AN AUDIO
FINGERPRINTING SYSTEM

Natalia Miranda 2, Fabiana Piccolf and Edgar Chave?
a Universidad Nacional de San Luis, Ejército de los Andes 8300 - San Luis - Argentina

b U. Michoacana México and CICESE, México
e-mail: {mpiccoli}@unsl.edu.ar

Abstract. The demand for protecting, managing and indexing digitaiais growing quickly. As a
viable solution for this, fingerprinting is receiving inased attention. An audio fingerprinting system
extracts feature vectors (called fingerprint) from a queri@, finds matching in a database (DB), and
retrieves the appropriate audio signals associated wétimtitching fingerprint in the DB.

An audio fingerprint is a compact low level content-basedsligpf an audio signal. It provides the
ability to identify short, unlabeled audio signals in a fast reliable way. There are several practical
requirements which a successful audio fingerprinting systbould satisfy. First, it should be able
to identify corrupted audio signals in spite of degradatioi®econd, it should be able to identify the
signals of only a few seconds long. Finally, it should be cotafonally efficient, both in calculating of
the fingerprints and in searching for the best match in the Bdides, an audio fingerprinting system
should be scalable, i. e., it has to operate well with vergdddBs. A good option is to apply high
performance techniques in the solution.

The Graphics Processing Unit (GPU) provides high perfocaatomputing through the threading
model. Its main characteristics are high computationalgrpaonstant development and low cost and
provides a kit of programming called CUDA. It provides a GEBU interface, thread synchronization,
data types, among others.

CUDA supports several types of memory that can be used tewaehigh execution speeds in appli-
cations. The global memory is large but slow and tends to lawg access latencies and finite access
bandwidth, whereas the shared memory is on-chip memoryl] anthfast. The variables that reside in
this type of memory can be accessed at very high speed in by fpghallel manner. Other memories are
constant and texture memory which are read-only.

In this work, we propose implement the whole audio fingetmystem in a pure GPU model, using
all properties offered by GPU: shared memory, constant mgnatomic functions, coalescing access,
among others. We show different optimizations through geeaf CUDA memory hierarchy. We achieve
to reduce the total number of accesses to the global memang shared memory and to improve
considerably the performance. Finally, the experimemsiiits are presented.

Copyright © 2011 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

3034 N. MIRANDA, F. PICCOLI, E. CHAVEZ

1 INTRODUCTION

Audio indexing and audio identification has received a lo@atiEntion in the last years.
Specially the last, that consists in the ability to pair aglgnals of the same perceptual nature.
The audio identification demands an stable and persistgettalepresentation, it is the same
although the audio suffers different natural degradat®urch representation is called an Audio
fingerprint (AFP).

A fingerprinting system basically consists of two parts: @émgint extraction and an algo-
rithm to search for matching in a fingerprint database. Is Wrk, we focus on the first part
only and we propose an AFP implementation applying highgoerénce techniques.

An AFP is a compact representation of the perceptually agieyparts of audio content,
which can be used to identify an audio (or a segment) file, @verseverely degraded due to
compression or other types of signal processing operatidms fingerprints of a large number
of audio signals are usually stored in a large database. Amaignal can be identified by
comparing the fingerprint of query with each fingerprint ie thatabase.

Well-known applications of AFP are broadcast monitoringnrected audio and filtering
for file sharing applicationkarrola and Chave{2010, Haitsma and Kalkef2002, Shin et al.
(2002, Wang(2003. The use of fingerprints has several advantages. Firstidtaset to com-
pare is relatively small, because fingerprints are compastriptions similar to hash functions.
Second, comparing fingerprints can be done efficiently, lezthe perceptually irrelevant parts
have been removed. One audio file, encoded using differelihgschemes, gives the same
fingerprint or very similar. Fingerprints from two arbityaselected pieces of audio signal are
very different.

In order to employ high performance computing to speedupptbeess of obtaining the
AFP, the Graphics Processing Unit (GPU) represents a goechative. The GPU is attractive
in many application areas by its characteristics, esfdgdiatir parallel execution capabilities
and fast memory access. They promise more than an order ofitndg speedup over conven-
tional processors for some non-graphics computations. ublkeeof GPUs in general-purpose
computing is becoming a very accepted alternative.

