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Abstract. Compartmental models are very popular in epidemiology. One of the reason for such popu-
larity is the excellent results obtained when the populations satisfy the building hypotheses (large popu-
lations, individual uniformity and appropriate structure), while the complexity of the resulting model is
low. Besides, the ease of analysis, the wide variety of analysis tools available and the "intuitive reason-
ableness" make this kind of models very attractive. However, in many situations they ignore important
factors inherent to the problem, such as the nature of contacts between individuals and the heterogene-
ity of the population. Cellular models are adequate to describe natural systems consisting of a massive
collection of simple objects. They are a special case of models based on individuals, which represent
the global system behavior from the description of the behavior of individuals within it. In this paper we
study the time evolution of a heterogeneous population through the various stages of disease resulting
from the individuals interactions (epidemic). The objectives of this work are i) the development of a
model that includes the effects of heterogeneity and individual contacts in the evolution of the epidemic,
ii the implementation of the proposed model through a cellular automaton and iii its validation with data
from the 1918 influenza pandemic in the Geneva.
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1 INTRODUCTION

Disease dynamics are often analysed using compartmental models based on the solution of
systems of ordinary differential equations where homogeneous mixing between different classes
(i.e. the mean-field approximation) is assumed (Kermack and McKendrick, 1927; Bailey, 1975;
Anderson and May, 1991). In this type models, the reproductive number R0 is the number cre-
ated by a typical infected individual introduced into an otherwise fully susceptible population.
This number is determined by the intrinsic infectivity of a single case, and the environment in
which a case exists, for instance, the number of susceptibles that it comes into contact with. It
is usually assumed that individuals are identical with respect to their infectivity.

This models also incorporate the homogeneous mixing assumption, sometimes called the
law of mass action (Anderson and May, 1991; Diekmann and Heesterbeek, 2000), whereby the
rate of increase in epidemic incidence is proportional to the product of the number of infectious
and susceptible individuals. This assumption has been relaxed (den Driessche and Watmough,
2002; Lloyd and May, 1996; Finkenstadt and Grenfell, 1998; Grenfell et al., 2001; Watts et al.,
2005), but not eliminated from models. The mass-action assumption is robust in the sense that
it is consistent with several scenarios for the individual–to–individual transmission of disease.
In particular, it is equivalent to a model in which all individuals in a population make contact
at an identical rate and have identical probabilities of disease transmission to those contacts per
unit of time. Although this assumption is unrealistic, it facilitates mathematical analysis and, in
some cases, offers a reasonable approximation.

However, populations can be quite heterogeneous with respect to susceptibility, infectious-
ness, contact rates or number of partners, and simple homogeneous mixing models do not allow
for extreme variation in host parameters. Heterogeneity in susceptibility and infectivity is an
important feature of many infectious diseases and has been considered to improve the accuracy
of epidemiological models. In the analysis of these models, focus has been placed on the impact
of heterogeneity in the final size of epidemics (Miller, 2007; Rodrigues et al., 2009) as well as
on its consequences to disease control (Andersson and Britton, 1998), and data interpretation
(Anderson and May, 1991). In the context of epidemic models, it has been shown that the final
size of the epidemic is reduced when the risk of infection is heterogeneously distributed in the
population, both for the deterministic and the stochastic formulations (Andersson and Britton,
1998). More recently, results were extended to the investigation of epidemic spread in a random
network (Miller, 2007).

New models capture some, but not all, of these features (Callaway et al., 2000; Strogatz,
2001; Newman, 2002; Newman et al., 2002; Eames and Keeling, 2002; Meyers et al., 2005,
2006). Ideally, an epidemic model would incorporate the following issues:

• A given individual has contact with only a finite number of other individuals in the pop-
ulation at any one time, and contacts that can result in disease transmission are usually
short and repeated events.

• The number and frequency of contacts between individuals can be very heterogeneous.

• The numbers and identities of an individual’s contacts will change as time goes by.

• The individuals have potential to transmit the pathogen and susceptibility.

Cellular automata (CA) can overcome these issues and have been used by several researches
as an efficient alternative method to simulate epidemic spreading. Specifically, a two-dimensional
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CA is formed by a two–dimensional array of identical objects called cells, which are endowed
with a state that changes in discrete steps of time according to specific rules. As the CA evolves,
the updated function (whose variables are the states of the neighbors cells) determines how lo-
cal interactions, can influence the global behaviour of the system see (Ahmed and Agiza, 1998;
Fuentes and Kuperman, 1999; Beauchemin et al., 2005; White et al., 2007), besides other stud-
ies in life sciences and computing journals). It is of special interest the CA-epidemic proposals
modeling the motion of individuals (Mansilla and Gutierrez, 2000; Ahmed and Elgazzar, 2001).

