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Abstract. Orthogonal decompositions provide a powerful tool for random vibnatianalysis. The
most popular orthogonal decomposition is the Karhunen-Loéve DecatiopodLD). The KLD is a
statistical analysis technique for finding the coherent structures in @amdates of spatially distributed
data. The structures (or KL modes) are defined as the eigenvectore cbvariance matrix of the
associated random process. Recently, a modified KLD named Smooth Desitorp(SD) has been
proposed. The SD can be viewed as a projection of an ensemble of spdisailyuted data such that the
vector directions of the projection not only keeps the maximum possible eariaut also the motions
resulting along the vector directions are as smooth as possible in time. Thediesttions (or S modes)
are defined as the eigenvectors of the generalized eigenproblemddigéimethe covariance matrix of
the random process and the covariance matrix of the associated timdidengadom process. It was
shown that the SD is an interesting tool to linear random analysis. In thig,ghapeSD will be used
to analyze nonlinear random vibrations. We first focus on the physitabiretation of the S modes. It
will be shown that the S modes can be related to the normal modes of the seddic@arized system.
Finally the ability of KLD and SD to analyze random vibration problem is dematetrconsidering an
energy pumping phenomena in a linear chain with nonlinear end-attachment.
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1 INTRODUCTION

Linear vibration analysis is often based on the normal moeleunhposition. When the
equations of motion are available, the decomposition cambiained solving the spectral
problem associated to the governing equations. This apprteads to the classical modal
analysis where the goal is to describe the structure in tefrits natural characteristics which
are the frequency, the damping and the mode shapes. Of courgal analysis has also been
developed from data using temporal and frequency apprdaem(1986).

More generally considering spatio-temporal systems, mgosition methods have been
proposed to extract relevant modes from numerical and ewrpet data. The most
popular decomposition is the proper orthogonal decomiposilso hamed Karhunen-Loéve
Decomposition (KLD) when we refer to random data (Bedlizzi and Sampai@2006). The
KLD has been used in several domains of engineering sciénmam be useful to have a second-
moment characterization of a random process in terms ofruglated random variables. The
basis vectors in this expansion are the eigenvector sokivbthe eigenproblem defined from
the covariance matrix of the random field under study. Thenpeiperties of the KL expansion
are the orthogonality of the eigenvectors and the randomablass taken as coefficients and the
error-minimizing property. Recently, a new multivariabkga analysis method called Smooth
Decomposition has been proposed (&eelidze and Zho2006 and Bellizzi and Sampaio
(2009). The SD is defined from a maximization problem associabed scalar time series
of measurements subject to a minimization constraint gaimthe associated time derivative
of the time series. The basis vectors in this expansion a&eeitenvector solutions of the
generalized eigenproblem defined from the covariance xatrihe random process and the
covariance matrix of its time derivative. The SD can be ugedxtract normal modes and
natural frequencies of linear and nonlinear vibration esyst and so it is an important tool to
analysis data in terms of modal analysis.

In this paper, the KLD and SD will be used and compared to aealgndom vibrations of
a nonlinear system that presents features of energy catyassively reduce the vibrations
(seeVakakis et al.(20083). This phenomenon was principally analyzed in the literatin
a deterministic framework. Whereas the main interest is udysof how the properties of
the system varies with changes in the parameters, in thissfiggroach the randomness of the
system is only due to the forcing term.

Another novelty of this work is the use of the Smooth Decontps (SD) to study the
properties of the system. In the linear case, the normal smddenot depend on the excitation
and the behavior of linear system can be completely analylzexigh the normal modes.
Presently, there is no similar tool in the nonlinear casee Karhunen-Loéve modes depend
on the energy levels and they have no easy relation with thguéncies of an associated
linear system. So, if one tries to compare properties of dimeer system with those of some
associated linearization it is not an easy task to use KLDth@rother hand, the SD offers a
way to make this comparison since it has a dual interpretalibe modes given by the SD can
be ordered through frequency, as normal modes are, andgtinenergy levels, as Karhunen-
Loéve modes are. This makes the SD a powerful tool to analgnérear systems in a way
similar to modal analysis of linear systems or in a way sintibakLD.

The paper is organized as follows. In Secti@n some properties of orthogonal
decompositions (KLD and SD) are recalled. In Sectiprthe nonlinear system of interest is
described and numerical evidences showing that the namlemed-attachment is able to absorb
vibrations of the linear chain (energy pumping phenomemdrén the excitation is random are
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presented. Finally, in Sectioh the energy pumping phenomenon is analyzed using KLD and
SD approaches.

