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Abstract. Orthogonal decompositions provide a powerful tool for random vibrations analysis. The
most popular orthogonal decomposition is the Karhunen-Loève Decomposition (KLD). The KLD is a
statistical analysis technique for finding the coherent structures in an ensemble of spatially distributed
data. The structures (or KL modes) are defined as the eigenvectors of the covariance matrix of the
associated random process. Recently, a modified KLD named Smooth Decomposition (SD) has been
proposed. The SD can be viewed as a projection of an ensemble of spatiallydistributed data such that the
vector directions of the projection not only keeps the maximum possible variance but also the motions
resulting along the vector directions are as smooth as possible in time. The vector directions (or S modes)
are defined as the eigenvectors of the generalized eigenproblem defined from the covariance matrix of
the random process and the covariance matrix of the associated time derivative random process. It was
shown that the SD is an interesting tool to linear random analysis. In this paper, the SD will be used
to analyze nonlinear random vibrations. We first focus on the physical interpretation of the S modes. It
will be shown that the S modes can be related to the normal modes of the associated linearized system.
Finally the ability of KLD and SD to analyze random vibration problem is demonstrated considering an
energy pumping phenomena in a linear chain with nonlinear end-attachment.
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1 INTRODUCTION

Linear vibration analysis is often based on the normal mode decomposition. When the
equations of motion are available, the decomposition can beobtained solving the spectral
problem associated to the governing equations. This approach leads to the classical modal
analysis where the goal is to describe the structure in termsof its natural characteristics which
are the frequency, the damping and the mode shapes. Of course, modal analysis has also been
developed from data using temporal and frequency approach (Ewin (1986)).

More generally considering spatio-temporal systems, decomposition methods have been
proposed to extract relevant modes from numerical and experiment data. The most
popular decomposition is the proper orthogonal decomposition also named Karhunen-Loève
Decomposition (KLD) when we refer to random data (seeBellizzi and Sampaio(2006)). The
KLD has been used in several domains of engineering science.It can be useful to have a second-
moment characterization of a random process in terms of uncorrelated random variables. The
basis vectors in this expansion are the eigenvector solutions of the eigenproblem defined from
the covariance matrix of the random field under study. The main properties of the KL expansion
are the orthogonality of the eigenvectors and the random variables taken as coefficients and the
error-minimizing property. Recently, a new multivariable data analysis method called Smooth
Decomposition has been proposed (seeChelidze and Zhou(2006) and Bellizzi and Sampaio
(2009)). The SD is defined from a maximization problem associated to a scalar time series
of measurements subject to a minimization constraint acting on the associated time derivative
of the time series. The basis vectors in this expansion are the eigenvector solutions of the
generalized eigenproblem defined from the covariance matrix of the random process and the
covariance matrix of its time derivative. The SD can be used to extract normal modes and
natural frequencies of linear and nonlinear vibration systems and so it is an important tool to
analysis data in terms of modal analysis.

In this paper, the KLD and SD will be used and compared to analyze random vibrations of
a nonlinear system that presents features of energy captureto passively reduce the vibrations
(seeVakakis et al.(2008a)). This phenomenon was principally analyzed in the literature in
a deterministic framework. Whereas the main interest is to study of how the properties of
the system varies with changes in the parameters, in this first approach the randomness of the
system is only due to the forcing term.

Another novelty of this work is the use of the Smooth Decomposition (SD) to study the
properties of the system. In the linear case, the normal modes do not depend on the excitation
and the behavior of linear system can be completely analyzedthrough the normal modes.
Presently, there is no similar tool in the nonlinear case. The Karhunen-Loève modes depend
on the energy levels and they have no easy relation with the frequencies of an associated
linear system. So, if one tries to compare properties of a nonlinear system with those of some
associated linearization it is not an easy task to use KLD. Onthe other hand, the SD offers a
way to make this comparison since it has a dual interpretation. The modes given by the SD can
be ordered through frequency, as normal modes are, and through energy levels, as Karhunen-
Loève modes are. This makes the SD a powerful tool to analyze nonlinear systems in a way
similar to modal analysis of linear systems or in a way similar to KLD.

The paper is organized as follows. In Section2, some properties of orthogonal
decompositions (KLD and SD) are recalled. In Section3, the nonlinear system of interest is
described and numerical evidences showing that the nonlinear end-attachment is able to absorb
vibrations of the linear chain (energy pumping phenomenon)when the excitation is random are
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presented. Finally, in Section4, the energy pumping phenomenon is analyzed using KLD and
SD approaches.

