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Abstract. The design of anisotropic laminated composite structures is very susceptible to changes in 

loading, angle of fiber orientation and ply thickness. Thus, optimization of such structures, using a 

reliability index as a constraint, is an important problem to be dealt. This paper addresses the problem 

of structural optimization of laminated composite materials with reliability constraint using a genetic 

algorithm and two types of neural networks. The reliability analysis is performed using one of the 

following methods: FORM, modified FORM (FORM with multiple checkpoints), the Standard or 

Direct Monte Carlo and Monte Carlo with Importance Sampling. The optimization process is 

performed using a genetic algorithm. To overcome high computational cost it is used Multilayer 

Perceptron or Radial Basis Artificial Neural Networks. It is shown, presenting two examples, that this 

methodology can be used without loss of accuracy and large computational timesavings, even when 

dealing with structures having geometrically non-linear behavior. 

Mecánica Computacional Vol XXX, págs. 3309-3329 (artículo completo)
Oscar Möller, Javier W. Signorelli, Mario A. Storti (Eds.)

Rosario, Argentina, 1-4 Noviembre 2011

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

mailto:herbert@mecanica.ufrgs.br
http://www.mecanica.ufrgs.br/promec/
mailto:amawruch@ufrgs.br
http://www.cpgec.ufrgs.br/
mailto:paulo_andreml@yahoo.com.br
http://www.dmc.furg.br/


 

1 INTRODUCTION 

In the optimization of laminated composite structures, the design variables related to the 

optimal configurations may be the ply number, fiber orientation angles, thickness of each 

layer, number of materials and the sequence of lamination. The result of the optimization 

procedure consists of systems with anisotropic mechanical behavior that are also highly 

sensitive to the direction of applied loads. Any change in the applied load direction, fiber 

orientation or thickness of the layers may affect the stress state, leading to a reduction in the 

structural performance or in the reliability index. Thus, design of structures with anisotropic 

laminated composite materials should take into account such uncertainties in loads and 

material properties. Consequently, reliability of such optimized designs becomes especially 

important in the field of laminated composite structures (Miki et al., 1980). This subject is 

not new and a critical appraisal and survey related to methodologies for reliability evaluation 

of fiber reinforced composite materials can be found in Shaw et al. (2010) 

The main objective of this paper is to present a new methodology to determine the optimal 

configuration of laminated composite structures with reliability constraints. The main 

structural behavior aspects were modeled by finite elements using well-known meso-scale 

models based on elasticity theory and failure of composite materials simulated by the Tsai-

Wu criterion. 

The optimization process is performed using a genetic algorithm (GA). Genetic algorithms 

are optimization tools based on the concepts of natural selection and survival of the fittest 

individual with respect to some criterion. The design of the optimal sequence of layers in 

laminated composite materials (with their respective thickness and fiber orientation angles) is 

a minimization problem and due to its  characteristics, genetic algorithms are more 

convenient than gradient methods, which often converge to solutions that represent local 

minima (Goldberg, 1989). Moreover, in commercial projects of this type of structure, fiber 

orientation angles, number and thickness of layers are discrete variables, a fact that 

encourages the use of genetic algorithms, because this tool is suitable for computational 

problems involving discrete variables and combinatorial optimization. 

In this paper the reliability analysis is carried out using one of the following methods: First 

Order Reliability Method (FORM), modified FORM with multiple check points (FORM-

MCP), Standard or Direct Monte Carlo (MC) and Monte Carlo with Importance Sampling 

(MCIS). These methods and concepts related to structural reliability are widely covered in 

texts such as Ang and Tang (1984), Haldar & Mahadevan (1999), Melchers (1999), among 

others, as well as a large number of articles published in several International Journals. The 

Tsai-Wu criterion is adopted as the limit state function used to evaluate the reliability index 

(Daniel & Ishai, 1994; Jones, 1999; Gurdal et al., 1999).  

The finite element analysis (FEA) was performed using the Discrete Kirchhoff Triangular 

element (DKT) for thin plates (Bathe & Batoz, 1980), coupled with the Constant Strain 

Triangular element (CST). The element was adapted to analyze laminated composite 

structures, following the classical theory of laminates (Jones, 1999, Daniel & Ishai, 1994). 

In order to reduce the computational cost in the reliability-based optimization of laminated 

composite structures, two artificial neural networks were used: Multilayer Perceptron Neural 

Network (MPNN) and Radial Basis Neural Network (RBNN) (Haykin, 1994 and Gomes, 

2004). 

The main contribution of this paper relies on the computational improvements obtained 

when optimizing large structures with reliability constraints. The combination of a global 

optimizer for discrete/continuous variables associated to an approximated structural re-
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analysis may render unfeasible/unworthy problems to become tractable. 

2 COMPOSITE MATERIALS FAILURE CRITERION AND RELIABILITY 

ANALYSIS 

The evaluation of principal stress components is sufficient to indicate the failure in cases 

where isotropic materials are used. The failure can be assessed by traditional theories of 

failure analysis, such as maximum stress, maximum strain, Tresca, von Mises, among others. 

