
GENERALIZED FINITE ELEMENT METHOD COMPUTATION:

PARALLELIZATION USING PYTHON MULTIPROCESSING

PACKAGE

Dorival Piedade Neto, Manoel Dênis Costa Ferreira, Sergio Persival Baroncini Proença

Structural Engineering Department, São Carlos Engineering School, São Paulo University, Av

Trabalhador Sãocarlense, 400, São Carlos, SP, Brazil, dpiedade@sc.usp.br, mdenis@sc.usp.br,

persival@sc.usp.br, http://www.set.eesc.usp.br/public/main/

 Keywords: Generalized Finite Element Method; Parallel Processing; Multiprocessing;

Python.

Abstract. The Generalized Finite Element Method (GFEM) is a partition of unity (PU) based

approach that explores a mesh of elements to construct shape functions by enrichment of the PU using

polynomial or special purpose functions. The shape functions are attached to a node, center of a

domain ('cloud') defined by the elements sharing that node. In spite of the nodal aspect, it is possible

to verify that the GFEM programming follows the same framework of the Finite Element Method

(FEM) programming, i.e., the governing equations system of a problem is assembled by element

contributions. Even though the required meshes in the GFEM are in general coarser than the ones

used in the FEM, the computing of the enriched element stiffness matrix is usually time expensive.

Nevertheless, the computing of each local matrix is totally independent and so parallelization of these

computations is straightforward and can be naturally explored. The hereby presented article describes

a simple tool for Python codes parallelization by means of its standard library package

'Multiprocessing', which provides high level functions for parallel programming. The parallelization

of the GFEM local stiffness matrix computations for two dimensional analyses is described, showing

that it requires just a few changes in the original sequential code. The performance of the

parallelization tool when tested on different computer architectures are shown to be very attractive.

One concludes that the use of Python and Multiprocessing package is an efficient alternative for

parallel programming.

Mecánica Computacional Vol XXX, págs. 3045-3061 (artículo completo)
Oscar Möller, Javier W. Signorelli, Mario A. Storti (Eds.)

Rosario, Argentina, 1-4 Noviembre 2011

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

Python is a very high level, multi paradigm programming language, presenting a clean and

simple syntax. Even though it is a scripting language, and therefore is not as fast as compiled

languages as FORTRAN and C, it is being adopted as a convenient solution for scientific

computation, due to the existence of numerical libraries like NumPy (The SciPy Community,

2010) and SciPy (The SciPy Community, 2011). These libraries are mainly written in

compiled languages and provide a convenient access to its numerical routines trough Python,

turning it recommended for this kind of application, as they provide a way to associate

Python’s natural flexibility to very powerful numerical solution algorithms.

The association of Python to these numerical libraries has been adopted as a programming

tool to create a two-dimensional Generalized Finite Element Method (GFEM) code developed

to be used in our scientific research, and proved to be very attractive. Even though the

observed time performance was not as good as it could be if it was developed in FORTRAN

or C, it was good enough for the aimed purpose. The sparse linear system solver provided by

the ‘scipy.sparse’ module, and the matrix computation routines provided by NumPy are

essential for the performance improvement.

Despite of this fact, a great amount of the computations are performed in pure-Python, like

the ones needed to assemble the local stiffness matrices and local force vectors, and showed to

be very time expensive. For instance, in the developed code, the equation system assembly

takes around 90% of the total time spent, as it is shown in Figure 1.

Figure 1: Contribution of each task group in the total processing time.

In Figure 1, the label ‘Not enriched’ stands for the conventional FEM, while ‘Enriched’

makes reference to the enriched solution attained by means of the local enrichment resource of

the GFEM. It is important to note that, even though the meshes used in the GFEM are

generally coarser, the GFEM is more time consuming than the Finite Element Method (FEM)

for problems containing the same number of unknowns, here referred as degrees of freedom

(d.o.f), thus inducing some concerns about the performance of the computational code.

Fortunately, the equation system assemblage time is mainly composed by the computing of

the local stiffness matrix and local force vector of each element and these tasks can be

performed independently. This characteristic is quite useful since it allows performing these

computations at the same time, i.e., to compute them in parallel. Since nowadays most of the

computers desktops present more than one processing core, one can take advantage of these

resources by parallelizing this part of the code.