2 ORTHOGONAL DECOMPOSITIONS

Let {U(t)}t = {U(t), t ∈ R} be aR
n-valued random process indexed byR. We assume

that {U(t), t ∈ R} is a second-order stationary process that has a time-derivative process
{U̇(t), t ∈ R} which is also a second-order stationary process. With theseassumptions, the
covariance matrices of{U(t), t ∈ R} and{U̇(t), t ∈ R}, denotedRU = E(U(t)T

U(t))
andR

U̇
= E(U̇(t)T

U̇(t)) respectively, do not depend on time. Without loss of generality, we
will also assume that{U(t), t ∈ R} is a zero-mean random process and thatRU andR

U̇
are

symmetric positive-definite.

2.1 Definition

In vibration problems we usually want to develop aR
n-valued random process into a series

in the separated-variables form

U(t, θ) =
n

∑

k=1

ak(t, θ)Φk (1)

whereΦk are deterministicRn-vectors and{ak(t)}t are scalar random processes, theθ variable
indicates the randomness. If the vectorsΦk and/or the random processes{ak(t)}t∈DT

satisfy
some orthogonal and optimality properties, the expansion (1) will be called the orthogonal
decomposition.

We will consider here two decompositions, the Karhunen-Loève Decomposition (KLD) and
the Smooth Decomposition (SD). Each decomposition resultsfrom an optimization problem
and is built from the covariance matricesRU andR

U̇
.

The optimization problem aims at obtaining the most characteristic constant vectorsΦ in the
sense that they maximize

max
Φ∈Rn

J(Φ) with J(Φ) =

{

JKLD(Φ) = E(<U(t),Φ)>2)
<Φ,Φ>2 = Φ

T
RUΦ

Φ
T
Φ

for KLD

JSD(Φ) = E(<U(t),Φ)>2)

E(<U̇(t),Φ>2)
= Φ

T
RUΦ

Φ
T
R

U̇
Φ

for SD
. (2)

Here the inner product<,> coincides with the dot product in the Euclidean spaceR
n. The

objective functionJSD used to define the SD differs significantly from that used to define
the KLD. The denominator ofJSD takes the covariance matrix of the time-derivative process
{U̇(t)}t into account (which justifies the namesmoothdecomposition).

The vectors which solve the optimization problem (2) are solutions of the eigenproblems

RUΦ
KL
k = µKL

k Φ
KL
k for KLD

RUΦ
S
k = µS

k R
U̇
Φ

S
k for SD

. (3)

Due to the properties of the matricesRU andR
U̇

, the subsets{ΦKL
1 ,ΦKL

2 , · · · ,ΦKL
n } and

{ΦS
1 ,ΦS

2 , · · · ,ΦS
n} are basis ofRn. The KL-basis is orthogonal andRU-orthogonal. The S-

basis isRU-orthogonal andR
U̇

-orthogonal. All the eigenvalues are greater than zero.
The orthogonal decompositions of the random process are given by

U(t) =

{
∑n

k=1 aKL
k (t)ΦKL

k for KLD
∑n

k=1 aS
k (t)ΦS

k for SD
(4)
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with

aKL
k (t) = Φ

KLT

k U(t) andaS
k (t) =

Φ
ST

k RUU(t)

Φ
ST

k RUΦ
S
k

=
Φ

ST

k R
U̇
U(t)

Φ
ST

k R
U̇
Φ

S
k

. (5)

The following notation will be used: the eigenvaluesµKL
k (respectivelyµS

k ) will be called KL
Values (KLVs) (respectively S Values (SVs)), the eigenvectorsΦ

KL
k (respectivelyΦS

k ) will be
called KL Modes (KLMs) (respectively S Modes (SMs)) and the processesaKL

k (t) (respectively
aS

k (t)) will be called the KL Components (KLCs) (respectively S Components (SCs)). Notice
that the following ordering,µKL

1 ≥ µKL
2 ≥ · · · ≥ µKL

n > 0, andµS
1 ≥ µS

2 ≥ · · · ≥ µS
n > 0 will

be used in the sequel.

2.2 Properties of the orthogonal decomposition

Here we recall the main properties of the two approaches in connection with the modal
analysis. A complete description of the properties of the KLD and SD can be found in
Bellizzi and Sampaio(2006) andBellizzi and Sampaio(2009).