A GPU computing system consists of two basic componentsiréaitional CPU and one
or more GPUs (Streaming Processor Array). The connectibmndasn CPU and GPU is by
mean of PCI Express bus. The GPU can be considered as a mesipoprocessor ables to
support fine grain parallelism (a lot of threads run in patakll of them collaborate in the
solution of the same problem) GPU is different than othealpararchitectures because it
shows flexibility in the local resources allocation (memoryegister) to the threads. In general,
a GPU multiprocessor consists of several streams, eaclewof tlas multiple processing units,
records and on-chip memory. Each stream multiprocessaucea variable number of threads.
The programmer decides how many threads and how they wik widnese can be adjusted to
achieve improvements in the system performance.

Each GPU applies the Single Process-Multiple Data (SPMDjehall units of computation
(thread) running the same code, not necessarily synchsbnawer different data. Every thread
shares the global memory space.

The CUDA programming model proposes a model for GPU progreagnit has two main
characteristics: the parallel work through concurrenedlds and the memory hierarchy. A
CUDA program is written in standard C/C++ extended by sdvagwords and constructs.
The user supplies a single source program encompassinghbsti{CPU) andkernel (GPU)
code. Each CUDA program consists of multiple phases thatareuted on either the CPU or

Copyright © 2011 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXX, pags. 3033-3044 (2011) 3035

the GPU. All phases that exhibit little or no data paralleliare implemented in the CPU. In
opposition, if the phases present much data parallelisay, ¢éne implemented dsernelfunc-
tions in the GPU. Akernelfunction defines the code to be executed by each threadshladnc
in a parallel phase.

There are several restrictions &arnelfunctions, they cannot: be recursive neither have
static variables declarations or a variable number of aggus The communication between
CPU and GPU is through API callgernelcode is initiated performing a function call.

Threads in the CUDA model are grouped into thread blocksthidlads in a block execute on
one SM and communicate among them through the shared memweads in different blocks
can communicate through global memory. Besides sharedlahdignemory, the threads have
their local variables. Thread blocks form a grid. The numdiegrids, blocks per grid and
threads per block are parameters fixed by the programmehéyscan affect the performance
of the application, can be adjusted.

Respect of memory hierarchy, CUDA threads may access daatarfrultiple memory spaces
during their execution. Each thread has private local mgraond each block has shared memory
visible to all its threads. These memories have the santariéghat thekernel All threads have
access to the same global memory and two additional readro@iory spaces: the constant
and texture memory spaces. The constant and texture mepemgsare optimized for different
memory usages. The global, constant and texture memorgs@ae persistent acroksrnel
launches by the same application. Each kind of memory hasoegss cost, the global memory
accesses are the most expensive.

In previous workMiranda N.(2010, Miranda N. and A(20108, Miranda N. and A(20103,
we presented an audio fingerprint that was implemented ¢fronuixed model based on CPU-
GPU architecture, some task were solved in GPU and the oih&@BU.Its performance was
good despite this solution did not take advantages of all &3durces. In this work, we pro-
pose implement the whole audio fingerprint system in a purd @®del, using all properties
offered by GPU: shared memory, atomic functi@aders and Kandr@010, coalescing ac-
cess, among others.

The paper is organized as follows: in secti@nae explain the complete process of obtaining
a sequential AFP. Next, we show all the process implement&PU. In sectiod, we analysis
the implementation and its results. Finally, the conclosiand future works are exposed.

2 SEQUENTIAL AUDIO FINGERPRINT PROCESS

The first task of an audio-fingerprinting system is to extfaetures from the signal. The
audio signal is processed on a frame by frame basis, i.esllitsinto frames of equal size and
the AFP process is applied to each thirarrola(2007). A frame of signal is a short segment
of audio. The figurel shows AFP process. In th@game Normalizatiorstage, the stereo audio
signals are converted to mono aural, an amplitude nornalizes frequently used to make the
AFP robust to changes in volume. When we split the signal,ansiclered an overlap 9%,
it ensures a slow variation of the extracted features.