Regardless of the directions of principal stresses, their magnitudes are compared with 

experimental strength values in order to verify the occurrence of failure. The main difference 

between isotropic materials and laminated composite materials is the directional dependence 

of the strengths, which occurs in the latter case, where failure takes place in the direction of 

the fibers or the polymeric matrix. There are several failure criteria for composite laminates 

reinforced by fibers, such as maximum strain, Tsai-Hill, Hoffman and Tsai-Wu (Kaw, 2006). 

Among these methods, Tsai-Wu criterion is the most widely used by several authors because 

it represents quite well the actual behavior of this type of structure. This criterion takes into 

account the interactions between different stress components. The two coordinate systems 

used here are shown in Figure 1, where 1 and 2 represent the axes of reference and  is the 

angle between the axes x and 1 and between axes y and 2. Since the stress components in the 

direction of the reference axes (1-2) are rotated to the principal axes of the material (x-y), the 

Tsai-Wu criterion for plane stress state can be evaluated using the following equation: 

 

 
2 2 2 2 1x x y y xx x yy y ss xy xy x yF S F S F S F S F S F S S     

  
 (1) 

 

where 1/xx x xF R R , 1/ 1/x x xF R R  , 1/yy y yF R R , 1/ 1/y y yF R R  , 21/ss sF R  and 

*

xy xy xx yyF F F F . 

The factor 
*

xyF  is taken as being equal to -1/2. This value is only valid for a von Mises-

Hencky stress criterion basis. The subscripts x and y indicates, fiber orientations, while s 

means shear. The symbols with apostrophe indicate compression strengths, whereas symbols 

without apostrophe indicate tensile strengths. xR   is the ultimate longitudinal tensile strength, 

xR   is the ultimate longitudinal compressive strength, 
yR  is the ultimate transverse tensile 

strength, yR  is the ultimate transverse compressive strength and sR   is the in-plane shear 

strength. Sx, Sx and Sxy are stress components referred to the system (x-y). 

Assuming an elastic material behavior, a Tsai-Wu factor , which multiplies all stress 

tensor components, can be evaluated concerning the safety margin of the stress state. This is 

indicated by Daniel and Ishai (1994) by solving the following equation for : 

  

  
2 2 2 2( 2 ) ( ) 1 0xx x yy y ss xy xy x y x x y yF S F S F S F S S F S F S           (2) 
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Figure 1: Coordinate system for unidirectional composite materials 

A mathematical expression for unidirectional composite failure is written as follows: 

 

                      1 2( ) ( , ,..., ) 0ng g x x x X                                             (3) 

 

where ( )g X represents the safety margin and  X  is the n-dimensional vector of random 

variables ( , 1,2,...,ix i n  ) that affects the material strength or structural behavior. ( ) 0g X   

means failure and ( ) 0g X   means that the material is in the safety domain. Sometimes, 

function ( )g X  is referred as the Limit State Function (LSF). Generally speaking, the failure 

probability can be evaluated using the joint probability density function 1 2( , ,..., )X nf x x x  by 

the following expression: 

                                                                               

1 2 1 2( , ,..., ) ...f X n n
D

P f x x x dx dx dx        (4) 

 

where D means the failure domain ( where ( ) 0g X ).) 

Consider a thin plate of composite material subjected to a plane stress state, as indicated 

by Figure 1, where the random variables X   are the stress components 1S , 2S  and 6S the 

experimental material strengths along fiber and transversal directions xR , xR ,
yR ,

yR , sR  and 

fiber orientation angles . Rotating these stress components to the fiber direction and 

distributing to the other layers of the composite accordingly to ply ratios, one may obtain the 

stress state acting on a lamina ( , ,x y xyS S S ). So, in this case, for instance, one may assume  

1 2 6( , , , , , , , , )x x y x sS S S R R R R R  X  as the vector of random variables. It should be noticed 

that the random stress components 1 2 6, ,S S S   generate random stress components on the fiber 

and transversal directions, which requires a structural analysis to be evaluated.  

Substituting equation (1) into (3), the limit state function ( )g X , at a particular point in the 

composite material, becomes:  

                 

       2 2 2( ) 1 2x x y y xx x yy y ss xy xy x yg F S F S F S F S F S F S S      X
 

          (5) 

 

It should be emphasized that this equation should be verified at the top, middle and bottom 

of each layer belonging to the composite material. The integration of equation (4) becomes 

hard if equation (5) is used as the limit state function, since the problem deals with several 

random variables and the stress state is a function of geometrical dimensions and external 
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loads as well. Besides, function ( )Xf X  is not known a priori because usually there are not 

enough available statistical data. In this paper, using a finite element analysis, a limit state 

function is built based on the Tsai-Wu factors 
1 2( , ,...)T λ  evaluated at each element 

integration point and at each layer (at the top, middle and bottom), as expressed by the 

following equation: 

 

                                    ( ) ( ) 1g min X λ                                                       (6) 

 

This equation holds provided a first ply failure for the composite is assumed. Therefore, if 

the minimal Tsai-Wu factor at any point is less than a unit value, this will mean failure 