2.2.1 Linear case

We assume thatRU and R
U̇

are the covariance matrices of the steady state solution of
a discrete linear mechanical system withn degrees of freedom governed by the equation of
motion

MÜ(t) + CU̇(t) + KU(t) = F(t) (6)

whereM, C, andK aren× n symmetric matrices and the excitation vector,{F(t)}t, is a zero-
mean white-noise random excitation with intensitySF (i.e., RF (τ) = E(F(t + τ)FT (t)) =
SF δ(τ)).

If the damping is proportional and if the modal-excitation terms are uncorrelated then the
following results hold:

• the SMs are related to the normal modes by

Φ
S = Φ

L−T

(7)

where Φ
S = [ΦS

1 Φ
S
2 · · ·Φ

S
n] and Φ

L = [ΦL
1 Φ

L
2 · · ·ΦL

n ] denotes the modal matrix
associated to the undamped free vibrations of (6) ( defined from the mass matrixM and
the stiffness matrixK);

• the SVs are related to the natural resonance frequencies by

µ
S = (Ω2)−1 (8)

whereµ
S = diag(µS

k ) andΩ
2 = diag(ω2

k) with ωk (whereω1 ≤ ω2 ≤ · · · ≤ ωn) denotes
the natural resonance frequencies associated to the undamped free vibrations of (6);

• moreover, if the mass matrix is proportional to the identy matrix, then

Φ
KL = Φ

L (9)

whereΦKL = [ΦKL
1 Φ

KL
2 · · ·ΦKL

n ].

As it will be shown hereafter, the relations (7) and (8) can be used to perform modal analysis
from SD.
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2.2.2 Nonlinear case

We assume thatRU andR
U̇

are the covariance matrices of the steady state solution of a
discrete nonlinear mechanical system withn degrees of freedom governing by the equation of
motion

MÜ(t) + CU̇(t) + KU(t) + G(U(t), U̇(t)) = F(t) (10)

where the similar terms have the same meaning as in (6) andG is a smooth nonlinear function.
Under the assumption that the nonlinear system (10) admits a stationary ergodic probability

measure, it can be shown that the stationary covariance matrix of the nonlinear response (10)
coincides with to the stationary covariance matrix of the equivalent linear response (as defined
in Kozin (1988)). Hence, the KLD (respectively SD) analysis of the stationary response of the
non-linear system (10) give the same results that the KLD (respectively SD) analysis of the
stationary response of the equivalent linear system exceptfor the KLCs and SCs. Following
the results presented in the previous section, the SD can also be viewed as a tool for modal
analysis of the nonlinear system, the SMs and SVs of the nonlinear system being interpreted as
in reference to the modal characteristics of the linearizedsystem.

3 ANALYSIS OF THE ENERGY PUMPING IN A LINEAR CHAIN WITH NONLIN-
EAR END ATTACHMENT

3.1 Description of the system

Figure 1: System considered with(M + 1) DOF.

We consider here the system depicted in Fig.1. This system was studied inVakakis et al.
(2003) considering impulsive excitation. It slightly differs from the one described inMa et al.
(2008) considering the same kind of excitation. The system is composed of a chain ofM
strongly coupled linear oscillators with a strongly nonlinear end-attachment. The linear chain
will be designated as the primary system and the nonlinear end-attachment as the nonlinear
absorber. Each mass of the linear chain is connected to the ground by a linear spring and a
linear dashpot. The equations of motion are given by

mNES v̈ + λNES(v̇ − u̇1) + kNES(v − u1) + CNES(v − u1)
3 = 0 (11)

ü1 + λ0u̇1 + kgu1 − λNES(v̇ − u̇1) − kNES(v − u1) − CNES(v − u1)
3 + kc(u1 − u2) = 0(12)

üm + λ0u̇m + kgum + kc(2um − um−1 − um+1) = 0, with m = 1, · · · ,M − 1 (13)

üM + λ0u̇M + (kg + kc)uM + kc(uM − uM−1) = f(t) (14)

wherev (respectivelyum) denotes the displacement of the nonlinear end-attachment(respec-
tively themth mass of the linear chain). All the masses of the primary system are equal and
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their common value is1. All the stiffness coefficients of the linear chain are equaland denoted
by kc. All the stiffness coefficients of the strings connected to the ground are equal and denoted
by kg. It is assumed that the primary system possesses a weak viscous damping (λ0 is small).
The nonlinear end-attachment is constituted of a massmNES, a linear damper with coefficient
λNES, and a spring including a linear part with coefficientkNES and a cubic part with coeffi-
cientCNES. The massmNES is assumed to be small compared to the total mass of the linear
chain and the linear spring is assumed to be small compared tocubic spring.