Actually, there are systems that extract signal featumestly in time domain as iKurth and Scherzer
(2003 where the sign of the time derivative of the signal was fotode robust to lossy com-
pression and low-pass filtering. However, most systemseixsignal features in the frequency
domain using a variety of linear transforms such as the BiscCosine Transform, the Dis-
crete Fourier Transform, the Modulation Frequency Tramsf8ukittanon and Atlag2002
and some Discrete Wavelet Transforms like Haar's and Wdbstlamard’'sSubramanya et al.
(1999. Therefore in the phaséomputation of FFT and Hannindhe signal is transformed

Copyright © 2011 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

3036 N. MIRANDA, F. PICCOLI, E. CHAVEZ

from time domain to frequency domain using the Fast Fourran3form (FFT). Previuosly a
window, Hanning window, is employed to reduce edge effents @mphasize the signal near
the middle of the frame.

For each Frame of Audio Signal

3

| Signal Normalization |

|

Computation of FFT and Hanning

I
l Frame Discretization

Histogram Computation of Frame

| Entropy Calculation | Split Frame in Bands and Compute its Histogram

Get the Histogram Complemet

l Obtain the Entropy Band

| Obtain the Fingerprint |

L 7

Figure 1: Sequential Audio Fingerprint Process

TheEntropy Calculatiorstage includes many tasks. First, the frame is split in twespthe
real and imaginary parts then each part is transformed tactwvef discrete values, i. e. the
continuous values are converted to discrete values. Tesept each elements of a frame have
been used 8 bits, hence each discrete data will take oneud atween 0 and 255. After that
the histogram of frame is calculated to obtain the estimadibProbability Density Function
(PDF).

The histogram is a fast and simple method to estimate themntt is a good method when
the online determination of the PDF of an audio stream is déméhis case, the certainty of
the histogram method is ensured by the fact that thousandadid samples will be used at
building the histogram.

Besides the histogram, there are other methods like pararaatl non-parametric. The first
methods are advisable when the distribution is known a ipimat the amount of data involved
is not largeBercher and Vignat2000. For non-parametric methods, no assumptions are made
about the distribution of the PDF belongs to. The PDF is sthdgyethe data that, in turn, are
smoothed by some kernel. They are computationally experasid so not frequently used for
real time pattern recognition applications.

In the subtasiSplit frame in bands and compute its histogrdhe frame is divided in bands
according to the Bark scaléwicker (1961). The Bark scale defines 25 critical bands, the first
24 corresponding to the bands of hearing. The last, 25, adiged since only the youngest
and healthiest ears are able to perceive. For any givenhahd elements of the frame corre-
sponding toh are used to build two histograms, one for the real parts anthanone for the
imaginary parts of these elements. After that get the hiatogcomplement (it is the differ-
ence between the frame histogram and band histogram), seid to estimate the probability
distribution function.

Finally, once the entropy of each bahds obtained (the entropy dfis the sum between
the corresponding entropies of real and imaginary parig)laion () states how the bit corre-
sponding to band and framen of the AFP is determined using the entropy values of frames

Copyright © 2011 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXX, pags. 3033-3044 (2011) 3037

andn — 1. Only 3 bytes (i.e., 24 bits) are needed for each frame ofcasidnal.

1 if [(n) —h(n—1)] >0
F(n,b) = { 0 Otherwise (1)
The AFP of signal is formed by many AFPs, each belongs to adra@ll of them are
calculated in sequence. The next section, we introduce b@erhpute AFPs using GPU.

3 AUDIO FINGERPRINT PROCESS ON GPU

Figure2illustrates the parallel AFP process. The problem is paldity well suited for mas-
sive parallel processing. This joins with the GPU benefitenyacores architecture, memory
hierarchy and atomic functions, we implement a faster AFStess using GPU as a parallel
computer.

Fingerprinting Fingerprinting

AFP(Framen2) AFP(Fram3n1)

Figure 2: Parallel Audio Fingerprint Process

The GPU AFP process has three main stages, all of these drecaggquentially on every
frame of signal. The audio signal is split into frames withetidength of 16 KB (this size is
equivalent to a frame duration of 370ms, which is adequateritropy computation). Like in
the sequential process, all frames are overlappédto ensure a slow variation of the extracted
features. Each frame is processed in parallel by a blockreatts. A block calculates the AFP
of a frame using up to 256 threads. If the audio signal/Mdsames thenV blocks are launched
in GPU to get together the AFP (The total number of thread$ is 256). The output of GPU
AFP process ar@d’ — 1 vectors of twenty-four bits, the each vector is AFP of a frame

The AFP process in GPU needs two data transfers between GPGRId

1. From CPU to GPU At the beginning of AFP process, the CPU saves the data lgloba
memory of GPU. The data are the whole normalized audio signdlauxiliary data
needed for different stages of process.