2 ORTHOGONAL DECOMPOSITIONS

Let {U(t)}; = {U(t), t € R} be aR™-valued random process indexed Ry We assume
that {U(t), ¢ € R} is a second-order stationary process that has a time-tieeijarocess
{U(t), t € R} which is also a second-order stationary process. With thesemptions, the
covariance matrices ofU(t), t € R} and{U(t), ¢t € R}, denotedRy = E(U(¢)TU(t))
andRy, = E(U(t)"U(t)) respectively, do not depend on time. Without loss of geitgrale
will also assume thafU(t), ¢t € R} is a zero-mean random process and RatandR, are
symmetric positive-definite.

2.1 Definition

In vibration problems we usually want to develofRavalued random process into a series
in the separated-variables form

n

U(t,0) =Y ar(t,0)®; (1)

k=1

where®,, are deterministi®™-vectors and a,(t) }; are scalar random processes, @hariable
indicates the randomness. If the vectdrs and/or the random processgs; () }.ep, satisfy
some orthogonal and optimality properties, the expansigmll be called the orthogonal
decomposition.

We will consider here two decompositions, the Karhunenvied@ecomposition (KLD) and
the Smooth Decomposition (SD). Each decomposition resudta an optimization problem
and is built from the covariance matricBs; andRy;.

The optimization problem aims at obtaining the most charéstic constant vecto® in the
sense that they maximize

<P, P>2 »Td (2)

_ E(<U(®),®)>?) _ ®TRy®
Jsp(®) = E(<U(t),®>2) @TRE@ for SD

max J(®) with J(®) =

PcRn

{ Trern(®) = E(<UM).®)>?) _ 2"Ru®  fo5r KLD

Here the inner product, > coincides with the dot product in the Euclidean sp&e The
objective functionJsp used to define the SD differs significantly from that used téinge
the KLD. The denominator of s, takes the covariance matrix of the time-derivative process
{U(t)}, into account (which justifies the narsenoothdecomposition).

The vectors which solve the optimization problePh dre solutions of the eigenproblems

Ry®rt = plt &5 forKLD
5 g s : 3)
Ry®, = p; Ry®; forSD

Due to the properties of the matricRg; andRy;, the subset§® > &5% ... &®5L1 and
{®7 ®5 ... ®°} are basis oR”. The KL-basis is orthogonal aridy-orthogonal. The S-
basis isRy-orthogonal and ;-orthogonal. All the eigenvalues are greater than zero.

The orthogonal decompositions of the random process aea ¢y

[ Sh alfE(t)@pt for KLD
vt = { SpoLag(t) @y for SD (4)
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with
ST ST
aE(1) = BFLU(r) andaf (1) = 2k BUUW _ 2 RyUW) )
o7 Ry®; @] Ry®;

The following notation will be used: the eigenvalygs” (respectively:;) will be called KL
Values (KLVs) (respectively S Values (SVs)), the eigenues®: ~ (respectivelyd?) will be
called KL Modes (KLMs) (respectively S Modes (SMs)) and theqesses . “(¢) (respectively
a; (t)) will be called the KL Components (KLCs) (respectively S Comguts (SCs)). Notice
that the following orderingy{™ > pi3* > -+ > pi* > 0, andpf > pi3 > -+ >y > 0 wil
be used in the sequel.

2.2 Properties of the orthogonal decomposition

Here we recall the main properties of the two approaches mmection with the modal
analysis. A complete description of the properties of theDKaind SD can be found in
Bellizzi and Sampai¢2006 andBellizzi and Sampai¢2009.

2.2.1 Linear case

We assume thaRy and Ry; are the covariance matrices of the steady state solution of
a discrete linear mechanical system witldegrees of freedom governed by the equation of
motion
MU(t) + CU(t) + KU(t) = F(t) (6)

whereM, C, andK aren x n symmetric matrices and the excitation vec{d(¢)},, is a zero-
mean white-noise random excitation with intensity (i.e., Rp(7) = E(F(t + 7)F1(¢)) =
SF5<T>)