On the other hand, parallel programming is not a trivial task in most programming

languages, and demands a great theoretical knowledge about the hardware architecture and

D. PIEDADE NETO, M. COSTA FERREIRA, S. BARONCINI PROENCA3046

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

good programming skills. However, Python presents a ‘user-friendly’ solution available in its

Standard Library: the ‘Multiprocessing’ package.

Multiprocessing is a ‘threading’ process-based interface for parallel programming

(Rossum, 2011), presenting high level tools that enables one to easily perform parallel

computations. In fact, so far none of the authors had a previous experience with this kind of

library or even with advanced parallel computing implementation, and in just a few hours we

were able to parallelize the local stiffness matrix computations by performing just basic

changes in the sequential code.

The main objective of this paper is to describe this simple parallel implementation and to

present the conclusions about the resulting benefits based on the achieved speed up and on the

reduction of the total processing time.

On what follows, the general GFEM characteristics are briefly described in Section 2,

without getting into details about its formulation. Next, the main subject of this text is

addressed: the Python’s Standard Library Multiprocessing Package and its application on the

existing sequential code. It is shown that its use requires only small changes in the original

code, with no loss to the code readability and clearness. Then a simple Solid Mechanics

problem is stated in order to evaluate the computational performance achieved. The

performance evaluation is conducted by focusing the speed up of the parallelized part of the

program and the resulting gain in the total processing time spent to solve the proposed

problem. Finally, some conclusions about the proposed parallelization strategy are posted.

2 THE GENERALIZED FINITE ELEMENT METHOD

The Generalized Finite Element Method, (Melenk and Babuška, 1996) and (Duarte and

Oden, 1996), is based on the concept of enriched partition of unity (PU) (Babuška and

Melenk, 1997). Basically, a set of functions defined in a certain domain constitutes a PU if its

sum is equal to one for all points in the domain.

The GFEM explores a mesh of linear Lagrangian elements to provide the PU and to

construct shape functions by enrichment of the partition using polynomial or special purpose

functions. This shape functions can be used with a Galerkin method to find approximate

solutions to boundary value problem as in the standard FEM. Actually, the same FEM

programming framework can be followed in order to assemble the GFEM governing

equations system.

Each node of the mesh is a vertex for a GFEM shape function. The shape function is then

defined over a compact support region given by the area of the elements sharing the vertex

node. This region can be referenced as a cloud. A schematic example of a cloud attached to a

vertex node of a regular two dimensional mesh of quadrilateral elements is shown at Figure 2.

Figure 2: A GFEM mesh: a cloud, its vertex and radius.

The cloud radius depicted in Figure 2 is defined as the radius of the circle centered in the

vertex node and circumscribing the cloud. Its value is useful to preserve dimensional

Mecánica Computacional Vol XXX, págs. 3045-3061 (2011) 3047

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

consistency to the enrichment functions, as it will be discussed later in this Section.

Just for comparison with the GFEM features, it is interesting to remind that the FEM

element approximation of a given field u
aprox.

 is given by

 .

1

eln
aprox

i i

i

u uφ
=

=∑ , (1)

in which ϕi are the PU function, and ui is the interpolated field value in the i
th

 of the nel

element’s nodes, also named degree of freedom.

Once the Galerkin method is adopted to formulate the boundary value problem, the global

equation system is assembled by the contributions of the element stiffness matrices, each one

computed by the following expression

e

T
d

Ω

= Ω∫lK B DB . (2)

In the relation above B is the matrix of derivative operators that relates the strain tensor ε to

the displacement field and D is the constitutive stiffness matrix relating the stress tensor σ to

the ε tensor. This adopted symbology is classical in the FEM literature (Zienkiewicz and

Taylor, 1991). It is worth to note that in the developed parallelized code, a plane linear elastic

model was assumed. The mesh elements are four nodes isoparametric quadrilaterals, since its

shape functions are in accordance with the definition of a PU.