As described inVakakis et al.(2003), the nonlinear end-attachment is used here to reduce the
vibration of the primary system. In contrast to the classical linear absorber, a nonlinear absorber
is capable of reducing the energy of the primary system by targeted energy transfer over a large
frequency band. This absorber is called NES (Nonlinear Energy Sink). An overview of this
concept can be found inVakakis et al.(2008a) andVakakis et al.(2008b). The reason for this
energy pumping is the essential stiffness nonlinearity of the nonlinear end-attachment. Since the
NES possesses a small linear stiffness component compared to nonlinear part, resonance capture
cascades appear between the linear chain and the NES at any mode of the linear chain. This is
a series of energy pumping phenomena occurring at differentfrequencies. This phenomena has
been observed and analyzed under deterministic excitations.

We propose here to analyze the targeted energy transfer fromthe linear chain to the
NES when the excitation is random. This kind of excitation differs significantly from the
deterministic case considered inVakakis et al.(2003) or Ma et al.(2008). Here the excitation
is only defined from its statistical characteristics and thebehavior analysis of the system is
based on the stochastic characteristics of the response obtained from the theory of the random
vibrations. More precisely, we assume that a random force isapplied to the primary system (at
the mass numberM ). This force is of the form

f(t) = s0W (t) (15)

where{W (t)}t is a gaussian white-noise scalar process with intensity oneands0 denotes the
excitation level. We have chosen a white-noise excitation because its Power Spectral Density
(PSD) function which describes the relative power contribution at various frequencies is a
constant function. In terms of frequency content, a white-noise excitation is similar to an
impulsive excitation in the deterministic case. Using a white-noise scalar process permits us
to analyze the system without privileging a frequency band.

In the sequel, the stationary responses of the system were investigated and the excitation
levelss0 will be used as the parameter of analysis. The behavior of thestationary responses was
studied observing the second order moments and the Power Spectral Density (PSD) functions
of the(M + 1) DOF,v, u1, u2, · · · , uM , of the system.

3.2 About the numerical approach

To allow comparison with results on the literature in the deterministic case, the following
numerical parameter values were used to simulate the system(11-14): M = 9 (that is a10-DOF
system including9-DOF from the linear chain and1-DOF from the nonlinear end-attachment),
λ0 = 0.001, kg = 1, kc = 1, mNES = 0.05, λNES = 0.001, kNES = 0.0001 andCNES = 1.

The Monte-Carlo method was used to estimate the stationary responses of the system under
random excitation. From a given excitation level, the response time history (displacement and
velocity) was obtained from an time history of excitation (15) by solving Eqs. (11-14) over
the time interval[0, tf ] numerically using the Newmark method. Zero initial displacement
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and velocity were assumed. The time-discretization parameter value was chosen equal to
∆t = 0.143 s (i.e. fe = 7 Hz) and524286 instants (tf = 74942 s) were simulated. The time
histories ofW (t) (a gaussian white-noise scalar process with intensity one)were generated
using the procedure described inPoirion and Soize(1989).

Assuming ergodicity, the last-half points of the displacement and velocity time histories
were used to approximate the second order moments (as the time averages) and the Power
Spectral Density functions (as the average of the periodgram considering a window length
NFFT = 4096).
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Figure 2: Left: Square root of the trace of the covariance matrix of the vector displacement(u1, u2, · · · , uM ) for
the system with the NES (red circle markers), for the system without NES (red dashed line) and for the system with
only the linear part of the NES (red dotted line), and the RMS values of the displacementv (blue square markers)
versus level excitations0. Right: Percentage of energy dissipated by the linear chain(red circle markers) and by
the NES (blue square markers) versus level excitations0.

3.3 Passive capacity of vibration reduction

We limit the discussion to some numerical evidences showingthat the nonlinear end-
attachment is able to absorb vibrations of the linear chain when the excitation is random. The
effect of the NES on the linear chain is analyzed comparing the evolution of the second order
moments and the Power Spectral Density functions of the chain mass motions (u1, u2, · · · , uM )
and the NES mass motion (v) versus the excitation levels0. In this numerical study, we have
chosens0 ∈ [0.004, 0.032].