If the damping is proportional and if the modal-excitati@nnhs are uncorrelated then the
following results hold:

e the SMs are related to the normal modes by
o5 =" 7)

where ®° = [®7®5 ... ®°] and d* = [®L®L ... ®] denotes the modal matrix
associated to the undamped free vibrationod{ @defined from the mass matri and
the stiffness matrix);

e the SVs are related to the natural resonance frequencies by
pt = () ®)

wherep® = diag(y;) and2? = diagw?) with w, (wherew; < w, < -+ < w,,) denotes
the natural resonance frequencies associated to the ueddnee vibrations ofg);

e moreover, if the mass matrix is proportional to the identyrimathen
il = o (9)
where®”™” = [®FLPIL ... i)

As it will be shown hereafter, the relationg @nd @) can be used to perform modal analysis
from SD.
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2.2.2 Nonlinear case

We assume thaRy andRy; are the covariance matrices of the steady state solution of a
discrete nonlinear mechanical system witkdegrees of freedom governing by the equation of
motion ) . '

MU (t) + CU(t) + KU(¢t) + G(U(t),U(t)) = F(¢) (20)
where the similar terms have the same meaning &) iandG is a smooth nonlinear function.

Under the assumption that the nonlinear syst&@) &dmits a stationary ergodic probability
measure, it can be shown that the stationary covariancexnedtihe nonlinear responsd.()
coincides with to the stationary covariance matrix of theiegjent linear response (as defined
in Kozin (1988). Hence, the KLD (respectively SD) analysis of the stadiyresponse of the
non-linear system1() give the same results that the KLD (respectively SD) anslgé the
stationary response of the equivalent linear system exoephe KLCs and SCs. Following
the results presented in the previous section, the SD canbalviewed as a tool for modal
analysis of the nonlinear system, the SMs and SVs of the meailisystem being interpreted as
in reference to the modal characteristics of the lineargetem.

3 ANALYSIS OF THE ENERGY PUMPING IN A LINEAR CHAIN WITH NONLIN-
EAR END ATTACHMENT

3.1 Description of the system

v

i

Nonhnear

Linear chain a ttachment

Figure 1: System considered with/ + 1) DOF.

We consider here the system depicted in Hig.This system was studied Makakis et al.
(2003 considering impulsive excitation. It slightly differsoim the one described iMa et al.
(2008 considering the same kind of excitation. The system is amag of a chain of\/
strongly coupled linear oscillators with a strongly noelm end-attachment. The linear chain
will be designated as the primary system and the nonlinedsratgtachment as the nonlinear
absorber. Each mass of the linear chain is connected to thendrby a linear spring and a
linear dashpot. The equations of motion are given by

mypst + Aves(0 — 1) + knps(v — ur) + Cnps(v — ug)® =0 (11)
iy + Aoty + kgur — Anps (0 — 1) — knps(v —wr) — Onps(v — wr)? + ke(ur — ug) @2)
Ty + AU, + kg + ke (2, — Up—1 — Umg1) =0, Withm =1,--- | M —1 (13)
G + Notnr + (kg + ke)unr + ke(up — up—1) = f(t) (14)

wherev (respectivelyu,,) denotes the displacement of the nonlinear end-attach(respec-
tively the mth mass of the linear chain). All the masses of the primaryesysare equal and
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their common value i$. All the stiffness coefficients of the linear chain are ecarad denoted

by k.. All the stiffness coefficients of the strings connected®ground are equal and denoted
by k,. Itis assumed that the primary system possesses a weakigidamping X, is small).

The nonlinear end-attachment is constituted of a maggs, a linear damper with coefficient
AnEes, and a spring including a linear part with coefficiéntzs and a cubic part with coeffi-
cientCygs. The massnygs is assumed to be small compared to the total mass of the linear
chain and the linear spring is assumed to be small compar@dbio spring.

As described ivakakis et al(2003, the nonlinear end-attachment is used here to reduce the
vibration of the primary system. In contrast to the claddinaar absorber, a nonlinear absorber
is capable of reducing the energy of the primary system lgetad energy transfer over a large
frequency band. This absorber is called NES (Nonlinear g3n8ink). An overview of this
concept can be found iMakakis et al(20083 andVakakis et al(20080. The reason for this
energy pumping is the essential stiffness nonlinearitheftonlinear end-attachment. Since the
NES possesses a small linear stiffness component comanedlinear part, resonance capture
cascades appear between the linear chain and the NES at aeyaiihe linear chain. This is
a series of energy pumping phenomena occurring at différegtiencies. This phenomena has
been observed and analyzed under deterministic excigation