2. From GPU to CPU This transfer is made at the end of AFP process.

The GPU AFP process is implemented through thexeek, each of them corresponding to
each stages in figuée Thekernelsare executed in sequence and no data movementis necessary
between them. For two firsts kernels, theresrblocks each has 256 threads. In the last kernel,
there areV — 1 blocks of one thread each one.

In the next sections, we discuss each stages of the progassabtain the AFP.

Copyright © 2011 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

3038 N. MIRANDA, F. PICCOLI, E. CHAVEZ

3.1 Hanning and FFT Stage

To compute this stage, the computing is divided in two maiasgls: the first is Hanning
window and Bit-reverse order. The second phase is the FFETloal Each phase has the next
characteristics:

e Hanning window and Bit-reverse ordeEach frame of audio signal is emphasized near
the middle through the applying of Hanning window. This testiuces de edges effects.
After, the emphasized frame is arranged according to béree vector. The bit-reverse
vector indicates where the frame component will be placettiiEeven index element in
the first part of the frame is swapped with its correspondwvenendex element in the
second part of the frame). All frames share the bit-revees#or, in consequence, it is
calculated in CPU and saved in GPU global memory for evemgeitis can access it.

e FFT: In this second phase, the FFT computation takes place pyopée implemented
the FFT algorithm based on the original algorithm of Cooleg &ukeyCooley and Tukey
(1969. The inverse and direct FFT can be computed changing aespaghmeter. The
sample is divided in two subsets of size half the origina sising the Danielson Lanc-
zos theorenbanielson and Lanczq4942. This process is repeated recursively or itera-
tively until the trivial problem (The problem cardinality two). In this case, itis iterative
because the CUDA does not allow the recursion.

In this phase, the GPU needs other auxiliary data: the weggtor. It has same charac-
teristic of bit-reverse vector, it is the same for all frarfiden it is calculated previously
by CPU and saved to global memory of GPU.

For each frame, a block of threads solves this stage. We fix8dtzeads to be executed in
parallel. As the number of threads is smaller than the vesitar (16KB=16384 components),
each thread will work on a fraction of the data, it has 64 congmts (16384/256).

The output of FFT is the same signal frame but in the frequelwegain. It is a vector of
complex number. The next steps of AFP work with two vectdrs, vector of real components
and vector of imaginary components.

3.2 Entropy Stage

As we said in section 2, the entropy based in histograms i®d giooice, besides the entropy
of a signal is a measure of the amount of information thatitees carriedbarrola(2007). The
Shannon’s entropghannon and Weav€t949 is a good candidate to identify a signal through
an unique value. Small perturbations on the sample valugsmfoduce smaller perturbations
on the measured entropy. If the sample valueX afre denoted byz;} then entropy is defined
as

255

H(X) = =Y pla)in(p(r)) @

wherep(z;) is the probability that the signal takes valug It is computed using Laplace’s
formulap(z;) = % f(z;) is the number of times that valug occurs in the sequence and
N is the frame size.

As the entropy stage implies many tasks, we call them phalsesrder, the phases are:

Translation to Discrete Vector, Final Band Histogram andd&ntropy. All phases are applied

Copyright © 2011 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXX, pags. 3033-3044 (2011) 3039

to two vectors: vector of real components and vector of imayi components. The figuB
shows the whole entropy stage and the all its phases.

OEm]

Final :

: Entropy:
: To Discrete . . . opy:
H Value . . . H

12}
B gl Ll : : *@»{;\
gsf s
Tl :
3B .
Of
| St oo e - |
Hanning | | _> - [55{ Fingerprinting -aFP
et [.
ol O Enrom
T o[.
55l :
© H N
E g . —>(:)'> Baa|| :
(OGN .
: Value
H >
D O] Envopy |-
i
Complement
Histogram
- o/ = __~ _
R Fingeraﬁnting
Hanning and Entropy Stage Stage
FFT Stage 9

Figure 3: Entropy stage for each frame of signal

Each phase has the next characteristics:

e Translation to Discrete VectorThe continuous values have to be converted to discrete
values. This implies to obtain the maximum and minimum valicedetermine the inter-
val between them. The interval is divided in 256 subintenaald each value in a frame
is assigned to one of them.

e Final Band HistogramMany steps are needed to calculate the final histogram. Mece
frame is converted to two vectors (real and imaginary paitgjscrete values between 0
and 255, the histogram is calculated. It is about 256 diffevalues.