In Fig. 2-left, we display the evolution ofRMSNES =
√

E(v2(t)) (the RMS values of the
NES displacementv) andRMSchain =

√

E(u2
1(t)) + E(u2

2(t)) + · · · + E(u2
9(t)) (the square

root values of the trace of the covariance matrix of the vector displacement(u1, u2, · · · , u9))
versus s0. The evolution of theRMSchain are also reported considering two linear
configurations of the system (11-14). The first one corresponds to the system without nonlinear
end-attachment (i.e. only the primary system) and the second one corresponds to the system
with only the linear part of the end-attachment (CNES = 0).

For smalls0, significant vibrations occur only on the linear chain (see red circle markers in
Fig.2-left) so the behavior of the system is close to the behavior of the two linear configurations
(see red dotted and dashed lines in Fig.2-left). Whens0 increases, the vibrations of the NES
mass increase (see blue square markers in Fig.2-left) and simultaneously the vibrations of the
masses of the linear chain are significantly reduced compared to the two linear configurations

Mecánica Computacional Vol XXX, págs. 3281-3296 (2011) 3287

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



(see red circle markers in Fig.2-left). Particularly interesting is that a zone (defined by
0.008 ≤ s0 ≤ 0.021) appears whereRMSchain does not significantly increase withs0. This
zone will be named "effective" zone. Finally, for large values of s0 (i.e. s0 > 0.021) the
vibrations of the masses of the linear chain again increase linearly.

An important measure to evaluate the performance of NES is the energy dissipated by the
nonlinear end-attachment. Based on the model, the energy dissipated by the linear chain and by
the NES are respectively given by

Ed
chain = λ0

9
∑

m=1

E(u̇2
m(t)) andEd

NES = λNESE((v̇(t) − u̇9(t))
2). (16)

The percentages of energy dissipated by the linear chain (Ed
chain/(E

d
chain + Ed

NES)) and by the
NES (Ed

NES/(Ed
chain + Ed

NES)) are reported versus the excitation level in Fig.2-right.
For smalls0, the energy is mainly dissipated by the linear chain (see redcircle markers

in Fig. 2-right). Whens0 increases, the percentage of energy dissipated by the linear chain
decreases whereas the percentage of energy dissipated by the NES increases. The optimal
performance of the NES is obtained fors0 ≈ 0.021 where70% of energy is dissipated by the
nonlinear end-attachment (see blue squaree markers in Fig.2-right). This value corresponds
to the upper bound of the "effective" zone. Finally for large values ofs0 (i.e. s0 > 0.021),
the percentage of energy dissipated by the NES decreases whereas the percentage of energy
dissipated by the linear chain turns to increase and becomesgreater than the percentage of
energy dissipated by the NES. The energy pumping phenomena vanishes.
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Figure 3: Right: PSD of the displacement of the NES mass versus frequency for five values ofs0. Left: Frobenius-
norm of the PSD matrix of the displacement vector of theM masses of the linear chain for the system with NES
normalized by the excitation level for five values ofs0 .

The previous results indicate that the NES (a lightweight nonlinear end-attachment) can
modify the dynamic of the linear chain. In reference of the excitation level, three behaviors
can be observed. For small values ofs0 (i.e. for small amount of energy transmitted from
the excitation source to the linear chain) no coupling appears between the linear chain and the
NES. When a specific threshold (in terms of amount of energy transmitted from the excitation
source to the linear chain or equivalently in terms of excitation level condition) is exceeded,
the vibrations of the NES become large and the vibrations of the linear chain are significantly
reduced compared to the linear cases. This is the energy pumping condition, characterized
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by a transfer of energy from the primary system to the nonlinear subsystem. This behavior
characterizes the "effective" zone. Finally, the energy pumping phenomenon vanishes below a
certain level of excitation.

The performance of the NES can also be analyzed in the frequency domain using the PSD
function. The PSD describes how the averaged power is distributed as a function of frequency.
The peaks on the PSD are related to the frequency components present in the signal which
often correspond to the resonance frequencies in vibrations analysis. In Fig.3-left we display
the PSD function of the displacementv of the NES mass and, in Fig.3-right, the Frobenius-
norm of the PSD matrix function of the displacement vector(u1, u2, · · · , u9) characterizing the
linear chain. Five values ofs0 will be considered, one (s0 = 0.004) smaller than the threshold
, three (s0 = 0.008, 0.013 and0.019) in the "effective" zone and one (s0 = 0.027) greater than
the upper bound of the "effective" zone.

