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Abstract. The most used model for predicting wear is the linear wear law proposed by Archard. A
common generalization of Archard’s wear law is based on the assumption that the wear rate at any
point on the contact surface is proportional to the local contact pressure and the relative sliding velocity.
This work focuses on a stochastic modeling of the wear process to take into account the experimental
uncertainties in the identification process of the contact-state dependent wear coefficient. The description
of the dispersion of the wear coefficient is described by a probability density function, which is performed
using the Maximum Entropy Principle using only the information available. Closed-form results for four
situations that commonly occur in practice are provided.
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1 INTRODUCTION

In mechanical system modeling, uncertainties are present and, to improve the predicability
of the models, they should be taken into account. This work discusses uncertainties present in
the linear wear law proposed by Archard (Archard, 1953), the most used model for predicting
wear. The Archard’s wear law is based on the assumption that the wear rate at any point on the
contact surface is proportional to the local contact pressurep and the relative sliding velocityυ
according to the initial value problem (IVP)

d

dt
h(t) = p υ κ, t ∈ (0, T ),

h(0) = h0, (1)

whereh0 is the initial average height, T is the total time, andκ is the contact-state dependent
wear coefficient.

In this work we focus on a stochastic modeling of the wear process to take into account the
experimental uncertainties in the identification process of the wear coefficient. In view of this,
the wear coefficientκ in IVP (1) is treated as a random variable that cannot take negative values.
Moreover, the local contact pressure is constant and the relative sliding velocity is considered a
time-dependent function along the wear process.

IVP (1) with uncertainty on the wear coefficient has been treated recently inÁvila da Silva Jr
and Pintaude(2008). Two cases of uncertainty were studied: random variable or time-dependent
stochastic process. In the former, the wear coefficient is modeled as a uniform random variable,
while in the latter it is modeled employing a truncated Karhunen-Loève expansion, considering
the orthonormal random coefficients as uniform, independently and identically distributed ran-
dom variables (in our point of view it is difficult to infer what kind of process the wear is in this
case). Expectation and covariance functions of the worn height process are obtained.

An approach to deal with IVP (1) is to solve numerically appropriate equations for represen-
tative sets of realizations of random variables and to average computed functions. This approach
is the so-called Monte Carlo method (see, for example,Fishman, 1996) which has the advantage
of applying to a very broad range of both linear and nonlinear problems. The large volume of
calculation, the errors in solving the deterministic equations, and the difficulty for generalizing
the results may limit the significance of this approach.

The organization of this article is as follows: Section2 presents the probability density func-
tion (pdf) and the joint (two-point) pdf of the wear height stochastic process from the knowledge
of the wear coefficient pdf. After, in Section3, the wear coefficient is considered as uncertain
and an approximation of its pdf is deduced from the Maximum Entropy Principle (MEP) using
only the a priori information available. Closed-form results for the pdf ofh(t), at a fixedt, for
four situations that commonly occur in practice are provided. Finally, some conclusions are
made in4.

2 PROBABILITY DENSITY FUNCTION OF THE RANDOM HEIGHT

In this section the pdf and the joint (two-point) pdf of the wear height process are obtained
from the knowledge of the wear coefficient pdf,fκ(q). These results will be useful in the next
section.

Note that for each realizationκ(ω), of the wear coefficient (see, for example,Kloeden and
Platen, 1999; Papoulis, 1984, for more details on probability spaces and stochastic processes),
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(1) becomes a deterministic IVP whose solutionh(t, ω) can be expressed as

h(t, ω) = h0 + p κ(ω)

∫ t

0

υ(τ) dτ, t ∈ [0, T ).

Thus, the solution of IVP (1) can be written as

h(t) = h0 + p κ Υ(t), t ∈ [0, T ), (2)

where

Υ(t) =

∫ t

0

υ(τ) dτ .