We propose here to analyze the targeted energy transfer tiheminear chain to the
NES when the excitation is random. This kind of excitatioffeds significantly from the
deterministic case considered\fakakis et al (2003 or Ma et al.(2008. Here the excitation
is only defined from its statistical characteristics and bled@avior analysis of the system is
based on the stochastic characteristics of the responamebtfrom the theory of the random
vibrations. More precisely, we assume that a random forapdied to the primary system (at
the mass numbeY/). This force is of the form

f(t) = soW (t) (15)

where{W (t)}, is a gaussian white-noise scalar process with intensityamae, denotes the
excitation level. We have chosen a white-noise excitatiecalse its Power Spectral Density
(PSD) function which describes the relative power contrdsuat various frequencies is a
constant function. In terms of frequency content, a whies@ excitation is similar to an
impulsive excitation in the deterministic case. Using ateAmoise scalar process permits us
to analyze the system without privileging a frequency band.

In the sequel, the stationary responses of the system weestigated and the excitation
levelss, will be used as the parameter of analysis. The behavior citdt®nary responses was
studied observing the second order moments and the Powetr8g@ensity (PSD) functions
of the (M + 1) DOF, v, uy, us, - - - , uypy, Of the system.

3.2 About the numerical approach

To allow comparison with results on the literature in theedetinistic case, the following
numerical parameter values were used to simulate the sy&tefdl): M = 9 (that is al0-DOF
system includin@-DOF from the linear chain anttDOF from the nonlinear end-attachment),
)\0 = 0.001, kg =1,k. =1, myges = 0.05, )‘NES = 0.001, kNES = 0.0001 andCNES =1.

The Monte-Carlo method was used to estimate the stationgppnses of the system under
random excitation. From a given excitation level, the resgotime history (displacement and
velocity) was obtained from an time history of excitatidrb) by solving Eqs. 11-14) over
the time intervall0,¢;] numerically using the Newmark method. Zero initial disjlaent
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and velocity were assumed. The time-discretization pat@melue was chosen equal to
At = 0.143 s (i.e. f. = 7 Hz) and524286 instants {; = 74942 s) were simulated. The time
histories of W (¢) (a gaussian white-noise scalar process with intensity aeeg generated

using the procedure describedRnirion and Soiz¢1989.

Assuming ergodicity, the last-half points of the displaeatand velocity time histories
were used to approximate the second order moments (as tkeatierages) and the Power
Spectral Density functions (as the average of the periodgransidering a window length
NFFT = 4096).
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Figure 2: Left: Square root of the trace of the covariancerimaf the vector displacemertu;, us, - - -, ups) for

the system with the NES (red circle markers), for the systétmout NES (red dashed line) and for the system with
only the linear part of the NES (red dotted line), and the RMBies of the displacement(blue square markers)
versus level excitation,. Right: Percentage of energy dissipated by the linear dfnadhcircle markers) and by
the NES (blue square markers) versus level excitatijon

3.3 Passive capacity of vibration reduction

We limit the discussion to some numerical evidences showirag the nonlinear end-
attachment is able to absorb vibrations of the linear chdiarthe excitation is random. The
effect of the NES on the linear chain is analyzed compariegetfolution of the second order
moments and the Power Spectral Density functions of thenahass motionsu, us, - - -, uay)
and the NES mass motiom)(versus the excitation leve},. In this numerical study, we have
chosens, € [0.004, 0.032].

In Fig. 2-left, we display the evolution aRM Syrs = /E(v3(t)) (the RMS values of the
NES displacement) and RM Scpein = VE(u3(t)) + E(u3(t)) + -+ - + E(ud(t)) (the square
root values of the trace of the covariance matrix of the vedisplacementu,, us, - - - , ug))
versus s,.  The evolution of theRMS,,.,, are also reported considering two linear
configurations of the syster1-14). The first one corresponds to the system without nonlinear
end-attachment (i.e. only the primary system) and the skooe corresponds to the system
with only the linear part of the end-attachme@t\(zs = 0).

For smallsy, significant vibrations occur only on the linear chain (see circle markers in
Fig. 2-left) so the behavior of the system is close to the behadithveotwo linear configurations
(see red dotted and dashed lines in Rideft). Whens, increases, the vibrations of the NES
mass increase (see blue square markers inZHegft) and simultaneously the vibrations of the
masses of the linear chain are significantly reduced cordgarthe two linear configurations
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(see red circle markers in Fi@-left). Particularly interesting is that a zone (defined by
0.008 < s¢ < 0.021) appears wher@&M S.,.;, does not significantly increase wit. This
zone will be named "effective” zone. Finally, for large vaugf s, (i.e. so > 0.021) the
vibrations of the masses of the linear chain again increasarly.