( ( ) 0g X  ), otherwise, not all the stress states in the composite provoke failures. It is true 

that a more realistic approach for the failure mode can be constructed using a stochastic 3D 

field related to the geometrical imperfections in the finite element mesh and materials 

strengths at each integration point (some relevant data can be found in Cryssanthopoulos and 

Poggi, 1995 and Sriramula and Cryssanthopoulos, 2009). The authors have some papers 

related to the modeling of stochastic fields on concrete structures (Gomes and Awruch, 2002, 

Gomes and Awruch, 2004 and Gomes and Awruch, 2005) where the spatial variability of such 

material properties and geometrical imperfections are important. In this paper an 

exponentially correlated stochastic filed for ply thickness was be considered in the last 

example since in this example buckling effects are important. The stochastic filed generation 

follows the methodology indicated in Gomes and Awruch (2005). 

 In order to determine the failure probability or the reliability index, Reliability 

analyses are preformed using standard methods such as the Direct Monte Carlo (MC), Monte 

Carlo with Importance Sampling (MCIS), First Order Reliability Method (FORM) and FORM 

with Multiple Check Points (FORM-MCP). Details about MC, MCIS and FORM can be 

found in Melchers (1999) and Ang et al.(1984). 

 FORM-MCP is a variant of the Multiple Check Points Importance Sampling method 

presented by Miki (1986). In this case, sample points are searched close to the boundary of 

the failure and safety regions. FORM method is used instead of Monte Carlo Simulations with 

Importance Sampling in order to evaluate multiple design points. The parameter used to 

distinguish among different design points is the same indicated by Miki (1986) and Shao et 

al. (1992): the angle between the vector of design variables for each new design point should 

be larger than a previously specified value    (in this paper,    must be larger than 10
-3

). The 

search is performed in random directions; the number of searches is a multiple of the number 

of random variables. Figure 2 shows the multiple checkpoints criterion in the standard non-

correlated space for three random directions and three limit state functions.  Hi(U) are the 

limit state functions obtained from g(X), which is the limit state function in the real space. In 

this case, U is the vector of random variables at the standard non-correlated space. Then, the i 

resulting values for failure probability (Pf 
i
) and the reliability index are given by Pf =  Pf 

i 

and,
1(1 )fP   respectively, where 

1(.)  is inverse of the cumulative standard 

probability function. Index i indicates the number of random directions. For the case of Figure 

2, i=1, 2, 3. More details can be found in Miki (1986). It is important to point out that in this 

work the failure of one layer represents the failure of the whole system, criterion which is 

known as first ply failure. 
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3  1,2  
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Figure 2: FORM with multiple check points in the standard non-correlated space. 

3 GENETIC ALGORITHM (GA) 

Genetic Algorithm (GA) is a computational search tool based on concepts of natural 

selection and survival of the fittest individual. One aspect of fundamental importance in the 

GA is the way the solutions are tracked. Instead of using derivatives or gradients, as in 

deterministic optimization algorithms, GA works with the objective function based on simple 

values of individuals. This feature makes the method suitable for problems involving 

discontinuous functions, and/or non-defined derivatives like in integer programming. 

Moreover, unlike deterministic optimization methods, which perform the search focusing on 

a single solution at a time, the GA works with a population of individuals in each generation. 

Thus, as several search points are maintained, the convergence or stagnation to local minima, 

if the starting point is poorly chosen, is prevented. All these aspects result in increased 

chances of finding the optimal solution or with other similar quality, even on problems that 

have hard search spaces with multiple local minimum (Goldberg, 1989).  

 The design of the optimal sequence of layers in laminated composite materials is a 

problem of global minimum. Due to the stochastic characteristics of Genetic Algorithms, they 

are more suitable than deterministic methods of optimization, which often converge to 

solutions representing a local minimum. Moreover, in commercial designs fiber orientation 

angles and the amount and thickness of layers are discrete variables, a fact that confirms the 

suitability of Genetic Algorithms for these kinds of problems. 

More details related to the use of the method for weight optimization of composite 

structures can be found in Almeida and Awruch (2009), Muc and Gurba, (2001) and Naik et 

al. (2008). 

 

4 ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks (ANN) may be characterized as computational models based 

on parallel distributed processing with particular properties such as the ability to learn, to 

generalize, to classify and to organize data. Several models have been developed for different 

specific computational tasks. These models may be divided into two groups: those with a 

supervised training and networks without a supervised training. In this paper, Multilayer 

Perceptron Neural Networks (MPNN) and Radial Basis Neural Networks (RBNN) are used. 

Both types of Networks have a supervised training, feed-forward architecture and they have 

been widely used as universal approximations for unknown functions of several variables 
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with several outputs. More details can be found in Gomes and Awruch (2004). 

