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Abstract. The most used model for predicting wear is the linear wear law proposed by Archard. A
common generalization of Archard’'s wear law is based on the assumption that the wear rate at any
point on the contact surface is proportional to the local contact pressure and the relative sliding velocity.
This work focuses on a stochastic modeling of the wear process to take into account the experimental
uncertainties in the identification process of the contact-state dependent wear coefficient. The description
of the dispersion of the wear coefficient is described by a probability density function, which is performed
using the Maximum Entropy Principle using only the information available. Closed-form results for four
situations that commonly occur in practice are provided.
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1 INTRODUCTION

In mechanical system modeling, uncertainties are present and, to improve the predicability
of the models, they should be taken into account. This work discusses uncertainties present in
the linear wear law proposed by Archawr¢hard 1953, the most used model for predicting
wear. The Archard’s wear law is based on the assumption that the wear rate at any point on the
contact surface is proportional to the local contact pregsarel the relative sliding velocity
according to the initial value problem (IVP)

dhw) =pvr. te 1),

h(0) = ho, (1)

wherehy is the initial average height, T is the total time, ands the contact-state dependent
wear coefficient.

In this work we focus on a stochastic modeling of the wear process to take into account the
experimental uncertainties in the identification process of the wear coefficient. In view of this,
the wear coefficient in IVP (1) is treated as a random variable that cannot take negative values.
Moreover, the local contact pressure is constant and the relative sliding velocity is considered a
time-dependent function along the wear process.

IVP (1) with uncertainty on the wear coefficient has been treated recenyilmda Silva Jr
and Pintaud€2008. Two cases of uncertainty were studied: random variable or time-dependent
stochastic process. In the former, the wear coefficient is modeled as a uniform random variable,
while in the latter it is modeled employing a truncated Karhunen-Loeve expansion, considering
the orthonormal random coefficients as uniform, independently and identically distributed ran-
dom variables (in our point of view it is difficult to infer what kind of process the wear is in this
case). Expectation and covariance functions of the worn height process are obtained.

An approach to deal with IVPL] is to solve numerically appropriate equations for represen-
tative sets of realizations of random variables and to average computed functions. This approach
is the so-called Monte Carlo method (see, for exanfahman 1996 which has the advantage
of applying to a very broad range of both linear and nonlinear problems. The large volume of
calculation, the errors in solving the deterministic equations, and the difficulty for generalizing
the results may limit the significance of this approach.

The organization of this article is as follows: Sectbpresents the probability density func-
tion (pdf) and the joint (two-point) pdf of the wear height stochastic process from the knowledge
of the wear coefficient pdf. After, in Sectid®) the wear coefficient is considered as uncertain
and an approximation of its pdf is deduced from the Maximum Entropy Principle (MEP) using
only the a priori information available. Closed-form results for the pdi(@j, at a fixedt, for
four situations that commonly occur in practice are provided. Finally, some conclusions are
made in4.

2 PROBABILITY DENSITY FUNCTION OF THE RANDOM HEIGHT

In this section the pdf and the joint (two-point) pdf of the wear height process are obtained
from the knowledge of the wear coefficient pdf(q). These results will be useful in the next
section.

Note that for each realization(w), of the wear coefficient (see, for exampidpeden and
Platen 1999 Papoulis 1984 for more details on probability spaces and stochastic processes),
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(1) becomes a deterministic IVP whose solutigi, w) can be expressed as

t
h(t,w) = hg +p/{(w)/ v(r)dr, tel0,T).
0
Thus, the solution of IVP1) can be written as
h(t) = ho+prT(t), tel0,T), 2)

where

By (2), the cumulative probability function @f(t), t > 0, is
Fi(q;t) = P(h(t) < q) = P (ho + prT(t) < q) =
q— ho) (q = ho)
=P(r < = F. ,
( ~ pY() pY(t)

whereP denotes the probability measure.
Taking the derivative of’,(q; t) above with respect tg we obtain the following result:

Proposition 2.1. The density function at a fixedf;,(q; t), is given by

N 1 q— ho

tast) = s e (L) ©

Corollary 2.1. Then-th momentE|[(h(t))"], n € Z, n > 1, of the solution ofY) is given by
e = 3 () o) e 1 @

j=0
In particular, the mean and the variance are given by

E[(h(t))] = pY(t) E[x] + ho and (5)
Var[(h(t))] = (pY(t))* Var[x], (6)

respectively.