In the previous implementations, the histograms were &tled using global memory.
Although the obtained results are good, we can improve th&nmgushared memory to
reduce the global memory accesses (The shared memory [sipmemory, it is shared
by all threads of a block and is faster to access than globaiong. In this proposal,
the histogram is calculated directly over a 256-elementordbat is allocated in shared
memory. Each thread accesses directly at its correspotatiagon, which is defined by
current discrete value of frame vector. The threads acs¢sstared memory can present

Copyright © 2011 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

3040 N. MIRANDA, F. PICCOLI, E. CHAVEZ

conflicts (Two or more threads operate simultaneously dweisame memory address).
This problem is resolved using the atomic functi@aders and Kandr¢2010. If two
or more threads want to access the same memory addressrelssrialized.

After the histogram of the whole frame is calculated, thenieas divided in 24 critical
bands according to Bark scale (see secBpand twenty four histograms are calculated,
one for each band. As the bands can be obtained with a stafidardank tuned with
the corresponding frequencies of the bark scale, theitdiare the same for every frame,
in consequence they can be computed in advance and readibtheaad of the grid. In
this proposal, the limits are calculated at the beginnirgysave to the constant memory
of GPU (off-chip readonly memory with cached accesses)s @ksign decision allows
to improve the application performance.

From the total and band histograms, we calculate the congriehstogram.

The whole process is applied twice, one for the real compsnand the other to the
imaginary components, see figde Consequently, the output of this phase is the real
and imaginary histograms of each band. These histograntseneput of Band Entropy
stage

e Band Entropy Each elementof complement histogram represents the frequencéy-oh
element ((7)). It is necessary to obtain the probability according tolheg’s formula
%, where N is the total elements of frame (16384) minus the quantitylefments in
the current band. Each thread calculates a probability,) and thep(z;) x In(p(z;)).
Finally the thread results are added. This operation is aredonction and it is made in
parallelSanders and Kandr¢2010.

The output is a twenty-element vector, its component is thne ef real and imaginary
entropies of each band.

In this stage, a block computes the frame entropy. Each bhask256 threads, in con-
sequence each of them is responsible of a data subset (Tlecsam® that FFT stage). The
synchronization points are necessary between two conigpbases.

The output data of Entropy stage akevectors, one per frame, whose 24 components are
the entropy values of each band.

3.3 Fingerprinting Stage

Once entropy is computed for every frame of audio, the AFPbeacalculated according to
equationl. The parallel implementation in GPU launches many blocKsaases exist. In this
implementation, we defind — 1 block with one thread. Each block calculates the frame AFP
from its entropies.

Finally, all frame AFPs have to be moved to CPU.

4 ANALYSIS AND RESULTS

In the previous GPU AFP implementations, even though weheshgood performance, they
did not take advantage of every characteristics of GPU. Toawe the GPU AFP process, we
consider using memory hierarchy of GPU.

In the next section, first, we detail first the GPU used andadtaristics of the audio signal:
size MB and frame number. Following, we show the resultsiobthin different GPU for each
signal.

Copyright © 2011 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecanica Computacional Vol XXX, pags. 3033-3044 (2011) 3041

4.1 Proof Environment

The analysis was made for four GeForce GPU: GT320M, GT330NK @60 and the GTX
470 whose characteristics are:

| | GT320M | GT330M [GTX260 | GTX470 |
Global Memory || 265027584 byteg 536150016 byteg 938803200 byteg 1341325312 byte§
SM 6 6 27 14
SP 48 48 216 448
Clock rate 950 MHz 1040 MHz 1242 MHz 1215 MHz
Compute Capability 1.2 1.2 1.3 2.0

The six audio signals are songs of different sizes, the rade tdetails the characteristic of
Six songs, its size and number of frame.

| Audio ID || A-16MB | A-26MB | A-46MB | A-116MB | A-164MB | A-218MB ||

size MB 16 26 45.7 116.1 164.4 218
Frames 510 831 1462 3540 5015 6654

Each reported value is the averages of many executions céspmnding algorithm that
detailed above.