4.1 Generation of sample data for artificial neural network training 

To generate the sample data for artificial neural network training it is first carried out a 

search on random directions (in the non-correlated standard space) for points near the limit 

state function such as ( ) 0H U , in the standard non-correlated space. Once such points are 

found, the mean values of the distribution functions of the design variables are shifted in 

order to obtain samples (using Standard or Direct Monte Carlo) near the neighborhood of the 

safety/failure domain. Another set of random samples centered on mean values of the random 

variables are added to the original sample set in order to give a better behavior to the fitted 

limit state function that are located far from the failure domain. This is especially important if 

a gradient-based method, like FORM, is used, but not so important when Monte Carlo based 

methods are used. Figure 3 shows schematically how this sample data are generated in the 

non-correlated standard Gaussian space for a limit state function of two random variables. In 

this paper, the number of random directions is three times the number of random variables. 

 
 

1u  

2u  

Random search 

directions 

Random samples 

 centered on 

mean 

 values 

Random samples 

centered on 

 H(U)=0 Failure Safety 

1( ) 0H U  

2( ) 0H U  3( ) 0H U  

4( ) 0H U  

5( ) 0H U  

 

Figure 3: Generation of sample data set for neural network training. 

5 NUMERICAL RESULTS 

5.1 Example 1 – Optimization of a laminated composite plate with reliability constraint 

This example deals with the minimization of the total thickness of a laminated composite 

plate with linear behavior. The total number of layers is N and the thickness of layer i is hi 

(i=1,2,...,N). In all cases studied in this section, the cost function is the total thickness of the 

plate ( th  ) and the constraint was the minimum reliability index required by the system 

( req ), which is a value defined by the user. The optimization problem takes the following 
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form: 
 

1

Find ( 1,2,..., )

such that     is a minimum

subjected to 

i

N

t i

i

req

h i N

h h

 









     (7) 

 

The fiber orientation angle of each ply of the laminated composite plate with four layers 

remains constant and according to the following distribution [0
0
,45

0
,45

0
,0

0
], as shown in 

Figure 4. 

 

hi 

ht 

0o 

0o 

45o 

45o 

 

Figure 4: Laminated composite plate with four layers. 

The material used here was Graphite / Epoxy (T300/5208). Table 1 presents the 

deterministic mechanical properties. 

 

Material E1 E2 E12 12  

T300/5208 Grafite/Epóxi 181 GPa 10.30 GPa 40 GPa 0.28 

 
 

Table 1: Deterministic mechanical properties. 

 

In this example nine random variables were considered, where four variables are the 

applied loads 1221 ,, NNN  and 1M , arranged as shown in Figure 5, and five variables are 

strengths 
C

y

T

y

C

x

T

x RRRR ,,,  and xyR , where indexes T  and C mean, respectively, tension and 

compression whereas Rxy is the shear strength. In Figure 5, (x, y) is the fiber orientation 

system and (1, 2) is the global system.  

 

N1 
M1 

N12 

N12 
N2 

1 

2 

x 
y 

Fiber orientation 

 

Figure 5: Loads acting on the laminated composite plate. 

The statistical properties of the random variables are listed in Table 2. Although some 

authors prefers the use of Weibull distributions for the statistical analysis, this example was 
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based on suggestions of Kan and Chang (1997), Frangopol and Recek (2003) and Murotsu et 

al.(1994) in order to allow comparisons. Indications for more accurate distribution type data 

can be found in Chrissantopoulos and Poggi (1995). 

In all simulations, it was adopted a constraint target reliability index of 3.0req  . The 

optimization was performed using a GA, which input data are listed in Table 3. The reliability 

index was calculated using Monte Carlo, Monte Carlo with Importance Sampling, FORM and 

modified FORM (FORM-MCP). 

 

No. Symbol Unit 
Mean  

Value 

Coeff. of 

 Variation 

 

Distribution  

type 

1 N1 KN/m 100.0 0.20 Lognormal 

2 N2 KN/m 200.0 0.20 Lognormal 

3 N12 KN/m 40.0 0.20 Lognormal 

4 M1 N.m/m 0.1 0.20 Lognormal 

5 
T

xR  MPa 1500.0 0.20 Lognormal 

6 
C

xR  MPa 1500.0 0.20 Lognormal 

7 
T

yR  MPa 40.0 0.20 Lognormal 

8 
C

yR  MPa 246.0 0.20 Lognormal 

9 xyR  MPa 68.0 0.20 Lognormal 

 
 

Table 2: Statistical properties of random variables. 

 

The limit state function considered here was the Tsai-Wu failure criterion and the stress 

state at the local axes of the laminated composite plate was carried out with two approaches: 

(a) using classical theory of composite plates using a closed form solution (Jones, 1999, 

Daniel & Ishai, 1994) and (b) using a finite element program (200 elements and 121 nodes), 

which uses the discrete Kirchhoff triangular element (DKT) (Bathe & Batoz, 1980), coupled 

with a constant stress triangular element (CST). The behavior of the element follows the 

classical theory of laminates (CTL) (Daniel & Ishai, 1994). 