By (2), the cumulative probability function ofh(t), t > 0, is

Fh(q; t) = P(h(t) ≤ q) = P (h0 + pκΥ(t) ≤ q) =

= P
(

κ ≤ q − h0

pΥ(t)

)
= Fκ

(
q − h0

pΥ(t)

)
,

whereP denotes the probability measure.
Taking the derivative ofFh(q; t) above with respect toq we obtain the following result:

Proposition 2.1. The density function at a fixedt, fh(q; t), is given by

fh(q; t) =
1

pΥ(t)
fκ

(
q − h0

pΥ(t)

)
. (3)

Corollary 2.1. Then-th moment,E[(h(t))n], n ∈ Z, n ≥ 1, of the solution of (1) is given by

E[(h(t))n] =
n∑

j=0

(
n

j

)
(pΥ(t))j E[κj] hn−j

0 . (4)

In particular, the mean and the variance are given by

E[(h(t))] = pΥ(t) E[κ] + h0 and (5)

Var[(h(t))] = (pΥ(t))2 Var[κ], (6)

respectively.

Proof. By (3), it follows that

E[(h(t))n] =

∫ +∞

−∞
qn fh(q; t) dq =

1

pΥ(t)

∫ +∞

−∞
qn fκ

(
q − h0

pΥ(t)

)
dq =

=

∫ +∞

−∞
(pΥ(t) τ + h0)

n fκ (τ) dτ = E[(pΥ(t) κ + h0)
n] =

= E

[
n∑

j=0

(
n

j

)
(pΥ(t) κ)j hn−j

0

]
=

n∑
j=0

(
n

j

)
(pΥ(t))j E[κj] hn−j

0 .
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From (5) and (6), the coefficient of variation ofh(t) can be presented as (h0 > 0)

γ[(h(t))] =
pΥ(t) (Var[κ])1/2

pΥ(t) E[κ] + h0

≤ (Var[κ])1/2

E[κ]
= γκ,

whereγκ is the coefficient of variation ofκ.
In order to illustrate expression (3) we present next three examples in whichκ is a positive

real-valued random variable.

Example 2.1.Let κ be a random variable uniformly distributed in[a, b], κ ∼ U [a, b], a > 0. Its
density function is

fκ(q) =

{ 1

b− a
, if a ≤ q ≤ b,

0, otherwise.

From (3) it follows that

fh(q; t) =


1

pΥ(t)(b− a)
, if apΥ(t) + h0 ≤ q ≤ bpΥ(t) + h0,

0, otherwise,

that is,h(t) ∼ U [h0 + apΥ(t), h0 + bpΥ(t)].

Example 2.2. Let κ ∼ G[α, β] be a gamma random variable with parametersα andβ, α > 0,
β > 0. Its density function is

fκ(q) = 1(0,+∞)
qα−1

Γ(α)βα
exp

(
− q

β

)
,

where1A(x) = 1, if x ∈ A and1A(x) = 0, if x 6∈ A; Γ is the Gamma function defined for
α > 0 as

Γ(α) =

∫ +∞

0

xα−1 exp (−x) dx.

From (3) the pdf ofh(t) is

fh(q; t) = 1(h0,+∞)
(q − h0)

α−1

Γ(α)(βpΥ(t))α
exp

(
− q − h0

βpΥ(t)

)
, (7)

that is,h(t) ∼ h0 + G[α, βpΥ(t)]. SinceE[κ] = αβ and Var[κ] = αβ2, it follows directly that
E[h(t)] = αβpΥ(t) and Var[h(t)] = α(βpΥ(t))2. The exponential distribution case is obtained
by doingα = 1 in the above calculations.

Example 2.3. Now let κ be a log-normal random variable,κ = exp (χ), χ ∼ N [µ, σ2]. Its
density function is given by

fκ(q) =
1

q
√

2πσ
exp

[
−(ln (q)− µ)2

2σ2

]
.