In the GFEM, the approximation results from the product of the regular PU ϕi and a set L

of nenr enrichment functions L
enr

. By definition, the first component of this set is equal to the

unity. Thus, the regular GFEM approximation preserves the FEM fields while including

additional enriched interpolation terms, resulting in

 . . .

1 1

c enrn n

aprox enr enr

i i i i i j ij i i ij ij

i i

regular interpolation enriched interpolation

u u u L u u uφ φ φ φ φ
= =

 
= + = + 
 
∑ ∑ ∑∑ ∑ ∑∑

123 14243

c c enr c enrn n n n n

i=1 i=1 j=2 i=1 j=2

L = . (3)

In the previous relation, nc is the number of clouds and uij is the additional nodal

parameters in correspondence to each one of the enrichment function.

In order to explore a similar program framework as presented by FEM, an element by

element systematic assembling procedure can be followed. Accordingly, to compute the local

stiffness matrix, one applies the same expression (2). However, in the GFEM, the B matrix

order is dependent on the enrichment set L adopted. Then, the resulting local matrix contains

more terms than the original one for no enrichment status, see Figure 3. Actually, additional

lines and columns appear in correspondence to the new nodal parameters introduced by the

enrichment fields. The same happens to the nodal force vector of the element.

Figure 3: Conventional element matrix and a scheme of the resulting additional lines and columns on its enriched

local stiffness matrix.

D. PIEDADE NETO, M. COSTA FERREIRA, S. BARONCINI PROENCA3048

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Even though the required meshes used in the GFEM are in general coarser than the ones

used in the FEM, the computing of the enriched element stiffness matrix is usually more time

expensive, as was already observed in Figure 1. Furthermore, as the resulting coefficient

matrix is less sparse than the one in the FEM, also the solution of the global equation system

is more expensive.

The enrichment functions used are polynomial function on the horizontal and vertical

coordinates x and y. These functions are defined exploring the cloud radius already defined,

here denoted by h, in order to preserve system dimensionality. Assuming that x0 and y0

represents the coordinates of the vertex node, the set of enrichment functions L employed in

this work is given as

 () (){ }0 01 x x h y y h= − −L . (4)

3 PARALLEL PROGRAMMING

Generally the main objective of parallel processing is to reduce the time spent to process an

application. An important concept in this context is the speed up of the parallelized code,

defined as the relation between the time T1 spent to process the sequential code, and the one

spent to process it in parallel, using np processor units. The speed up S is then given by

 1 np
S T T= . (5)

It is important to mention that Tnp includes the time spent in process intercommunication,

so one can not expect the theoretical speed up values when testing the efficiency of a

parallelization, i.e, hardly one would observe a S=2 for np=2, for instance.

In general, the parallelization of a code fragment is a challenging task and a good

understanding about the hardware being used. One of the main objectives of this article is to

show that some difficulties faced in parallel programming are minimized when using Python,

especially if one choose to employ the Multiprocessing package. On what follows, a brief

description of this package is given, making use of simple examples to illustrate its ‘user-

friendly’ character. Then, the code fragments parallelized are shown and briefly commented,

proving that indeed only very small changes are necessary in order to make it work.

3.1 Python’s ‘Multiprocessing’ package

Multiprocessing is a high-level package for parallel programming available in Python

Standard Library since its version 2.6. Presenting a similar structure to the one found in

Python’s threading module, the Multiprocessing package allows the programmer to access the

various processors of a machine using sub processes instead of threads (Rossum, 2011). Even

though it runs both on Unix and Windows, it presents a better performance on Linux,

especially when the code demands to share state between processes. Within this subsection it

will be presented some simple examples of the usage of this package, based on the online

documentation (Rossum, 2011).

In order to create a simple process, the Multiprocessing package contains the Process class

responsible for the behavior of objects of type Process. A simple example creating a process is

depicted in Figure 4.

Mecánica Computacional Vol XXX, págs. 3045-3061 (2011) 3049

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 4: Example of a simple process call using multiprocessing

As it can be observed, the creation of the process is made in only one code line, in which

the name of the target function and its arguments are indicated. The process is then started

using the function start() over the process object. The function join() indicates that the

interpreter must wait until the end of the task sent to the process to continue to run the

remaining code.