 

Number of individuals in the population 30 

Maximum number of generations 30 

Crossover probability 100% 

Probability of mutation 1% 

Stopping criterion (stand. dev. of individuals of the population) 1.0x10
-5 

Number of design variables (thickness) 4  

Lower limit of the design variables (m) 0.5x10
-3 

Upper limit of design variables (m) 3.0x10
-3 

Number of bits of each design variable 16 

  
Table 3: Data input for the genetic algorithm program. 

 

Since the used GA is based on a binary codification, each design variable will present 

discrete values that depend on the number of bits used for the codification. The resolution for 
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each design variable can be calculated using the following expression (Goldberg, 1989): 

 

2 1n

U L
R




                                                              
(8) 

where n is the number of bits given to each design variable, while U and L are, respectively, 

upper and lower limits of the design variables. In this example the resolution for the 

minimization of the thickness is R=3.815x10
-5

 m. The search space, which corresponds to the 

number of thickness combinations, is (2
16

)
4
=1.84x10

19
 which is unworthy for exhaustive 

search. 

The cost function is the sum of the thickness of each ply and the penalty factor was set as 

10
5
. Equation (9) shows how the cost function, which depends on the reliability index of each 

individual, is evaluated. 

 
4

2 5

1

Minimize ( )[1 ( ) 10 ]i req

i

h  


      (9) 

 

where  , 1,4ih i   represents the thickness of each layer.  

Figures 6 to 9 show results for the optimal solution (where evolution of the thickness of 

the different layers and the total thickness of the plate along different generations are 

presented) for some methods to evaluate the reliability index. The local stress state was 

obtained using a closed solution for laminated composite rectangular plates, given by Kaw 

(2006). 
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Figure 6: Layer thickness for the optimal solution of the laminated composite plate using Direct Monte Carlo 

Method for reliability index evaluation (the limit state function is determined analytically). 
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Figure 7: Total thickness of the best individual and mean values of the  population’s total thickness of the 

laminated composite plate using Monte Carlo Method for reliability index evaluation (the limit state function is 

determined analytically). 

 

 

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

0 5 10 15 20 25 30

Generations

Th
ic

kn
e

ss
 (

m
)

h1

h2

h3

h4

 

Figure 8: Layer thickness for the optimal solution of the laminated composite plate using FORM to calculate the 

reliability index (the limit state function is determined analytically). 
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Figure 9: Total thickness of the best individual and mean values of the population’s total thickness of the 

laminated composite plate using FORM to calculate the reliability index (the limit state function is determined 

analytically). 

 

It can be noticed in the previous figures that the genetic based optimization process 

converged, in most cases, due to the criterion based on the maximum number of generations 

instead of diversity criterion, even when optimum value was early found. The diversity 

parameter (which is the coefficient of variation of the cost function, i.e., the ratio of standard 

deviation divided by the mean value) used as convergence criterion seems not to be a suitable 

parameter to indicate convergence. This shows that a more suitable convergence criterion 

reducing the number of generations and excessive number of simulations must be used. 

Perhaps the reduction of the heuristic parameter pm (probability of mutation) may reduce the 

diversity parameter. This is an issue to be investigated in future papers. 

The results presented in Figures 7, 9 and 11 allows to observe that the total thickness for 

initial generations is weighted by the constraint violation (in this case the reliability 

constraint), which is the way as Penalization Techniques account for constraints (see Eq. 9) 

explaining values of the total thickness that are higher than the maximum physical total 

thickness. 

Figure 8 and Fig. 10 suggest that there are symmetrical layer configurations (same total 

thickness and symmetrical inner layers) which have similar values for the reliability index. 

This may hinder the algorithm in order to reach the minimum cost function. 

The other tests (Monte Carlo with Importance Sampling, FORM and FORM-MCP using 

finite element analysis) show similar results and behavior regarding evolution of design 

variable and cost function. In the examples where the stress state is obtained by a finite 

element analysis, the simulations are performed using FORM and modified FORM (FORM-

MCP) to obtain the reliability index, since Monte Carlo methods would give a very expensive 

processing time. 
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Figure 10: Total and layers thickness for the optimal solution of the laminated composite plate using modified 

FORM (FORM-MCP) to calculate the reliability index (the limit state function is determined analytically). 
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Figure 11: Total thickness of the best individual and mean values of the population’s  total thickness of the 

laminated composite plate using modified FORM  (FORM-MCP) to calculate the reliability index (the limit state 

function is determined analytically). 

 

In this example, RBNN and MPNN were also used in order to reduce the processing time 

spent in the optimization process. The training procedure used here was to train the networks 

so that they could provide directly the reliability index, from a particular configuration of the 

laminate (one specific individual of the GA population). The reliability index used for 

training the neural networks was calculated using FORM (while the value of the limit state 

function was obtained using a finite element program). A total number of 300 samples, 

collected according to section 4.3 were used. The network architectures were (4:300:1) for 

RBNN and (4:10:10:10:1) for MPNN.  

Table 4 summarizes all the tests performed in this work and presents a comparison of the 

computational cost using Artificial Neural Networks and finite elements. The processing time 

for modified FORM (FORM-MCP) using finite element to evaluate the limit state function 
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was considered as the reference for processing time comparisons.  