Again, from (3) it follows that

fh(q; t) =
1

q
√

2πpΥ(t)σ
exp

[
−(ln (q − h0)− ln (pΥ(t))− µ))2

2σ2

]
.
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2.1 Joint pdf of the random height

Let h(t1) andh(t2) be the random solutions of (1), t1, t2 > 0. As known, second-order
properties of a random process can give significant information about the process such as the
correlation ofh(t1) andh(t2), that demands the joint density function,fh(q1, q2; t1, t2), of these
random variables. The joint cumulative function ofh(t1) andh(t2) is given by

Fh(q1, q2; t1, t2) = P(h(t1) ≤ q1, h(t2) ≤ q2) =

= P(h0 + pΥ(t1) κ ≤ q1, h0 + pΥ(t2) κ ≤ q2) =

= P
(

κ ≤ q1 − h0

pΥ(t1)
, κ ≤ q2 − h0

pΥ(t2)

)
=

= P
(

κ ≤ min

{
q1 − h0

pΥ(t1)
,
q2 − h0

pΥ(t2)

})
= Fκ ( ϕ(ρ(q1), θ(q2)) ) , (8)

whereρ(q1) = (q1 − h0)/pΥ(t1), θ(q2) = (q2 − h0)/pΥ(t2), andϕ(ρ, θ) = min{ρ, θ}.
We can write theϕ - function as

ϕ(ρ, θ) = min{ρ, θ} = ρ− (ρ− θ) H(ρ− θ),

whereH is the Heaviside function (Zauderer, 1983). Also, sinceH ′(α) = δ(α), the Dirac
distribution, the derivatives ofϕ, in the sense of distributions (Zauderer, 1983), are

∂ϕ

∂ρ
= 1−H(ρ− θ) and

∂ϕ

∂θ
= H(ρ− θ).

Moreover,

∂2ϕ

∂θ ∂ρ
= δ(ρ− θ) and

∂ϕ

∂ρ
.
∂ϕ

∂θ
= (1−H(ρ− θ)) H(ρ− θ) = 0.

Now we use these expressions to obtain the second-order mixed derivative derivative of (8):

∂

∂q1

Fh(q1, q2; t1, t2) = fκ ( ϕ(ρ(q1), θ(q2)) )
∂ϕ

∂ρ
(ρ(q1), θ(q2)) ρ′(q1),

and

∂2

∂q2 ∂q1

Fh(q1, q2; t1, t2) = fκ ( ϕ(ρ(q1), θ(q2)) )
∂2ϕ

∂θ ∂ρ
(ρ(q1), θ(q2)) ρ′(q1) θ′(q2)+

+ f
′

κ ( ϕ(ρ(q1), θ(q2)) )
∂ϕ

∂ρ
.
∂ϕ

∂ρ
(ρ(q1), θ(q2)) ρ′(q1) θ′(q2) =

= fκ ( ϕ(ρ(q1), θ(q2)) ) ρ′(q1) θ′(q2) δ(ρ(q1)− θ(q2)) =

= fκ (ρ(q1)) ρ′(q1) θ′(q2) δ(ρ(q1)− θ(q2)),

sincefκ(min{ρ, θ})δ(ρ− θ) = fκ(ρ)δ(ρ− θ) = fκ(θ)δ(ρ− θ) (Zauderer, 1983).
With these arguments we have proved the result that follows:

Proposition 2.2. Let h(t1) andh(t2) be the solutions of (1), t1, t2 > 0. Then, the joint density
function of these random variables is given by

fh(q1, q2; t1, t2) =
∂2

∂q2 ∂q1

Fh(q1, q2; t1, t2) =
1

p2Υ(t1)Υ(t2)
fκ (ρ(q1)) δ(ρ(q1)− θ(q2)), (9)

whereρ(q1) = (q1 − h0)/pΥ(t1) andθ(q2) = (q2 − h0)/pΥ(t2).
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Corollary 2.2. Let h(t1) and h(t2) be the solutions of (1), t1, t2 > 0. Then, the covariance,
Covh(t1, t2), of these random variables is given by

Covh(t1, t2) = p2Υ(t1)Υ(t2) Var[κ]. (10)

Proof. Observe that

E[h(t1)h(t2)] =

∫∫
R2

q1q2 fh(q1, q2; t1, t2) dq1dq2 =

=
1

p2Υ(t1)Υ(t2)

∫∫
R2

q1q2 fκ (ρ(q1)) δ(ρ(q1)− θ(q2)) dq1dq2 =

=

∫∫
R2

[ρ(q1)pΥ(t1) + h0] [θ(q2)pΥ(t2) + h0] fκ(ρ(q1)) δ(ρ(q1)− θ(q2)) dρ(q1)dθ(q2) =

=

∫
R

[θ(q2)pΥ(t1) + h0] [θ(q2)pΥ(t2) + h0] fκ(θ(q2)) dθ(q2) =

= p2Υ(t1)Υ(t2) E[κ2] + p(Υ(t1) + Υ(t2))h0 E[κ] + h2
0.