Proof. By (3), it follows that

= [ bt di= s [ g () do-

+o00
:/_ (PT(t) T+ ho)" fr () d7 = B[(pY(E) & + ho)"] =

o0

- [i (?) (P (1) k) hg—j] y (7;) (P (1)) El’] by~

J=0
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From () and @), the coefficient of variation of(¢) can be presented ak,(> 0)

_ pY(t) (Var[w))'? _ (Var[s])'/?
’7[(]1( ))] = pT(t) E[fi] + ho < E[/{] = Tk

where~, is the coefficient of variation of.
In order to illustrate expressioB)we present next three examples in whicis a positive
real-valued random variable.

Example 2.1.Let x be a random variable uniformly distributed[in b], k ~ Ula, b], a > 0. Its

density function is
—1 if a<g<bd
) a f— f— b
fﬁ(Q> = { b—a ¢

0, otherwise
From @) it follows that

1
— v, It apT(t) + ho < g < bpY(t) + ho,
fulgit) =<{ pY@O)0—a) PY(t) +ho < q < bpY (1) + ho
0, otherwise

thatis,h(t) ~ Ulho + apY(t), ho + bpY(t)].

Example 2.2. Let k ~ G|«, 5] be a gamma random variable with parameteend 3, o > 0,
G > 0. Its density function is

a—1

wherely(z) = 1,if 2 € Aandly(z) = 0, if z € A; I' is the Gamma function defined for
a>0as

I(a) = /O " e exp (—2) da.

From @) the pdf of(t) is

(q—ho)*! ( q — ho )
i) = 1(ng 400 exp | — , 7
P t) =owre Fay e P\ ar() )
thatis,h(t) ~ ho + G, BpY(¢)]. SinceE[x] = af and Vafk] = a2, it follows directly that
E[h(t)] = afpY(t) and Vath(t)] = a(BpY(t))*. The exponential distribution case is obtained
by doinga = 1 in the above calculations.

Example 2.3. Now let x be a log-normal random variable, = exp (x), x ~ N|u,o?]. Its
density function is given by

_ 1 (In(g) = w)?
$olo) = —— e | )
Again, from @) it follows that
oL [ (n(g—ho) —In(pY(t) = p)?
It = 2mpY () { 20° }
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2.1 Joint pdf of the random height

Let h(t;) and h(ty) be the random solutions of), ¢;,t2 > 0. As known, second-order
properties of a random process can give significant information about the process such as the
correlation ofh(t,) andh(t,), that demands the joint density functiofy{qi, ¢2; t1, t2), of these
random variables. The joint cumulative function/dt,) andh(t,) is given by

Fi(q1, qo;t1,t2) = P(h(t1) < qu, h(ts) < qo) =
= P(ho +pY(t1) & < q1, ho +pY(t2) k < q2) =

-7 (xSt v < ) -
_p ( < min { S }) — Fe(9(pla).0(@)),  (8)

wherep(q1) = (g1 — ho)/pY(t1), 6(g2) = (g2 — ho)/pY (t2), andy(p, #) = min{p, 0}.
We can write thep - function as