An important measure to evaluate the performance of NESei®tiergy dissipated by the
nonlinear end-attachment. Based on the model, the energjpalied by the linear chain and by
the NES are respectively given by

Efhain = Mo Z E(iy,(t) and EY g = AvpsE((0(t) — tg(t))?). (16)

The percentages of energy dissipated by the linear clizp.( /(£ .. + E% ) and by the
NES (F% s/ (E% ... + E%5s)) are reported versus the excitation level in Rgight.

For smalls,, the energy is mainly dissipated by the linear chain (seecnedle markers
in Fig. 2-right). Whens, increases, the percentage of energy dissipated by the lofmaén
decreases whereas the percentage of energy dissipate@ BNE® increases. The optimal
performance of the NES is obtained for ~ 0.021 where70% of energy is dissipated by the
nonlinear end-attachment (see blue squaree markers ir2dfight). This value corresponds
to the upper bound of the "effective” zone. Finally for largdues ofs, (i.e. so > 0.021),
the percentage of energy dissipated by the NES decreasesashthe percentage of energy
dissipated by the linear chain turns to increase and becgmeader than the percentage of
energy dissipated by the NES. The energy pumping phenonasmshes.

——5,=0.004] |
=0.008
=0.013
=0.019 ]
=0.027

—— s, =0.004
=0.008
=0.013|]
=0.019 3r
=0.027| |
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Log10(S, ()
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Figure 3: Right: PSD of the displacement of the NES mass sdrsquency for five values af). Left: Frobenius-
norm of the PSD matrix of the displacement vector of Memasses of the linear chain for the system with NES
normalized by the excitation level for five valuessf.

The previous results indicate that the NES (a lightweightlinear end-attachment) can
modify the dynamic of the linear chain. In reference of theitetion level, three behaviors
can be observed. For small valuessgf(i.e. for small amount of energy transmitted from
the excitation source to the linear chain) no coupling appbatween the linear chain and the
NES. When a specific threshold (in terms of amount of energysirétted from the excitation
source to the linear chain or equivalently in terms of exictalevel condition) is exceeded,
the vibrations of the NES become large and the vibrations@lihear chain are significantly
reduced compared to the linear cases. This is the energyipgrapndition, characterized

Copyright © 2011 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecanica Computacional Vol XXX, pags. 3281-3296 (2011) 3289

by a transfer of energy from the primary system to the noaliribsystem. This behavior
characterizes the "effective” zone. Finally, the energy piaigh phenomenon vanishes below a
certain level of excitation.

The performance of the NES can also be analyzed in the fregudmain using the PSD
function. The PSD describes how the averaged power isloliséd as a function of frequency.
The peaks on the PSD are related to the frequency componedsnp in the signal which
often correspond to the resonance frequencies in vibaoalysis. In Fig3-left we display
the PSD function of the displacemenf the NES mass and, in Fi§-right, the Frobenius-
norm of the PSD matrix function of the displacement ve¢tar u,, - - - , ug) characterizing the
linear chain. Five values of, will be considered, ones{ = 0.004) smaller than the threshold
, three 6, = 0.008,0.013 and0.019) in the "effective" zone and one( = 0.027) greater than
the upper bound of the "effective" zone.

Forsq = 0.004 (black curves in Fig3-left and right), the energy on the NES is concentrated
around the frequency.04 Hz. This frequency is greater than the resonance frequeinttyeo

linear part of the NES,S/’W—ES ~ 0.0071 Hz) and little than the first resonance frequency

MNES

(=~ 0.16 Hz) associated to the linear chain. This peak does not ajgethre linear chain (see
Fig. 3-right) where only the nine resonance frequendiess( 0.175, 0.21, 0.24, 0.27, 0.3, 0.325,

0.34 and0.35 Hz) are visible. When, increases from.008 to 0.019, the NES PSD shifts from

low to high frequencies with spectral broadening showirag the NES acts successively on the
increasing seven first modes (frdim 6 Hz to 0.32 Hz) of the linear chain . Simultaneously,
when s, increases fron.008 to 0.019, the resonance peaks associated to components of the
linear chain are successively "reduced" and slightly shifihe left. Finally, fors, = 0.027, the

NES is still effective.