Thus,

Covh(t1, t2) = E[h(t1)h(t2)]− E[h(t1)]E[h(t2)] =

= p2Υ(t1)Υ(t2) E[κ2] + p(Υ(t1) + Υ(t2))h0 E[κ] + h2
0−

− (pΥ(t1)E[κ] + h0)(pΥ(t2)E[κ] + h0) =

= p2Υ(t1)Υ(t2)
(
E[κ2]− E[κ]2

)
= p2Υ(t1)Υ(t2) Var[κ].

In order to illustrate expression (9) we present next the joint (two-point) pdf ofh(t) whenκ
has a gamma distribution (as in Example2.2):

fh(q1, q2; t1, t2) = 1(h0,+∞)
(q1 − h0)

α−1

Γ(α)(βpΥ(t1))α(pΥ(t2))
exp

(
− q1 − h0

βpΥ(t1)

)
δ(ρ(q1)− θ(q2)),

whereρ(q1) = (q1 − h0)/pΥ(t1) andθ(q2) = (q2 − h0)/pΥ(t2).
It is important to observe that expressions (4) and (10) could be calculated directly from (2),

but density functions (3) and (9) give a more general statistical understanding of the solution
process.

3 PROBABILITY DENSITY OF WEAR GIVEN INFORMATION ABOUT ITS DIS-
TRIBUTION.

In this section, the wear coefficient is considered as uncertain and an approximation of its
pdf is deduced from the MEP using only the a priori information available. The construction of
the wear pdf is briefly summarized below.

3.1 Maximum Entropy Principle

Considering a real-valued random variableX, associated with the pdffX(x), one can define
the entropy by

S(X) = −
∫ +∞

−∞
fX(x) log (fX(x)) dx.
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The Maximum Entropy Principle (seeJaynes, 1957a,b; Kapur and Kesavan, 1992; Soize,
2001; Chevalier et al., 2005; Udwadia, 1989, for applications) is a tool that allows the pdf
to be constructed by searching the maximum ofS(X) under the constraint of the available
information. It gives a pdf that maximizes the uncertainty and is compatible with the known
information, that is it does not violate physical principles. Example of informations are, the
support of the pdf, the mean value, the standard deviation or higher moments. A Lagrange
multiplier λi will be associated to each constraint defined by the available information. These
constraints are written in the form:

E[gi(X)] =

∫ +∞

−∞
gi(x)fX(x)dx = fi, i = 1, 2, ...,m, (11)

wheregi(X) are given functions. For instance, ifgi(x) = x, fi is the mean value ofX. It can be
shown that the multipliersλi are obtained by minimizing the strictly convex functionH defined
by

H(λ0, λ1, ..., λm) = λ0 +
m∑

i=1

fiλi +

∫ +∞

−∞
1[a,b](x) exp

(
−λ0 −

m∑
i=1

λigi(x)

)
dx,

[a, b] denoting the support of the pdf of random variableX. The pdf expression is then given by

fX(x) = 1[a,b](x) exp

(
−λ0 −

m∑
i=1

λigi(x)

)
. (12)

In the next paragraph, we will construct pdf for different sets of available information (Ud-
wadia, 1989; Wragg and Dowson, 1970; Dowson and Wragg, 1973). Thus, closed-form results
for the pdf ofh(t), at a fixedt, for these situations will be provided.