¢(p,0) =min{p,0} = p— (p—0) H(p —0),

where H is the Heaviside functionZ@uderer 1983. Also, sinceH’(a) = (), the Dirac
distribution, the derivatives af, in the sense of distributionZéuderer1983, are

g—i —1- H(p—6) and ?;90 H(p—0).
Moreover,
a(z) gp —5(p—0) and g—ig—g —(1—H(p—6)) H(p— ) = 0.
Now we use these expressions to obtain the second-order mixed derivative derivagine of (
o Filan, . t2) = £ (o(plan) 00aa)) ) 520000 O0ae)) '),
and
8qf€)q1 Fulqu, qasta, t2) = fu (p(p(q1),0(qz)) ) aag—g(P(%)a 0(q2)) p'(q1) 0'(q2)+
Fo (ololan) 8(02)) 5.5 a0, Bae)) ') 0(a) =
= fu (@(p(ar),0(a2)) ) P'(q1) 0'(a2) 6(p(q1) — O(q2)) =
=[x (p(a1)) P'(@1) 0'(q2) 5(p(ar) — B(q2)),

since f.(min{p, 0})d(p — 0) = fu(p)d(p — 0) = f(0)d(p — 0) (Zauderer1983.
With these arguments we have proved the result that follows:

Proposition 2.2. Let h(t;) and h(t2) be the solutions ofli, ¢;,%, > 0. Then, the joint density
function of these random variables is given by

0? 1
90, 00, Fi(qu, qasta, t2) = mﬂ (p(qr)) 6(p(q1) — 0(q2)), (9)

wherep(g:) = (g1 — ho)/pY (t1) andd(g2) = (g2 — ho) /PY (t2)-

fular, gosta, t2) =
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Corollary 2.2. Leth(t;) and h(t,) be the solutions ofl), ¢;,t, > 0. Then, the covariance,
Covy(ty,to), of these random variables is given by

Covy(ty, ta) = p*Y(t1) Y (t2) Var[x). (10)

Proof. Observe that
E[h(t1)h(t2)] = //RQ 0142 fu(ar, a3 t1, t2) dudgs =
= e [ L b 0la) S(ota) 0(a2)) dind
= / /R [o(q1)pY (t1) + ho] [0(q2)pY (£2) + ho] fulp(ar)) 5(p(q1) — 0(gn)) dp(q1)db(qz) =

- / 0(a)p (1) + ho) [0(@2)p Y (t2) + hol £.(6(q2)) dO(gs) =
= PY(0)T (1) ElR?] + p(X(tr) + T(t2))ho Eli] + A
Thus,

h(t2)] — E[h(t1)|E[h(t2)] =

= p*Y(t1) Y (t2) E[&?] + p(Y(t1) + Y(t2))ho E[K] + hi—
| + 1) (pY (t2)E[K] + ho) =

(t2) (E[/@Q] — E[/@]Q) = p*Y(t1)Y(t2) Var[x].

= ™
B

]

In order to illustrate expressiol)(we present next the joint (two-point) pdf bft) whenx
has a gamma distribution (as in Examglé):

BpY(t)
wherep(qi) = (q1 — ho) /pY (t1) andd(qa) = (g2 — ho)/pY (t2).
It is important to observe that expressiodsdnd (L0) could be calculated directly fron2),
but density functions3) and Q) give a more general statistical understanding of the solution
process.

3 PROBABILITY DENSITY OF WEAR GIVEN INFORMATION ABOUT ITS DIS-
TRIBUTION.

In this section, the wear coefficient is considered as uncertain and an approximation of its
pdf is deduced from the MEP using only the a priori information available. The construction of
the wear pdf is briefly summarized below.

3.1 Maximum Entropy Principle

Considering a real-valued random varialeassociated with the pdfix (z), one can define

the entropy by
+oo

S(X) = - fx(x) log (fx(x)) du.
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The Maximum Entropy Principle (selaynes1957gb; Kapur and Kesavarl992 Soize
2001, Chevalier et al.2005 Udwadig 1989 for applications) is a tool that allows the pdf
to be constructed by searching the maximumsS¢X ) under the constraint of the available
information. It gives a pdf that maximizes the uncertainty and is compatible with the known
information, that is it does not violate physical principles. Example of informations are, the
support of the pdf, the mean value, the standard deviation or higher moments. A Lagrange
multiplier \; will be associated to each constraint defined by the available information. These
constraints are written in the form:

“+oo

B0 = [ a@fcle)ds = fi i=120m, (11)

—0o0

whereg;(.X) are given functions. For instancegi{z) = x, f; is the mean value oX . It can be
shown that the multipliers; are obtained by minimizing the strictly convex functihdefined

by

+o0
H(Xo, My ooy Amn) _)\O+Zfz)\ —i—/ 1y () exp( )\O—Z)\ZgZ )

[a, b] denoting the support of the pdf of random varialile The pdf expression is then given by

fX( )_1[ab( exp( AO_Z)\ZQZ ) (12)

In the next paragraph, we will construct pdf for dlfferent sets of available informaitidn (
wadig 1989 Wragg and Dowsoril97Q Dowson and Wraggl973. Thus, closed-form results
for the pdf ofh(t), at a fixedt, for these situations will be provided.

3.2 Probability density function for the random wear coefficient

We now consider four situations for the fluctuation of wear coefficient that commonly occur
in practice: (i)« is known to lie betweefi andb, where we assume that< b < +oo; (ii) x is
known to lie betwee® andb, 0 < b < +oo, and its mean is know to be; (iii) ~ is known to
be positive and its mean is know to be; (iv)  is known to be positive, its meanis;, and
its variance is known to be?, that is, its finite second moment, is known.

Case (i). The wear coefficientis known to lie in the finite range to b. Using (L2) we find
that the maximally unpresumptive densityrofs simply a constant. Noting that the area
under de density curve is unity we have

o) = Loy (@) 3. (13

that is,« is uniform betweer andb. From Example.1the pdf ofh(¢) is

1 :
fh(q t) _ pr(t)’ if ho <qg< h(] + pr(t),

0, otherwise

that is,h(t) ~ Ulho, ho + bpT(t)].
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Case (ii). The wear coefficientis known to lie in the finite range to b and its mean isn;.
That is, the available information is:
supp(f.) = (0,b) and m; = E[x].
If we use (2) with m = 1, the density function ok becomes

| Xoexp(Mz), if 0<x<b,
Tul) = { 0, otherwise

where)\ is a positive constant. From.1), using the relations

b b
/ fe(x)dr =1 and / xfe(x)dr = my, (14)
0 0
we obtain
B A B b 1
)\0 = —exp (Alb) ] and mp = 1~ exp (—Alb) " . (15)

From (L5) it is possible to show that

b
lim m1<>\1) =0, lim ml()\l) = b, hmo m1<>\1) = 5, and

Al——00 A1 ——400 A1—

my(\) > 0 for all \;, that is,m, seen as a function of, is a monotonically increasing
function. Figurel illustratesm, as a function of\, for b = 2 andb = 5.

(@) (b)

Figure 1: lllustration of functionn, (A1), b = 2 (a) andb = 5 (b).

From relation {5) and the above limits we see that when — b/2, \; — 0 and
Ao — 1/b. Thus we obtain a uniform distribution identical to that given bg)( Also,
for m; — 0" we have\;, — —oo, and form; — b~ we have\;, — +oco (in both cases
the density tends toward delta distributions). For other valuesptthe corresponding
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values of)\; can be found by inverting (numerically), in (15). In this case, we arrives
at the following density function fox:

A1 exp (A1)

fel@) =4 exp(M\z) — 1’
0, otherwise

if 0<ax<b, (16)

We observe that fom, < b/2 the value of); is always negative and the resulting prob-
ability density above is a truncated exponential distribution. Frénaiid (L6) the pdf of
h(t) is given by

A1

fulg;t) = § pY(t) {1 — %P (‘Alig—gﬂ |

if ho <q<ho+bpY(t),

0, otherwise

Case (iii). The wear coefficientis known to be positive and its mean is know torhe That
is, the available information is:

supp(f.) = (0,400) and m; = Elx].