4.2 Experimental Results

The first proposal resolved everything through the globahimy and registers. As the GPU
has a memory hierarchy with different costs of access, thikwresents the results obtained by
the use of constant and shared memory in AFP stages. The imamnges were in the entropy
stage. In this stage, two tasks were improved: the histogr@amputation and division of a
frame according to Bark scale.

The histogram computation is repetitive and very costlyrerexactly, it is performed fifty
times for each audio frame (twenty five times for real compdsand twenty five for imaginary
parts). Moreover, if itis done using a memory with high latgaccess, the overall performance
will be affected. In this work, the histogram is implementeing shared memory and atomic
functions. They are necessary to manage access confligaredi shows the time spent by
Entropy stage using memory globaF {/) and using shared memory with atomic function
(SM — AF).

Results are better and the computation time is reducedchtgt These benefits are achieved
to expense of portability, GPUs with compute capability aryrater are requiretlVIDIA
(2008.

Other kind of GPU memory is the constant memory, we use itie gz limits of each band.
The limits are the same for all frames, in consequence treg@mputed at the beginning in
CPU and saved in the constant memory of GPU. Every threadpdicafions can read it faster
than the global memory. The corresponding times of two immgletations are detailed in the
next table, figuré. In this case we considered the three larger audio signals.

The obtained times by implementation with constant memoeyaalittle better than the
implementation with global memory. The difference is naajrbecause the volume of data is
small.

Copyright © 2011 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

3042 N. MIRANDA, F. PICCOLI, E. CHAVEZ

Entropy Time

8

=

6

5 u A-16MB
o 4
E 3 r‘_") y A-26MB

i -'J .J" ‘J“ A-46MB

0 o s - A-116MB

GM
GM

& A-164MB

i

SM-AF

A-218MB

SM-AF

(9]
put
w
N
o
<
(9}
put
w
w
o
<

Figure 4: Global Memory Histogram vs Shared Memory Histagra

| GPU [Impl. Type | A-116MB | A-164MB | A-218MB ||

arsson || oo [ot [oo
arasou | i | oo [oox |omr
amaso | M| 015 oo |00
amare || oorr oot | ome

Figure 5: Time of Entropy stage using Global Memory (GM) armh&ant Memory (CM)

Respect to general application, the improvements in epstgge increased significantly the
performance GPU AFP process. The fig@rdisplays the total time obtained in both applica-
tions.

The table in figureZ shows the speedup of the pure computation step, withouidensy
data transfers. For massive audio fingerprinting a multiqiter strategy should be imple-
mented to take care of data transfers between disk, the CiPbrgeand the GPU memory. In
other words, a continuous flow of data should be ensured frendisk to the CPU and from
the CPU to the GPU. This will ensure a maximum resource usatieiGPU.

Observe the speedup increase as more of the data zone of thes@ged.

5 CONCLUSIONS AND FUTURE WORK

In this work, we sketched the basic characteristics of#t#&d/ AF' P process. This process
obtains the AFP for an audio signal from the parallel proogsef its frames. A frame is a
signal fragment of 16KB length. All frames are processedutiameously, if the whole audio
signal can be accommodated in the GPU RAM.

Through of the use of GPU memory hierarchy, we optimized astdvgry well results re-
spects of process performance and resource demand, weedethecglobal memory accesses
and the transfers between CPU and GPU. We obtained very gaadigp, mainly for bigger
data size.

At this moment we are working over data transferring betw@Bk) and GPU. The transfer-

Copyright © 2011 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXX, pags. 3033-3044 (2011) 3043

18000

AFP Time

16000 -

14000 |

12000

10000 | W A-16MB

W A-26MB

)
£ 8000 - A-46MB

EA-116MB

6000 - W A-164MB

A-218MB
4000 -

2000 -

GT330M GTX260 ‘ GTX470 ‘

Figure 6: Total time of two GPU AFP implementation

| Audio ID || A-116MB | A-164MB | A-218MB |

GT320M 443,10 762,95 832,972
GT330M || 299.302 354.56 388.941
GTX260 46.03 47.77 196.94
GTX470 67.29 70.84 72.29

Figure 7: Speedup of GPU AFP

ring the WAV file to the data memory in the GPU is costly. It isiakto have the audio available
in mp3 or other compression format with size is about onententhe WAV file. Transfer-
ring the mp3 file to the GPU and there decompress the streatprbbably will increase the
speedup, compared to the sequential process. We will gisattr a number crunching (double
precision) GPU instead of a gamer version to improve theityuaithe AFP.