3.2 Probability density function for the random wear coefficient

We now consider four situations for the fluctuation of wear coefficient that commonly occur
in practice: (i)κ is known to lie between0 andb, where we assume that0 < b < +∞; (ii) κ is
known to lie between0 andb, 0 < b < +∞, and its mean is know to bem1; (iii) κ is known to
be positive and its mean is know to bem1; (iv) κ is known to be positive, its mean ism1, and
its variance is known to beσ2, that is, its finite second momentm2 is known.

Case (i). The wear coefficientκ is known to lie in the finite range0 to b. Using (12) we find
that the maximally unpresumptive density ofκ is simply a constant. Noting that the area
under de density curve is unity we have

fκ(x) = 1(0,b)(x)
1

b
, (13)

that is,κ is uniform between0 andb. From Example2.1the pdf ofh(t) is

fh(q; t) =


1

bpΥ(t)
, if h0 < q < h0 + bpΥ(t),

0, otherwise,

that is,h(t) ∼ U [h0, h0 + bpΥ(t)].
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Case (ii). The wear coefficientκ is known to lie in the finite range0 to b and its mean ism1.
That is, the available information is:

supp(fκ) = (0, b) and m1 = E[κ].

If we use (12) with m = 1, the density function ofκ becomes

fκ(x) =

{
λ0 exp (λ1x), if 0 < x < b,
0, otherwise,

whereλ0 is a positive constant. From (11), using the relations∫ b

0

fκ(x)dx = 1 and
∫ b

0

xfκ(x)dx = m1, (14)

we obtain

λ0 =
λ1

exp (λ1b)− 1
and m1 =

b

1− exp (−λ1b)
− 1

λ1

. (15)

From (15) it is possible to show that

lim
λ1→−∞

m1(λ1) = 0, lim
λ1→+∞

m1(λ1) = b, lim
λ1→0

m1(λ1) =
b

2
, and

m
′
1(λ1) > 0 for all λ1, that is,m1 seen as a function ofλ1 is a monotonically increasing

function. Figure1 illustratesm1 as a function ofλ1 for b = 2 andb = 5.

(a) (b)

Figure 1: Illustration of functionm1(λ1), b = 2 (a) andb = 5 (b).

From relation (15) and the above limits we see that whenm1 → b/2, λ1 → 0 and
λ0 → 1/b. Thus we obtain a uniform distribution identical to that given by (13). Also,
for m1 → 0+ we haveλ1 → −∞, and form1 → b− we haveλ1 → +∞ (in both cases
the density tends toward delta distributions). For other values ofm1, the corresponding
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values ofλ1 can be found by inverting (numerically)m1 in (15). In this case, we arrives
at the following density function forκ:

fκ(x) =


λ1 exp (λ1x)

exp (λ1x)− 1
, if 0 < x < b,

0, otherwise.
(16)

We observe that form1 < b/2 the value ofλ1 is always negative and the resulting prob-
ability density above is a truncated exponential distribution. From (3) and (16) the pdf of
h(t) is given by

fh(q; t) =


λ1

pΥ(t)

[
1− exp

(
−λ1

q − h0

pΥ(t)

)] , if h0 < q < h0 + bpΥ(t),

0, otherwise.

Case (iii). The wear coefficientκ is known to be positive and its mean is know to bem1. That
is, the available information is:

supp(fκ) = (0, +∞) and m1 = E[κ].

Using (12) with m = 1, the density ofκ becomes

fκ(x) =

{
λ0 exp (λ1x), if 0 < x < +∞,
0, otherwise,

whereλ0 is a positive constant. As in (14) with b = +∞ we obtainλ0 = −λ1 and
m1 = λ0/λ

2
1, that is,λ0 = 1/m1 andλ1 = −1/m1. Thus,κ is exponentially distributed

with density function given by

fκ(x) = 1(0,+∞)(x)
1

m1

exp

(
− x

m1

)
.

Since, in this case,κ ∼ G[1, m1] (see Example2.2) it follows from (7) that the density of
h(t) is given by

fh(q; t) = 1(h0,+∞)
1

m1pΥ(t)
exp

(
− q − h0

m1pΥ(t)

)
,

that is,h(t) ∼ h0 +G[1, m1pΥ(t)]. Moreover, it follows directly thatE[h(t)] = m1pΥ(t)
and Var[h(t)] = (m1pΥ(t))2.