In order to promote communication between processes, the package presents two forms of

communication channel: Queues and Pipes. Herein the usage of these features will not be

shown since they were not used in the parallelization of the GFEM code. In fact, even though

queue seems to be an efficient way to return the matrix and vector computed inside the

process, we have found that it failed to manage great amounts of data, which is the

characteristic of our parallelized code.

The Multiprocessing package has all the synchronization primitives of the threading

module, in spite of the reduced need for synchronization primitives in a multi-process

program if compared to a multithreaded program.

When using multiple processes, it is usually best to avoid using shared state as far as

possible. However, if the use of shared data is required, the package provides a couple of ways

of doing so: Value, Array and Manager. The main and most general way to work with shared

data is the manager. Managers provide a way to create data which can be shared between

different processes. A manager object controls a server process which manages shared objects.

Figure 5 shows a simple code in which a manager list is used by 6 different processes.

Figure 5: Example of parallelization on computations over items of a list using Multiprocessing’s Manager.

D. PIEDADE NETO, M. COSTA FERREIRA, S. BARONCINI PROENCA3050

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 6 indicates the scheme of parallelization adopted for the local stiffness matrices and

local force vector using manager to get back the computed data. A better description of the

parallelization of the GFEM code using a manager is given in the next sub section.

Figure 6: Scheme of the local stiffness matrix and force vector computation using Multiprocessing’s Manager.

The simplest way to work with multiple processes using the Multiprocessing package is

through the class Pool. A pool is a collection of processes kept ready to be used depending on

the demand of their ‘service’. Pools offer a good solution in situations in which the cost of

initializing a class instance is high, and so, calling the constructor and destructor on demand

would be inefficient. Figure 7 indicates a simple code example performing a function over a

list of a thousand numbers, making use of pool.map.

Figure 7: Example of parallelization on computations over items of a list using Multiprocessing’s Pool.

As it can be observed, the pool object is constructed using n_cpu processes, which controls

a pool of worker processes to which jobs can be submitted. Then a function and a list of

arguments are given to this pool of workers, which returns the results in the list ‘result’. It is

important to mention that Multiprocessing Pool supports asynchronous results with timeouts

and callbacks and has a parallel map implementation. Figure 8 indicates a simple scheme of

the parallelization of the GFEM code using a pool. A more detailed description of this

approach is given on the next subsection.

Mecánica Computacional Vol XXX, págs. 3045-3061 (2011) 3051

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 8: Scheme of the local stiffness matrix and force vector computation using Multiprocessing’s Pool.

3.2 Code parallelization

The parallelized program is an object-oriented code aimed to develop a full non-linear

GFEM analysis framework. In order to introduce parallelism, all the code modifications are

made in the module defining the main application class, which is the Structural_problem

class. This class manages all other classes (like node, element and so on) in order to generate a

GFEM model, assemble the global equation system and solve it. The first change in the

refereed module is to insert a line to import the multiprocessing package in the parallelized

code fragments. This import statement is depicted in Figure 9.

Figure 9: Code line importing the used issues of multiprocessing.

The original sequential code fragment to be parallelized is then put into a conditional

construction. If the user choice is the option ‘sequential’, the original code is the executed. It

is presented in Figure 10.

D. PIEDADE NETO, M. COSTA FERREIRA, S. BARONCINI PROENCA3052

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 10: The original sequential sparse equation system assemblage.

The fragment code to be parallelized is the one relative to the loop that begins in line 951

(Figure 10). As this code is within a method of the Structural_problem class, ‘self’ refers to

the Structural_problem instance, and self._elements is the list containing all its elements. The

variable ‘element’ is assigned for each one of these elements and then the methods to return

the stiffness matrix, the force vector due to self weight and the global indices are invoked

from the Element class. The global indices correspond to the positions of the global equation

system in which the computed terms must be added. The ‘for’ loop in line 961 sums the local

force vector terms in the global system vector self._fg. The code from lines 964 to 974 are

used to concatenate the rows and columns indexes in to single lists, and the computed

stiffness matrix terms into a single NumPy array. This is the more efficient input form we

have found to build the SciPy sparse matrix self._kg, indicated in the line 975 of Figure 10.