Fors0 = 0.004 (black curves in Fig.3-left and right), the energy on the NES is concentrated
around the frequency0.04 Hz. This frequency is greater than the resonance frequency of the

linear part of the NES (
√

kNES

mNES

≈ 0.0071 Hz) and little than the first resonance frequency

(≈ 0.16 Hz) associated to the linear chain. This peak does not appearon the linear chain (see
Fig.3-right) where only the nine resonance frequencies (0.16, 0.175, 0.21, 0.24, 0.27, 0.3, 0.325,
0.34 and0.35 Hz) are visible. Whens0 increases from0.008 to 0.019, the NES PSD shifts from
low to high frequencies with spectral broadening showing that the NES acts successively on the
increasing seven first modes (from0.16 Hz to 0.32 Hz) of the linear chain . Simultaneously,
whens0 increases from0.008 to 0.019, the resonance peaks associated to components of the
linear chain are successively "reduced" and slightly shift on the left. Finally, fors0 = 0.027, the
NES is still effective.

4 MODAL ANALYSIS BASED ON ORTHOGONAL DECOMPOSITION

The KLD and SD are now used to analyze the dynamics of the system (11-14). The
system (11-14) can be written in the form of Eq. (10) whereU = (v, u1, u2, · · · , uM)T . The
decomposition parameters were obtained solving the eigenproblems (3) using the covariance
matricesRU andR

U̇
estimated from the numerical simulations (see Section3.2). Same data

have been used as in Section3.3.

4.0.1 KLD analysis

In Fig.4, we show the mode shapes of the four dominant KL modes of the system (11-14) for
five different excitation level cases as considered in Fig.3. We also reported the mode shapes of
the normal modes of the underlying linear system (i.e. the system (11-14) with only the linear
part of the end-attachment (CNES = 0)). In Fig. 5, the percentage of energy captured by each
of the four dominant KL modes versus excitation levels0 as considered in Fig.2 is displayed.

Considering the percentage of energy captured by the KL modes, we can make the following
observations:

• For smalls0, the energy captured by each of the four dominant modes are small and very
close (between12% and24%) (see Fig.5).

• Whens0 increases, the percentage of energy captured by the first mode rapidly increases
(see blue curve with cross markers in Fig.5). This mode becomes dominant in the
response. The maximum value of the percentage of captured energy (≈ 65%) is obtained
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arounds0 ≈ 0.021 (the upper bound of the "effective" zone) which also corresponds to
the value of the best performance of the NES (see Fig.2-right).

• For s0 = 0.004, the mode shapes of the first four dominant KL modes coincide with the
mode shapes of the first four dominant KL modes of the underlying linear system (i.e.
CNES = 0) (see blue curves with cross markers in Fig.4).

• For s0 greater than the threshold (s0 ≥ 0.008), the mode shapes of the first dominant
KL mode are nearly identical of the first normal mode of the underlying linear system
(i.e. CNES = 0) (see Fig.4-top-left). This mode is spatially localized on the NES. The
localization of the mode shape of the dominant KL mode on the NES for large excitation
level is an indication of transfer of energy from the linear chain towards the NES.

These observations are similar to that presented inMa et al. (2008) where impulsive
deterministic excitations were used. They confirm that, under random excitation the transfer
of energy from the linear chain towards the NES is also due to alocalization phenomenon.
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Figure 4: KLD of the system with NES: mode shapes of the four dominant KL modes fors0 = 0.004 (cross
markers),s0 = 0.008 (asterisk markers),s0 = 0.013 (circle markers),s0 = 0.019 (square markers) ands0 = 0.027
(diamond marker). The normal modes of the underlying linearsystem is also depicted (red line).

4.0.2 SD analysis

The SD approach gives access to the S modes but also to the classical modal parameters (the
resonance frequencies and the mode shapes) as recalled in Section 2.2. We will focus here on
these characteristics.

In Fig. 7 (respectively Fig.8), the mode shapes of the first (respectively last) four normal
modes estimated from the S modes (see Eq. (7)) of the system (11-14) for five different
excitation level cases as considered in Fig.3 are displayed. We also reported the mode shape
of the normal modes of the underlying linear system (i.e.CNES = 0). In Fig. 6, we display
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Figure 5: KLD of the system with NES: percentage of energy captured by each of the four dominant KL modes
versus level excitations0.

the resonance frequencies estimated from S values (see Eq. (8)) and the percentage of energy
captured by the S modes versus excitation level as considered in Fig.2.
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Figure 6: SD of the system with NES: resonance frequencies estimated from SD versus level excitations0 (left)
and percentage of energy captured by the SKL modes versus excitation levels0 (right).