Case (iv). The wear coefficientκ is known to be positive, its mean ism1, and its finite variance
is known to beσ2. That is, the available information is:

supp(fκ) = (0, +∞), m1 = E[κ], and m2 = σ2 + m2
1 < +∞.

According to (12), with m = 2, the pdf ofκ can be presented as

fκ(x) = 1(0,+∞)(x) λ0 exp
(
−(λ1x + λ2)

2
)
.
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The multipliersλ0, λ1 andλ2 must satisfy the following conditions (λ1 > 0):

1 = λ0

∫ +∞

0

exp
(
−(λ1x + λ2)

2
)

dx,

m1 = λ0

∫ +∞

0

x exp
(
−(λ1x + λ2)

2
)

dx, and

σ2 + m2
1 = λ0

∫ +∞

0

x2 exp
(
−(λ1x + λ2)

2
)

dx.

Or, after algebraic manipulations,

λ0 =
2λ1√

π erfc (λ2)
,

m1 =
exp (−λ2

2)

λ1

√
π erfc (λ2)

− λ2

λ1

, and (17)

σ2 + m2
1 =

1

2λ2
1

+
λ2

2

λ2
1

− λ2

λ2
1

exp (−λ2
2)

λ1

√
π erfc (λ2)

=
1

2λ2
1

− λ2

λ1

m1. (18)

From (18) it follows

λ1m1 =
−λ2 ±

√
λ2

2 + 2(γ2 + 1)

2(γ2 + 1)
.

whereγ = σ/m1 is the coefficient of variation.

Sinceλ1 > 0, and using (17), we can write

exp (−λ2
2)√

π erfc (λ2)
− λ2 = λ1m1 =

−λ2 +
√

λ2
2 + 2(γ2 + 1)

2(γ2 + 1)
.

Denoting∆(λ2) = exp (−λ2
2)/(

√
π erfc (λ2)) we can expressγ as

γ(λ2) =
1√

2 [∆(λ2)− λ2]

[
1− 2 (∆(λ2)− λ2) λ2 − 2 (∆(λ2)− λ2)

2]1/2
.

Figure2 illustratesγ as a function ofλ2. Also, it is important to note that

lim
λ2→+∞

∆(λ2)

λ2

= 1, lim
λ2→−∞

∆(λ2) = 0, ∆(λ2) is monotonically increasing,

lim
λ2→−∞

γ(λ2) = 0, and lim
λ2→+∞

γ(λ2) = 1.

Thus, sinceγ(−7.07) ' 0.1, γ(−3.54) ' 0.2, ∆(−7.07) ' 5.52×10−23, and∆(−3.54) '
1.01× 10−6, we can rewrite (17) and (18), for γ < 0.2, as

m1 ' −
λ2

λ1

and σ2 + m2
1 =

1

2λ2
1

− λ2

λ1

m1,

that is,

λ1 '
1√
2σ

and λ2 ' −
m1√
2σ

.

F. DORINI, R. SAMPAIO3306

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 2: Illustration ofγ as a function ofλ2.

Thus, we find that forγ < 0.2 the resulting pdf is given (well-approximated) by the
truncated Gaussian distribution

fκ(x) = 1(0,+∞)(x)
2

√
2πσ erfc

(
− 1√

2 γ

) exp

(
−(x−m1)

2

2σ2

)
. (19)

From (3) and (19) the pdf ofh(t), in this case, is

fh(q; t) = 1(h0,+∞)(x)
2

√
2πσpΥ(t) erfc

(
− 1√

2 γ

) exp

(
− [q − h0 −m1pΥ(t)]2

2(σpΥ(t))2

)
.

4 CONCLUSIONS

This paper constructed, using the MEP, several pdf of the wear coefficientκ for different
sets of information. Then the pdf of the wear at a time t,h(t), is explicitly derived. Consid-
ering the wear a second-order process, the probabilistic characterization of it is also explicitly
constructed.
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