The second option is to perform a parallel computation of the local stiffness matrix and

local force vector using Multiprocessing’s Manager. In the line 979 of Figure 11 a Manager

object is instantiated in the ‘manager’ variable.

Mecánica Computacional Vol XXX, págs. 3045-3061 (2011) 3053

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 11: Equation system assemblage paralellization using Multiprocessing’s Manager.

In Figure 11 a list ‘procs’ is filled with Process objects (see lines 989-990). The ‘target’

argument specifies the function to be called, in this case the ‘local_stiffness_loop’, indicated

in Figure 12. Its arguments are the number of the initial and the final element to compute in

the given process, and the list in which the results of these elements must be returned. These

lists are manager.lists stored in the vector ‘procs_return’. The processes in the ‘procs’ list are

started in line 992. They are run in parallel until all of them finish (line 995). The following

lines in Figure 11 (997 to 1022) are a straightforward adaptation of the tasks necessary to

build the equation system sparse matrix.

D. PIEDADE NETO, M. COSTA FERREIRA, S. BARONCINI PROENCA3054

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 12: Function to perform the computations on a given set of elements within a process.

Finally, the last option that the user can choose is to perform the computation in parallel

using a Multiprocessing Pool. The Pool object, containing n processes, is instantiated in line

1038 of Figure 13.

Figure 13: Equation system assembly parallelization using Multiprocessing’s Pool.

Mecánica Computacional Vol XXX, págs. 3045-3061 (2011) 3055

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

The use of a pool is easier than the use of a manager, since it only takes one line of code

(line 1039 of Figure 13) to call the pool of workers to invoke the ‘local_stiffness_pool’

function, which is shown in Figure 14. The only requirement of this tool is that this function

must be defined out of the class, so that’s the reason why it was stated in the first lines of the

structural_problem module (from line 38 to 46) and that was required the global variable

global_behavior (see lines 1033 of Figure 13 and 36 of Figure 14).

Figure 14: Function to perform the computations on a single element sent to a pool working process.

The rest of the code of the pool implementation (from lines 1041 to 1065 of Figure 13) is

identical to the sequential code.

4 PERFORMANCE EVALUATION

In order to evaluate the computational performance of the resulting parallelized code, a

two-dimensional linear elastic problem was stated. It consists of a 5.0 side and unit thickness

square solid (dimensionless). The elastic material parameters are: Young modulus E = 1,000.0

and Poisson ratio υ = 0.3. The upper boundary surface is submitted to a distributed load q

=1.0. Dirichlet boundary conditions constraining the horizontal and vertical displacements are

prescribed as null at the lower boundary surface of the solid. Finally, a plane stress behavior

was assumed.

Figure 15: Two-dimensional problem stated to evaluate the computational performance.

Even though it represents a very simple structural problem, the time spent to compute and

solve the equation system is similar to any other linear problem. So, once the main aim of this

example is to evaluate the efficiency of Python’s Multiprocessing Package, its simple

geometry and boundary conditions is very attractive to perform these tests.

The first test was performed in an Intel Core i7 x980 running at 3.33 GHz and 24 GB

D. PIEDADE NETO, M. COSTA FERREIRA, S. BARONCINI PROENCA3056

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

RAM, under a GNU/Linux Ubuntu 11.04 64 bits. The attained speed ups for the parallelized

part of the code, for not enriched meshes containing around 10,000, 50,000 and 120,000

degrees of freedom, are shown in Figure 16.

Figure 16: Speed up achieved - Not enriched - 1 to 6 processors.

The performance results for the GFEM using the enrichments on all nodes (except the ones

in which Dirichlet Boundary Condition was applied), for meshes containing around the same

number of degrees of freedom tested for the not enriched case, are depicted in Figure 17.

Figure 17: Speed up achieved - Enriched - 1 to 6 processors

The same meshes were also tested in a Windows 7 64bits Operating System, but the two

parallelization approaches (using manager and pool) failed, resulting in a total processing time

higher than the sequential one. These results are not shown here.