Considering the percentage of energy captured by the S modes,we can make the following
observations:

• For s0 = 0.004, the ten resonance frequencies estimated from the S values are related
to the natural resonance frequencies of the normal modes of the underlying linear system
(i.e. CNES = 0) (see Fig.6). The smaller resonance frequency (≈ 0.04 Hz) is greater than
the natural frequency of the linear part of the NES, the nine remaining frequencies (0.16,
0.175, 0.21, 0.24, 0.27, 0.3, 0.325, 0.34 and0.35 Hz) are equal to the natural frequencies
of the linear chain. The energy is mainly captured by the S mode number5, 1, 4, 7 and
8. The mode shapes of the normal modes estimated from the S modes coincide with the
mode shapes of the normal modes of the underlying linear system (i.e.CNES = 0) (see
Figs.7 and8).
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• For s0 between0.04 and0.08, the first resonance frequency estimated from the S values
(see cross markers in (see Fig.6-left) rapidly increases up to the frequency value0.16 Hz
which corresponds to the natural resonance frequency of thefirst mode of the linear chain
whereas all the nine remaining resonance frequencies estimated from the S values remain
constant. For this excitation level band, the energy is captured by the first S mode (see
cross markers in Fig.6-right). The maximum value of the percentage of captured energy
(≈ 82%) is obtained fors0 ≈ 0.008. For s0 = 0.008, the mode shapes of the first four
normal modes estimated from the S modes begin slightly to deviate from the mode shapes
of the first four normal modes of the underlying linear system(see Fig.7) whereas the
last four normal modes estimated from the S modes approach remain close to the last four
normal modes of the underlying linear system (see Fig.8).

• Arounds0 = 0.01, the second resonance frequency (0.16 Hz) estimated from the S values
(i.e. the resonance frequency of the first normal mode of the linear chain) (see blue curve
with star markers in Fig.6-left) begins to increase whereas the first resonance frequency
estimated from the S values (see blue curve with cross markers in Fig.6-left) becomes
asymptotic (with respect the excitation level) to0.16 Hz. For this excitation level, the
energy is concentrated on the second S mode (see blue curve with cross markers in Fig.6-
right). At this excitation level, this resonance interaction can be interpreted as a resonance
capture.

• Increasing slightlys0, the third resonance frequency (0.175 Hz) estimated from the S
values (i.e. the resonance frequency of of the second normalmode of the linear chain)
(see blue curve with circle markers in Fig.6-left) begins to increase whereas the second
resonance frequency estimated from the S values (i.e. the resonance frequency of the
first normal mode of the linear chain) (see blue curve with star markers in Fig.6-left)
becomes asymptotic (with respect the excitation level) to0.175 Hz. At this level, the
energy becomes concentrated on the third S mode. The maximumvalue of the percentage
of captured energy (≈ 60%) is obtained fors0 ≈ 0.012 (see blue curve with circle markers
in Fig. 6-right). At this excitation level, this resonance interaction can be interpreted as a
resonance capture.

• For s0 = 0.013, the mode shapes of the first four normal modes estimated fromthe
S modes differ significantly to the mode shapes of the first four normal modes of the
underlying linear system (see Fig.7) whereas the last four normal modes estimated by
the S modes remain close to the last four normal modes of the underlying linear system
(see Fig.8).

• Still increasing the levels0, resonance interactions appear involving successively the
higher resonance frequencies of the normal mode of the linear chain. This behavior can
be interpreted as a resonance captures cascades. This behavior are related to the left shift
of the resonant peak observed on the PSD of(u1, u2, · · · , uM) (see Fig.3-right).

Compared to the KLD analysis, more informations have been deduced from the SD analysis.
In particular, the resonance capture phenomenon as well as the resonance captures cascades
phenomenon have been revealed. These observations are verysimilar to that presented in
Vakakis et al.(2003) where impulsive excitations were used.