REFERENCES

Bercher J. and Vignat C. Estimating the entropy of a sign#t applications.|IEEE Transac-
tions on Signal Processing8(6):1687—-1694, 2000.

Cooley J. and Tukey J. An algorithm for the machine calcafatf complex fourier series.
Math. Comput.19:297AS301, 1965.

Danielson G.C. and Lanczos C. Some improvements in prafdigaer analysis and their appli-
cation to x-ray scattering from liquidg. Franklin Institute 233:3655\5380 and 435515452,
1942.

Haitsma J. and Kalker T. A highly robust audio fingerprintgygtem. Innternational Sympo-
sium on Music Information Retrieval ISMIR002.

Ibarrola A.C. and Chavez E. Real time tracking of musicafqrerances. IrMICAI, volume
To appear. 2010.

Ibarrola J.A.C. Andlisis digital de la sefial de voZ°h.D. thesis, Universidad Michoacana de
San Nicolas de Hidalgo, México, 2007.

Copyright © 2011 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

3044 N. MIRANDA, F. PICCOLI, E. CHAVEZ

Kurth F. and Scherzer R. A unified approach to content-baseddeaailt tolerant music recogni-
tion. In 114th AES Convention, Amsterdam, I9003.

Miranda N. Piccoli F. C.E. Using gpu to speed up the processudio identification. 112TS
2010 - 9th International Information and Telecommunicafi@chnologies SymposiufBEE
- R9, 2010. ISBN 978-85-89264-11-2.

Miranda N. Piccoli F. C.E. and A. C.I. Fast gpu audio idendficn. In16vo Congreso Ar-
gentino de Ciencias de la Computacion (CACIC 20X&ge 229:242. 2010a. ISBN 978-
950-9474-49-9.

Miranda N. Piccoli F. C.E. and A. C.I. Finding audio fingeréar using gpu. InX Congreso
Argentino de Mecanica Computacional - XXXI Congreso |letiatinoamericano de Meto-
dos Computacionales en Ingenieria (Mecom - Ciilamce 20d&ge 3107:3126. 2010b. ISSN
1666-6070.

NVIDIA. Nvidia cuda compute unified device architecturepgramming guide version 2.0. In
NVIDIA. 2008.

Sanders J. and Kandrot EUDA by Example, An Introduction to General Purpose GPU Pro-
gramming 2010. ISBN 978-0-13-138768-3.

Shannon C. and Weaver Whe Mathematical Theory of Communicatidsmiversity of Illinois
Press, 1949.

Shin S., Kim O., Kim J., and Choil J. A robust audio watermagkalgorithm using pitch
scaling. In14th International Conference on Digital Signal Procegsvolume 2, pages 701
—704. 2002.

Subramanya S., Simha R., Narahari B., and Youssef A. Tramsliased indexing of audio data
for multimedia databases. International Conference on Multimedia Applicatiod999.

Sukittanon S. and Atlas E. Modulation frequency featuresatalio fingerprinting. INEEE,
International Conference on Acoustics, Speech and SigraaeBsing (ICASSPyolume 2,
pages 1773-1776. University of Washington USA, 2002.

Wang A. An industrial strength audio search algorithmInternational Conference on Music
Information Retrieval (ISMIR}th International Conference on Music Information Resile
Baltimore, Maryland, USA, October 27-30, 2003, 2003.

Zwicker E. Subdivision of the audible frequency range initical bands.The Journal of the
Acoustical Society of Americé33), 1961.

Copyright © 2011 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

	Introduction
	Sequential Audio Fingerprint Process
	Audio Fingerprint Process on GPU
	Hanning and FFT Stage
	Entropy Stage
	Fingerprinting Stage

	Analysis and Results
	Proof Environment
	Experimental Results

	Conclusions and Future Work