Table 5 presents the relative errors using neural networks with reference to the solution 

with FORM and finite elements for the design variables. 

The results show a drastic reduction in processing time when the optimization is 

performed using neural networks to simulate the calculation of reliability index. The relative 

errors are small and do not exceed 3.51% (thickness h4 using RBNN). 

 

 

 

 

 

Method 

Relative 

Processing 

Time (s) 

h1 

(m) 

h2 

(m) 

h3 

(m) 

h4 

(m) 

h t 
(m) 

β 

Monte Carlo +closed form 

solution 
2.677 2.39x10

-3 
1.58x10

-3 
2.74x10

-3 
9.37x10

-4 
7.66x10

-3 
3.000 

Monte Carlo with Importance 

Sampling +closed form 

solution 

8.026x10
-1

 2.12x10
-3

 2.87x10
-3

 1.50x10
-3

 9.50x10
-4

 7.30x10
-3

 2.981 

Modified FORM+closed form 

solution 
1.466x10

-1 
2.12x10

-3
 2.87x10

-3
 1.49x10

-3
 9.50x10

-4
 7.42x10

-3
 2.978 

FORM+closed form solution 1.796x10
-3 

2.12x10
-3

 2.87x10
-3

 1.49x10
-3

 9.50x10
-4

 7.42x10
-3

 2.978 

Modified FORM+FEM 1.000 2.390x10
-3 

1.580x10
-3 

2.740x10
-3 

9.40x10
-4 

7.650x10
-3 

2.999 

FORM+FEM 9.475x10
-2 

2.390x10
-3 

1.580x10
-3 

2.740x10
-3 

9.40x10
-4 

7.65x10
-3 

2.995 

RBNN-training 2.500x10
-2 

      

RBNN-simulation 3.381x10
-5 

2.377x10
-3 

1.576x10
-3 

2.724x10
-3 

9.075x10
-4 

7.585x10
-3 

3.000 

MPNN-training 2.260x10
-2 

      

MPNN-simulation 2.305x10
-5 

2.390x10
-3 

1.541x10
-3 

2.745x10
-3 

9.319x10
-4 

7.608x10
-3 

3.000 

 Table 4: Comparison of processing time using neural networks and finite element for the optimization of the 

laminated composite plate thickness. 

 

 

 
Method 

Error  

 h1 (%) 

Error in 

 h2(%) 

Error in 

 h3(%) 

Error in 

 h4(%) 

Error in 

 ht(%) 

 RBNN 0.544 0.253 0.584 3.510 0.850 

 MPNN  0.000 2.468 0.182 0.862 0.549 

 
 

Table 5: Relative errors of design variables (%) using neural networks and finite elements for  thickness 

optimization of a laminated composite plate. 

 

5.2 Example 2 - Reliability based optimization of the ply angles of the layers on a 

laminated composite shell with non-linear behavior subjected to an external pressure 

load 

5.2.1. Problem description 

In this example, the reliability index using the Finite Element Method (FEM) and Artificial 

Neural Networks (ANN) of a semi-cylindrical shell with geometric nonlinear behavior is 

calculated. An external pressure load P = 250000 Pa acts along the outer surface of the 

structure. The dimensions and boundary conditions, taken from Almeida and Awruch (2009) 

are shown in Figure 12. The finite element model is composed of 200 DKT elements 

modified to account for the composite layers with arbitrary ply angles. 
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Figure 12: Composite shell under pressure load (Almeida and Awruch, 2009). 

 

The total thickness of the laminated composite shell is 12.6mm, with 28 plies (h=0.45mm 

for each ply) and fiber orientation angle given by 
0 0 0 0 0

4 4 2
s

90 , 45 ,90 , 45 ,90   measured with 

respect to the longitudinal direction of the shell. The material considered is glass-epoxy, with 

elastic mechanical properties and strengths given by E1 = 39GPa, E2 = 8.6 GPa, E12 = 3.8 GPa 

and 12 = 0.28 t

xR = 1080 MPa, c

xR = 620 MPa, 
t

yR = 39 MPa 
c

yR = 128 MPa, 
xyR = 89MPa. The 

limit state function is defined by the Tsai-Wu criterion. A typical load-displacement curve for 

point A, as result of analysis using deterministic values, is shown in Figure 13. 
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Figure 13: Non-linear load-deflection curve of point A of the hinged semi-cylindrical shell using a 

deterministic analysis. 

 

In this example, five simple random variables were considered for material properties, as 

indicated in Table 6, and an isotropic stochastic field of ply thickness was considered using 

an exponential correlation function given by R()=exp[-(||/d)
2
], where  means the distance 

between two finite element centers and d is the correlation length. A Normal probability 

distribution with COV=5% and a correlation length d=125mm were adopted as indicated by 

Sriramula and Chryssanthopoulos (2009) and Young and Ngah (2007). 
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Random  

Variable 

 

Unit 

Mean  

Value 

Coeff. of  

Variation 

Distribution  

Function Type 

Rx
t 

Pa 1.08x10
9 

0.2 Log-Normal 

Rx
c Pa 6.2x10

8 
0.2 Log-Normal 

Ry
t Pa 3.9x10

7 
0.2 Log-Normal 

Ry
c Pa 1.28x10

8 
0.2 Log-Normal 

Rxy Pa 8.9x10
7 

0.2 Log-Normal 

h mm 0.45
 

0.05 Normal 

 

Table 6: Statistical parameters for random variables. 