4 MODAL ANALYSIS BASED ON ORTHOGONAL DECOMPOSITION

The KLD and SD are now used to analyze the dynamics of the rey§ié-14). The
system 11-14) can be written in the form of Eq10) whereU = (v, uy, us, -+ ,up)’. The
decomposition parameters were obtained solving the ergbltgms 8) using the covariance
matricesRy andR; estimated from the numerical simulations (see Seci@ Same data
have been used as in Secti®3.

4.0.1 KLD analysis

In Fig. 4, we show the mode shapes of the four dominant KL modes of ttesyl1-14) for
five different excitation level cases as considered in Ei§Ve also reported the mode shapes of
the normal modes of the underlying linear system (i.e. tistesy (L1-14) with only the linear
part of the end-attachment'{ s = 0)). In Fig. 5, the percentage of energy captured by each
of the four dominant KL modes versus excitation leyghs considered in Fi@ is displayed.
Considering the percentage of energy captured by the KL madesan make the following
observations:

e For smallsy, the energy captured by each of the four dominant modes aak ana very
close (between2% and24%) (see Fig5).

e Whens, increases, the percentage of energy captured by the first rapddly increases
(see blue curve with cross markers in F&. This mode becomes dominant in the
response. The maximum value of the percentage of captuerdye@ 65%) is obtained
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arounds, =~ 0.021 (the upper bound of the "effective" zone) which also corresisao
the value of the best performance of the NES (seeZigght).

e Fors, = 0.004, the mode shapes of the first four dominant KL modes coincidie tive
mode shapes of the first four dominant KL modes of the undegllinear system (i.e.
Cnes = 0) (see blue curves with cross markers in Hjp.

e For s, greater than the thresholdy,(> 0.008), the mode shapes of the first dominant
KL mode are nearly identical of the first normal mode of theenhdng linear system
(i.,e. Cygs = 0) (see Fig4-top-left). This mode is spatially localized on the NES. The
localization of the mode shape of the dominant KL mode on tB& lfbr large excitation
level is an indication of transfer of energy from the linehain towards the NES.

These observations are similar to that presentedMVimet al. (2008 where impulsive
deterministic excitations were used. They confirm that,eamrdndom excitation the transfer
of energy from the linear chain towards the NES is also duddcalization phenomenon.

KL mode 1 KL mode 2

0.8}
0.6}
041
0.2}

_0.2,
-04b . . . . ‘ . A
v ul u2 u3 u4 u5 u6 u7 u8 u9

”,
v,

u2 u3 u4 u5 u6é u7 u8 u9

KL mode 3 KL mode 4

051

"

v ul u2 u3 u4 u5 u6 u7 u8 u9 v ul u2 u3 u4 u5 u6 u7 u8 u9

Figure 4: KLD of the system with NES: mode shapes of the founidant KL modes forsq = 0.004 (cross
markers)so = 0.008 (asterisk markers}, = 0.013 (circle markers)s, = 0.019 (square markers) ang = 0.027
(diamond marker). The normal modes of the underlying lirsyatem is also depicted (red line).

4.0.2 SD analysis

The SD approach gives access to the S modes but also to teealasodal parameters (the
resonance frequencies and the mode shapes) as recallection®e2. We will focus here on
these characteristics.

In Fig. 7 (respectively Fig8), the mode shapes of the first (respectively last) four nbrma
modes estimated from the S modes (see HY). ¢f the system {1-14) for five different
excitation level cases as considered in B@re displayed. We also reported the mode shape
of the normal modes of the underlying linear system (Cg:zs = 0). In Fig. 6, we display

Copyright © 2011 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecanica Computacional Vol XXX, pags. 3281-3296 (2011) 3291

70

—¥— KL mode 1
—#— KL mode 2
—O— KL mode 3|1
—HB— KL mode 4
R

60

o
o

N
(=]

KL mode energy (%)

Figure 5: KLD of the system with NES: percentage of energytwapl by each of the four dominant KL modes
versus level excitatior.

the resonance frequencies estimated from S values (se&)kEgn( the percentage of energy
captured by the S modes versus excitation level as conslidefag. 2.
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Figure 6: SD of the system with NES: resonance frequenctana@sd from SD versus level excitatiap (left)
and percentage of energy captured by the SKL modes versitatexclevels, (right).