The same meshes were also tested in a cluster node containing 12 processing cores Intel

Xeon X5660 running at 2.80 GHz, and 48 GB RAM. The Operating System is also a

GNU/Linux Ubuntu 11.04 64 bits. The achieved results, considering not enriched and

enriched cases, are shown, respectively, in Figure 18 and Figure 19.

Mecánica Computacional Vol XXX, págs. 3045-3061 (2011) 3057

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 18: Speed up achieved - Not enriched - 1 to 12 processors.

Figure 19: Speed up achieved - Enriched - 1 to 12 processors.

As it can be observed, the speed up results seems to be not so stable for the coarser meshes,

when more than 6 processing cores were used. For these cases, the time spent by the

parallelized computation is very short. Taking into account that the calling of each process

demands a considerable amount of time, these non monotonic behavior are then explained,

also indicating that the parallelization benefits depends upon the amount of data in

computation.

The total processing time, including also the sequential parts of the computations, are

depicted in Figure 20, Figure 21 and Figure 22, respectively for the meshes containing around

10,000, 50,000 and 120,000 degrees of freedom.

D. PIEDADE NETO, M. COSTA FERREIRA, S. BARONCINI PROENCA3058

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 20: Total solution time for meshes containing around 10,000 degrees of freedom

Figure 21: Total solution time for meshes containing around 50,000 degrees of freedom

Figure 22: Total solution time for meshes containing around 120,000 degrees of freedom

For all the cases, the gains achieved are more notable up to 6 processing cores; for 7 to 12

processing cores the total time reduction is small. These correspond to the situations in which

the speed up results depicted in Figure 18 and Figure 19 shown an instable improvement.

Finally, in order to show the good results achieved by means of the GFEM program, it is

shown in Figure 23 the displacements field u and v, respectively in the horizontal and vertical

direction, as the stress fields Sxx and Syy in the horizontal and vertical direction, and the

shear stress Sxy.

Mecánica Computacional Vol XXX, págs. 3045-3061 (2011) 3059

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 23: Displacement and stress fields.

5 CONCLUSIONS

Multiprocessing is a process-based ‘threading’-like interface available in Python’s

Standard Library that provides an convenient package for shared memory style parallel

programming. Its high-level features provides an easy-to-use tool that has demanded only few

changes in the original, sequential code, in order to parallelize the local stiffness matrix

computation of a Generalized Finite Element code. The speed up observed is attractive in the

GNU/Linux operating system and resulted in good time reduction of the total processing time.

The same efficiency was not observed in Windows.

D. PIEDADE NETO, M. COSTA FERREIRA, S. BARONCINI PROENCA3060

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

REFERENCES

Duarte, C. A. and Oden, J. T., An hp adaptative method using clouds. Computer Methods in

Applied Mechanics and Engineering, 139:237-262, 1996.

 Babuška, I. and Melenk, J. M., The Partition of Unity Method. International Journal for

Numerical Methods in Engineering, 140:4:727–758, 1997.

Melenk, J.M. and Babuška, I., The Partition of Unity Finite Element Method: Basic Theory

and Applications. Seminars fur Angewandte Mathematik, Eidgenossische Technishe

Hochschule, Research Report No. 96-01, January, CH-8092 Zurich, Switzerland, 1996.

Rossum, G.v., The Python Library Reference - Release 2.7.2, 2011. Available in

<http://docs.python.org/download.html>. Acessed in July 17, 2011.

 The Scipy Community, NumPy Reference – NumPy v1.5 Manual (DRAFT), 2010. Available

in <http://docs.scipy.org/doc/numpy-1.5.x/reference/>. Acessed in April 08, 2011.

The Scipy Community, SciPy - SciPy v0.9 Reference Guide (DRAFT), 2011. Available in

<http://numpy.scipy.org/>. Acessed in April 08, 2011.

Zienkiewicz, O.C., and Taylor, R.L., The finite element method, volume I. McGraw Hill,

1991.

Mecánica Computacional Vol XXX, págs. 3045-3061 (2011) 3061

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