Using @2) with m = 1, the density ok becomes

~f Xoexp(Mz), if 0<x< 400,
Jul) = { 0, otherwise

where )\, is a positive constant. As inlf) with b = +oco we obtain\y = —\; and
my = Ao/}, thatis,\g = 1/m; and)\; = —1/m;. Thus,x is exponentially distributed
with density function given by

() = Tio.t) = exp (—i).

my
Since, in this case; ~ G[1,m4] (see Exampl@.2) it follows from (7) that the density of
h(t) is given by

1 q—ho >
1) = Lingt00) — < €Xp | ———= = |,
In(g:t) (ho.+ )mlpT(t) p( map Y (t)

thatis,h(t) ~ ho+G[1, mpY(t)]. Moreover, it follows directly thakE[h(t)] = mipY(t)
and Vafh(t)] = (mipY(t))>.

Case (iv). The wear coefficientis known to be positive, its meansis,, and its finite variance
is known to ber?. That is, the available information is:

supp(fx) = (0,+00), my =E[x], and my = o +m? < +o0.

According to (2), with m = 2, the pdf ofx can be presented as
fo(@) = Lo 400) () Ao exp (—(Nz 4+ X2)?).
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The multipliers)y, A; and\, must satisfy the following conditions\( > 0):
“+oo
1= )\0/ exp (—(Mz + A2)?) du,

0

+oo
my = )\0/ T exp (—()\196 + )\2)2) drx, and

0

+o0
o’ +mj = )\0/ 2 exp (—(Mz + X2)?) dx.
0

Or, after algebraic manipulations,

2\
N = — 2L

Vmerfe (\g)’
exp (—=A3) A2
my = - N
My/merfe(Ag) A
1 )\% )\2 exp (—/\g> . 1 )\2

2y m2o 222 L, 18
N T N TN T N rerfe () 28 N (18)

and (17)

From (L8) it follows

o+ /A +2(12+ 1)
2(y*+1)
wherey = o/m; is the coefficient of variation.

Aimy =

Since); > 0, and using 17), we can write

—)\2
eXp( 2) o >\2 — Alml —

Verfe (\y)

DenotingA(\s) = exp (—A3)/(y/Terfc (\2)) we can express as

Ao+ VA +2(12+ 1)
2(v2 +1) '

1
1) = A = M

1/2

[1—=2(AMN) = X2) Ao —2(A(N2) — )‘2)2}

Figure2 illustratesy as a function of\,. Also, it is important to note that

A : : : :
lim A =1, lim A(X) =0, A()\2)is monotonically increasing
Ag——+00 )\2 Ag——00
AQILH_lOO v(A2) =0, and /\QILIEOOV()\Q) =1

Thus, sincey(—7.07) >~ 0.1, y(—3.54) ~ 0.2, A(—7.07) ~ 5.52x 1023, andA(—3.54) ~
1.01 x 107%, we can rewrite17) and (L8), for v < 0.2, as

/\2 1 )\2
~—= and o*+mi=-—5 - =
my N o+ m] 2)\% X my,
that is, .
my
AM~— and Ay~ — )
! 20 2 \/50
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-40 -30 -20 -10 u] 10

Ay

Figure 2: lllustration ofy as a function of\,.

Thus, we find that fory < 0.2 the resulting pdf is given (well-approximated) by the
truncated Gaussian distribution

fu() = 1(0,400) ()

2 (‘75_—7”1)2) (19)

exp | —
1 ( 202
v 2mo erfe (— —)

V275

From 3) and (L9) the pdf ofh(¢), in this case, is
2
V27mopY (t) erfe (

Fu(@8) = Ling o) (2) [g — ho — mapY (1)) >

__> P (‘ 2(0pT (1))
V2

4 CONCLUSIONS

This paper constructed, using the MEP, several pdf of the wear coefficitmtdifferent
sets of information. Then the pdf of the wear at a tim&(t,), is explicitly derived. Consid-
ering the wear a second-order process, the probabilistic characterization of it is also explicitly
constructed.
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