Considering the percentage of energy captured by the S madesan make the following
observations:

e For sy, = 0.004, the ten resonance frequencies estimated from the S valeeglated
to the natural resonance frequencies of the normal modé® efrtderlying linear system
(i.,e. Cygs = 0) (see Fig6). The smaller resonance frequenesy .04 Hz) is greater than
the natural frequency of the linear part of the NES, the nameaining frequencie$) (16,
0.175, 0.21, 0.24, 0.27, 0.3, 0.325, 0.34 and0.35 Hz) are equal to the natural frequencies
of the linear chain. The energy is mainly captured by the Semagdnberb, 1, 4, 7 and
8. The mode shapes of the normal modes estimated from the Ssmooaeide with the
mode shapes of the normal modes of the underlying lineaesyéte. Cyrs = 0) (see
Figs.7 and8).
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e For sy between).04 and0.08, the first resonance frequency estimated from the S values

(see cross markers in (see Fegleft) rapidly increases up to the frequency valugs Hz
which corresponds to the natural resonance frequency dfshenode of the linear chain
whereas all the nine remaining resonance frequenciesastinfrom the S values remain
constant. For this excitation level band, the energy iswapt by the first S mode (see
cross markers in Figs-right). The maximum value of the percentage of capturedgne
(=~ 82%) is obtained fors, ~ 0.008. Fors, = 0.008, the mode shapes of the first four
normal modes estimated from the S modes begin slightly t@teefrom the mode shapes
of the first four normal modes of the underlying linear syst{see Fig.7) whereas the
last four normal modes estimated from the S modes approawimeslose to the last four
normal modes of the underlying linear system (see &)ig.

Aroundsy = 0.01, the second resonance frequeney ¢ Hz) estimated from the S values
(i.e. the resonance frequency of the first normal mode ofitfeai chain) (see blue curve
with star markers in Fige-left) begins to increase whereas the first resonance fregue
estimated from the S values (see blue curve with cross nmikdfig. 6-left) becomes
asymptotic (with respect the excitation level)@d6 Hz. For this excitation level, the
energy is concentrated on the second S mode (see blue culhverass markers in Fig-
right). At this excitation level, this resonance interantcan be interpreted as a resonance
capture.

Increasing slightlys,, the third resonance frequendy.{75 Hz) estimated from the S
values (i.e. the resonance frequency of of the second narmode of the linear chain)
(see blue curve with circle markers in Figtleft) begins to increase whereas the second
resonance frequency estimated from the S values (i.e. Hmaeace frequency of the
first normal mode of the linear chain) (see blue curve with starkers in Fig.6-left)
becomes asymptotic (with respect the excitation level).1g5 Hz. At this level, the
energy becomes concentrated on the third S mode. The maxualumof the percentage
of captured energyx 60%) is obtained for, ~ 0.012 (see blue curve with circle markers
in Fig. 6-right). At this excitation level, this resonance interantcan be interpreted as a
resonance capture.

For s = 0.013, the mode shapes of the first four normal modes estimated finem

S modes differ significantly to the mode shapes of the first foarmal modes of the
underlying linear system (see Fig) whereas the last four normal modes estimated by
the S modes remain close to the last four normal modes of terlymg linear system
(see Fig8).

Still increasing the levek,, resonance interactions appear involving successivealy th
higher resonance frequencies of the normal mode of therlctesin. This behavior can
be interpreted as a resonance captures cascades. Thisdbelmavelated to the left shift
of the resonant peak observed on the PSDuefus, - - - , uys) (See Fig3-right).

Compared to the KLD analysis, more informations have beenabtifrom the SD analysis.
In particular, the resonance capture phenomenon as wellleasesonance captures cascades
phenomenon have been revealed. These observations arsinelgr to that presented in
Vakakis et al(2003 where impulsive excitations were used.

As presented iBellizzi and Sampai¢2010, a complementary analysis can be derived from
the SD approach ordering the S modes with respect to the yeoamured by each S mode
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Figure 7: SD of the system with NES: the first four normal moéstimated from the S modes fe§ = 0.004
(cross markers)y = 0.008 (asterisk markers)s, = 0.013 (circle markers)sy = 0.019 (square markers) and
so = 0.027 (diamond marker). The normal modes of the underlying lirsgatem is also depicted (red line).

NM 6 (from S modes)
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Figure 8: SD of the system with NES: the last four normal moeksnated from the S modes feg = 0.004
(cross markersyy = 0.008 (asterisk markers)so = 0.013 (circle markers)so = 0.019 (square markers) and
so = 0.027 (diamond marker). The normal modes of the underlying lisyatem is also depicted (red line).