 

Using Monte Carlo numerical simulations, Shaw et al.(2010) found a slight correlation 

between Rx
t
 and Ry

t 
of about 0.19 and this was also imposed to the corresponding variables in 

this work. Correlations values of other strength parameters were not found in the literature, 

although they may easily be included, if available. 

 In the optimization of the fiber orientation angles, for practical reasons (Almeida and 

Awruch, 2009), symmetry of the laminate arrangement was assumed. The same random 

variables, i.e., the five strength parameters of the Tsai-Wu failure surface with some 

correlation and a spatial stochastic field for the ply thickness were also assumed. Thus, this 

example is an optimization problem with seven design variables 

           1 2 3 4 5 6 7 s
, , , , , , . These design variables could assume, for constructive 

practical reasons, discrete values, and the following values were adopted:  -45
o
, 0

0
, 45

o
 and 

90
o
. Thus, using the genetic algorithm described in this work two bits per design variable 

were defined, so that for the fiber orientation angles there are a binary encoding 00, 01, 10, 

11, giving 4
7
 = 16384 fiber orientation angles combinations.  

The cylindrical shell of twenty-eight layers was previously analyzed and the failure 

probability using a Tsai-Wu criterion as ultimate limit state was evaluated. In this case, the 

reliability index of the structure against ultimate failure is  = 2.27 using Monte Carlo 

method with Importance Sampling and the Finite Element Method for the limit state function 

evaluation. This index was also confirmed by FORM. The configuration of the laminate, 

based in a deterministic design is
0 0 0 0 0 0 0

2 2 2 2 2
s

90 ,90 , 45 ,90 ,90 , 45 ,90    . 

 

5.2.2 Optimization of ply angles using the Finite Element Method 

 

Due to processing time required for the analysis, optimization of ply angles, imposing as 

constraint a target value of the reliability index equal to  = 5.0, was performed using FORM 

for reliability assessment. The finite element mesh as well as the parameters for the nonlinear 

analysis is the same used in the previous section, where a deterministic analysis was carried 

out. The parameters used by the genetic algorithm are shown in Table 7.  

Results obtained using a Finite Element Analysis (FEA) to evaluate the limit state function 

are given in Figure 14 and Figure 15. 
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No. of design variables (n) 7 

Discrete values Fo design variables -45
o
, 0

0
, 45

o
 and 90

o
 

Design variable’s No. of bits (b) 2 

Probability of Mutation (pM) 1% 

Probability of Crossover (pc) 90% 

Population size (npop) 300 

Maximum number of grnerations (ngen) 100 

Cost Function to be minimized (f) | 5 |f c    

Stopping criterion by diversity of individual’s cost function  (COV= /f f  )
 5% 

Penalty coefficient c 100 

  
Table 7: Genetic Algorithm (GA) parameters. 
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Figure 14: Reliability index for the best individual and mean values along generations using finite elements for 

limit state function evaluation.  
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Figure 15: Reliability index of the best individual and mean values along generations using finite elements for 

limit state function evaluation. 
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The best combination of fiber orientation angles that provides reliability index closer to the 

desired value is 0 0 0 0 0 0 0

2 2 2 2
s

90 ,90 ,90 , 45 , 45 , 45 ,90       
and the reliability index value was  = 

4.652.  

Obviously, in this case, where design variables are discrete and cannot take any arbitrary 

value, the corresponding reliability index may not reach the required value, being the result of 

the optimization process the combination of angles that most closely approximates the 

constraint value of the reliability index. Therefore, it is possible, keeping the same number of 

layers of the laminated composite structure and changing only their fiber orientation angles, 

to increase the design reliability index from =2.27 to =4.652, which is a desirable situation, 

since there are not an additional production cost of the new laminated composite material. 

 

5.2.3 Optimization of the ply angles using Artificial Neural Networks 

 

In this section, Artificial Neural Networks (ANN) are trained to substitute the application 

of the finite element method only in the reliability analysis.  Thus, for a given combination of 

fiber orientation angles, the ANN is trained to help in the evaluation of the corresponding 

reliability index. The architecture of the neural network used here has seven inputs (ply 

angles) and one output (reliability index). In the cases of Multilayer Perceptron Neural 

Network (MPNN) and Radial Basis Neural Network (RBNN) with architectures characterized 

by (7:15:15:15:1) and (7:120:1), respectively, were enough adopted for training process. 