As presented inBellizzi and Sampaio(2010), a complementary analysis can be derived from
the SD approach ordering the S modes with respect to the energy captured by each S mode
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Figure 7: SD of the system with NES: the first four normal modesestimated from the S modes fors0 = 0.004
(cross markers),s0 = 0.008 (asterisk markers),s0 = 0.013 (circle markers),s0 = 0.019 (square markers) and
s0 = 0.027 (diamond marker). The normal modes of the underlying linearsystem is also depicted (red line).
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Figure 8: SD of the system with NES: the last four normal modesestimated from the S modes fors0 = 0.004
(cross markers),s0 = 0.008 (asterisk markers),s0 = 0.013 (circle markers),s0 = 0.019 (square markers) and
s0 = 0.027 (diamond marker). The normal modes of the underlying linearsystem is also depicted (red line).

(i.e. the energy of the S components) starting from the highest energy component to the lowest
one. In Fig.10, the mode shapes of the first four normal modes estimated fromthe S modes
ordering with respect the energy of the S components are displayed for five different excitation
level cases as considered in Fig.3. We also reported the mode shape of the normal modes of
the underlying linear system (i.e.CNES = 0). In Fig. 9, we display the resonance frequencies
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estimated from S values and the percentage of energy captured by the S modes versus excitation
level versuss0 as considered in Fig.2.
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Figure 9: SD of the system with NES: resonance frequencies ofthe first four normal modes estimated from the S
modes ordering with respect to the modal energy versus excitation levels0 (left) and percentage of energy captured
by the four dominant S modes versus excitation levels0 (right).

From the Figs.9 and10, we can make the following observations:

• For small s0 (s0 ≤ 0.08), the resonance frequency of the first energical dominant
S mode coincides with the smaller resonance frequencies (associated to the nonlinear
end-attachment) (see Fig.9-left). This resonance frequency increase withs0. The
resonance frequencies of the next three energical dominantS mode take values in the sets
({0.21, 0.24, 0.27, 0.3}) of four natural resonances frequencies of the underlying linear
system (i.e.CNES = 0). The percentage of energy captured by the first S mode rapidly
increases (see cross markers in Fig.9-right). This mode becomes more dominant in the
response. The maximum value of the percentage of captured energy (82%) is obtained
for s0 = 0.008.

• Whens0 increases (s0 ≥ 0.08), the resonance frequency of the first energical dominant
mode increases defining a branch (see red curve in Fig.9-left) which crosses all the zones
where resonance interactions have been observed in Fig.6. Moreover, the resonance
frequencies (see blue, green and magenta curves in Fig.9-left) of the next three energical
dominant modes rapidly decrease around0.18 Hz and next increase fluctuating around
the red branch. Here the first two modes becomes more dominantin the response (see
cross and star markers in Fig.9-right).

• For s0 = 0.004, the mode shapes of the first four energical dominant S modes coincide
with the mode shapes of the first four dominant KL modes of the underlying linear system
(i.e. CNES = 0) (see blue curves with cross markers in Fig.10).

• Fors0 ≥ 0.008, the mode shapes of the first energical dominant normal modesare nearly
identical of the first normal mode of the underlying linear system (i.e.CNES = 0) (see
red cuve and curves with square, circle and diamond markers in Fig. 10). This mode
is spatially localized on the NES. The localization of the mode shape of the energical
dominant S mode on the NES for large excitation level is an indication of transfer of
energy from the linear chain towards the NES.
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These observations are very similar to that obtained with the KL analysis. They confirm the
importance of the ordering of the S modes. Two ordering can beused for S modes, one, theµ-
ordering as presented in Eqs. (7) and (8), is correlated to the classical ordering of the resonance
frequencies, the other, the energy-ordering, is correlated with the ordering used for KL modes.
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Figure 10: SD of the system with NES: mode shapes of the first four normal modes estimated from the S modes
ordering with respect to the modal energy fors0 = 0.004 (cross markers),s0 = 0.008 (asterisk markers),
s0 = 0.013 (circle markers),s0 = 0.019 (square markers) ands0 = 0.027 (diamond markers). The normal
modes of the underlying linear system is also depicted (red line).

5 CONCLUSIONS

In this paper, a random nonlinear system that presents energy pumping phenomenon is
analyzed using KLD and SD. The system presents features verysimilar to the ones observed in
the deterministic case when the system is impulsively forced although the tools of analysis
are completely different. The energy pumping occurs for some excitation level, it is due
to a localization phenomenon and resonance captures with any mode of the system (in
resonance captures cascades). The results confirm the efficiency of the SD. The smooth modes
represent well how the energy is distributed in the system and clearly point out the localization
phenomenon (as KLD does) and the resonance captures cascades (KLD does not). Contrary to
KLD, it is also remarkable how the distribution of energy is related to the frequencies associated
with the SD.
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