(i.e. the energy of the S components) starting from the sgéreergy component to the lowest

one. In Fig.10, the mode shapes of the first four normal modes estimated then$ modes
ordering with respect the energy of the S components aréaglisgh for five different excitation

level cases as considered in F&J.We also reported the mode shape of the normal modes of
the underlying linear system (i.€/yzs = 0). In Fig. 9, we display the resonance frequencies
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estimated from S values and the percentage of energy cdgiytbe S modes versus excitation
level versuss, as considered in Fi@.

Resonance frequency (Hz)

035

0.25

0.151

(from S modes and energy—ordering) (from S modes and energy—ordering)
T T T T T T

T
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—#— S mode 2|
—E— S mode 3
—&— S mode 4

T
—¥— S mode 1
—#— S mode 2 80
—E— S mode 3
—&— S mode 4

S energy mode (%)

01 - . . L . . ol = | . L . .
0.005 0.01 0.015 0.02 0.025 0.03 0.005 0.01 0.015 0.02 0.025 0.03

So So

Figure 9: SD of the system with NES: resonance frequenciéisedfirst four normal modes estimated from the S
modes ordering with respect to the modal energy versusagixtitlevels, (left) and percentage of energy captured
by the four dominant S modes versus excitation leydkight).

From the Figs9 and10, we can make the following observations:

For small sy (s < 0.08), the resonance frequency of the first energical dominant
S mode coincides with the smaller resonance frequencissdiased to the nonlinear
end-attachment) (see Fi§-left). This resonance frequency increase with The
resonance frequencies of the next three energical dom$hardde take values in the sets
({0.21,0.24,0.27,0.3}) of four natural resonances frequencies of the underlyimegt
system (i.e.Cvrs = 0). The percentage of energy captured by the first S mode yapidl
increases (see cross markers in Bigight). This mode becomes more dominant in the
response. The maximum value of the percentage of captuedye2%) is obtained

for so = 0.008.

Whens, increasesd, > 0.08), the resonance frequency of the first energical dominant
mode increases defining a branch (see red curve irDH&jt) which crosses all the zones
where resonance interactions have been observed in6Fifloreover, the resonance
frequencies (see blue, green and magenta curves i9Hadt) of the next three energical
dominant modes rapidly decrease arolntB Hz and next increase fluctuating around
the red branch. Here the first two modes becomes more domim#me response (see
cross and star markers in Fgright).

For sy = 0.004, the mode shapes of the first four energical dominant S moaleside
with the mode shapes of the first four dominant KL modes of tiaedying linear system
(i.,e. Cnyes = 0) (see blue curves with cross markers in Hif).

For sy > 0.008, the mode shapes of the first energical dominant normal ma@esearly
identical of the first normal mode of the underlying lineasteyn (i.e.Cygs = 0) (see
red cuve and curves with square, circle and diamond markeFsgi. 10). This mode
is spatially localized on the NES. The localization of thedmshape of the energical
dominant S mode on the NES for large excitation level is amcattbn of transfer of
energy from the linear chain towards the NES.
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These observations are very similar to that obtained wighkth analysis. They confirm the
importance of the ordering of the S modes. Two ordering camsieel for S modes, one, the
ordering as presented in Eq$) and @), is correlated to the classical ordering of the resonance
frequencies, the other, the energy-ordering, is corréhaith the ordering used for KL modes.

NM 1 (from S modes and energy—ordering) NM 2 (from S modes and energy—ordering)

Figure 10: SD of the system with NES: mode shapes of the fitstriormal modes estimated from the S modes
ordering with respect to the modal energy for = 0.004 (cross markers)s, = 0.008 (asterisk markers),
so = 0.013 (circle markers),sp = 0.019 (square markers) ang, = 0.027 (diamond markers). The normal
modes of the underlying linear system is also depicted (req.|

5 CONCLUSIONS

In this paper, a random nonlinear system that presents emengping phenomenon is
analyzed using KLD and SD. The system presents featuressirailar to the ones observed in
the deterministic case when the system is impulsively tbrakhough the tools of analysis
are completely different. The energy pumping occurs for es@rcitation level, it is due
to a localization phenomenon and resonance captures withnmaode of the system (in
resonance captures cascades). The results confirm themdfadf the SD. The smooth modes
represent well how the energy is distributed in the systedicéearly point out the localization
phenomenon (as KLD does) and the resonance captures cagkadedoes not). Contrary to
KLD, itis also remarkable how the distribution of energyasated to the frequencies associated
with the SD.
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