The parameters used in neural networks, such as learning rate, tolerance for convergence, 

types of activation function, momentum, etc. are the same used in the previous example, 

changing only the network architecture.  The chosen training process consisted in the 

generation of 300 uniformly distributed samples where the search space is composed by 

16384 combinations. Each of 300 samples (combinations of fiber orientation angles) the 

reliability index using FORM was evaluated. This stage is the most time consuming step in 

the analysis when ANN are employed, since several finite element analysis are necessary to 

generate samples. Thus, the samples were used for training and then the genetic algorithm 

was used to optimize the fiber orientation angles using the trained ANN. Optimization results 

by genetic algorithms using trained RBNN are presented in Figure 16. 

 
Figure 16: Reliability index history for the best individual and mean values along generations using Radial 

Basis Neural Network. 
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In both cases, the optimum value of the combination of the fiber orientation angles was 

exactly the same which was found with the optimization using the finite element method, i.e. 
0 0 0 0 0 0 0

2 2 2 2
s

90 ,90 ,90 , 45 , 45 , 45 ,90      
values of reliability index were =4.65 for the RBNN and 

=4.81 for the MPNN .  
 

5.2.4 Comparisons regarding processing time 
 

Table 8 shows the relative processing times, design variable values and reliability 

indexes obtained in the optimization process using FEA and ANN. It can be noticed that both 

types of ANN give considerable time savings on computer processing time. For both ANN, 

most of the processing time is spent in the training process, since the processing time spent by 

the ANN to calculate results is very small when compared with a complete FEA.  

A small difference in the reliability index values using trained ANN with respect to those 

obtained using complete FEA (regardless the same optimum design variables) may be 

explained by a lack of fit of the ANN with the training data or by the small number of 

samples used in the training process.  
 

 

Method 

Relative  

Processing 

Time 

1  

(
o
) 

2  

(
o
) 

3  

(
o
) 

4  

(
o
) 

5  

(
o
) 

6  

(
o
) 

7  

(
o
) 

 

 GA+FORM+FEM 1.00 90 90 90 45 45 45 90 4.65 

 
RBNN –training (300 samples) 2.56x10

-1
         

 GA+FORM+ RBNN 1.45x10
-3

 90 90 90 45 45 45 90 4.65 

 
MPNN –training (300 samples) 8.75X10

-1
         

 
GA+FORM+MPNN 0.42x10

-4
 90 90 90 45 45 45 90 4.81 

  
Table 8: Comparison of processing times for ply orientation optimization using the Finite Element Analysis and 

Artificial Neural Networks. 

6 FINAL REMARKS 

Some initial results were presented in this work dealing with reliability based 

optimization for structural problems involving laminated composite materials. A 

methodology to reduce the processing time using trained ANN when dealing with reliability 

based design optimizations was proposed. 

For the structural optimization, a Genetic Algorithm (GA) was used. GA are very suitable 

tools to obtain global optimal solution in problems where laminated composite materials are 

employed, because these materials handle with discrete variables (such as fiber orientation 

angles and number of layers) and multiple local optima are probable when dealing with 

reliability constraints. In some examples it was noticed that the convergence criterion used by 

the algorithm to stop the optimization process needs to be investigated since maximum 

number of iterations prevailed with respect to the diversity criterion (based on the coefficient 

of variation) leading to excessive iterations.  

To evaluate the reliability index four classical methods were used: Standard or Direct 

Monte Carlo Method (MC), Monte Carlo Method with Importance Sampling (MCIS), First 

Order Reliability Method (FORM) and FORM with Multiple Check Points (FORM-MCP). In 

order to assess accuracy in the analysis, the first example uses both the Finite Element 

Method (FEM) and closed solutions for laminated composite plates to evaluate the limit state 
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function (the Tsai-Wu failure criterion was adopted) regarding the reliability index. In 

optimization problems, where the reliability index is used as a constraint, a complete finite 

element analysis (FEA) is very expensive in terms of computer processing time (especially if 

MC or even MCIS are employed). As an alternative to save computer-processing time, trained 

Artificial Neural Networks (ANN) were used to evaluate the reliability index for the 

examples presented. Two types of ANN were used: Multilayer Perceptron Neural Network 

(MPNN) and Radial Basis Neural Network (RBNN). Their efficiency depends mainly of the 

chosen architecture and training process. In this work, both ANN reduced de computer 

processing time and the corresponding errors with respect to a complete FEA were very 

small. 

In the reliability-based optimization of the ply angles of the layers on a laminated 

composite shell with non-linear behavior, it can be noticed that the reliability index 5.0 was 

not attained since ply orientation has discrete values, resulting in a composite shell with 

reliability index about 4.65. Nevertheless it was possible, keeping the same number of layers 

of the laminated composite structure and changing only ply orientation angles, to increase the 

reliability index of the original design from =2.27 to =4.65. This is a highly desirable 

situation, since there are not additional production costs of the new laminated composite 

material. 

In the last example, a small difference in the obtained reliability index value using trained 

ANN with respect to those obtained using complete FEA may be explained by a lack of fit of 

the ANN with the training data, indicating that the training process was not completed. 

Future works would involve more complex problems with other limit state functions, such 

as delamination and hygrothermal effects. Improvements of the GA and the training process, 

as well as a parallel algorithm to solve large real problems could also be implemented. 
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