In order to address these issues, and develop a realistic model for an epidemic situation,
we introduced an individual–based–model built upon cellular automata that include all the fea-
tures described in previous paragraphs. This modelling approach (CA) allows us to capture the
individual heterogenity as well as a realistic model of individual contacts, modeling individ-
uals explicitly exposed. Each individual will be characterised by its own intrinsic infectivity,
expressed as the expected reproductive number Ri, which will be achieved by varying the in-
fectiousness (i.e., the rate of transmission, given an unlimited supply of susceptibles) between
individuals. Different assumptions with which we construct the classical model are applied di-
rectly to each individual, and the differential equations of the classical model are incorporated
implicitly through rules. The resulting model is validated using the data from the 1918 influenza
pandemic in Geneva (Chowell et al., 2005).

2 GENERAL REVIEW

Martín del Rey (White et al., 2007) offers a SEIR model implemented via a cellular automa-
ton where each cell represents a particular population such as rural or urban core. The neighbors
of each cell are those between which there is a communication channel that allows the flow of
population from one to the other. The assumptions that underpin this model can be summarized
as follows:

1. The total number of individuals in the cellular space and in each particular node remains
constant over time. That is not taken into account migration processes or births or deaths.
In turn, each cell has a maximum capacity of the population

2. The mode of transmission of disease is directly by physical contact between an infected
and a susceptible individual (principle of mass action).

3. Finally, individuals can move between nodes and then return to the node to which they
belong over time.

This model implements a classic SEIR at each node or cell. Assumes a homogeneous distri-
bution of the population in each node, and heterogeneous between nodes. Implements a system
of difference equations at each node, which is identical to the classic with the addition of a
term of infection among neighboring cells. There is a neighborhood parameter and a parameter
µ
(i,j)
ab is a factor that takes into account the rate of infection, migration and connection strength

between cells.
Liu et al (nli, 2006) implements a classic SEIR model based on ordinary differential equa-

tions. The paper explores the spatial behavior of the epidemic diseases that are seasonal. For
this is considered a variable rate of infection, according to a sinusoidal function. However, the
rate is the same in all cells at a given instant of time.

To simulate the spatial-temporal movement associated with the different waves of epidemic
they implemented a model called "dependent on the neighborhood," which is a modification of
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the classical model, so that the equations do not evolve only with time t but they also depend
on space r. Is, in short, a system of partial differential equations discretized in time and space.
Unlike the first example, is not modeled infection between neighboring cells, so the population
in each cell is variable. It also incorporates a stochastic migration.

Defining c(r, t) as the vector of individual densities for a given position r and time t given
L(c(r, t)) as the local kinetic vector (corresponding to the ordinary differential equation model)
and D as the matrix of diffusion coefficients (which affects the rate of passage between cells
for each type of individual), the system is expressed in compact form as:

∂c(r, t)

∂t
= L(c(r, t)) +D52 c(r, t). (1)

The first step in each iteration corresponds to determine the local dynamics and the status of
each cell independently of the states of neighboring cells. The second step corresponds to the
spatial movement between neighbors, where each automaton calculates the sum of migration to
and from every cell in the neighborhood, defined as Moore.

These two examples show a way of modeling is useful for visualizing the distribution patterns
of the epidemic in the spatial dimensions, but does not capture or explain the patterns and
fluctuations observed in temporal dimension. An approach close to that proposed in this paper
is implemented by Quan-Xing Liu et al (Liu et al., 2008). In the implementation of an SIR
model, defines a set of attributes for each cell:

• Ability to carry.

• Total population

• Susceptible population.

• Infected population.

• Population recovered.

The number of individuals per cell is variable. The main motivation for this is that you can
include multiple individuals per cell, reducing the total number of cells required and therefore
the computation time required for simulation. Second, it provides generality to the model.

The carrying capacity is the maximum number of individuals per cell, which defines a max-
imum population population density. The grid is rectangular and the movement of individuals
occurs only between adjacent cells, the environment in itself represents a natural barrier to mi-
gratory movement. The parameters that explain the behavior of the epidemic are handled in a
probabilistic except the effective radius of infection. The latter determines the maximum dis-
tance that the virus can move out of a particular host. On the other hand, the radius of movement
determines the maximum distance that a particular host can be moved and is associated with a
probability of movement. This probability determines the frequency with which this event can
occur within a cell or between neighboring cells. Assuming a population distributed evenly in
every cell. The cell to which the migration process occurs is chosen at random among since the
neighbors of the current. An immigration parameter allows this model to simulate a world open
or closed depending on its value. This parameter defines the probability of each cell to receive
immigrants; this event is also affected by the load capacity. The model also incorporates a birth
rate and natural death which relate to the incorporation of a new individual cell by natural re-
production in the case of the first parameter and the disappearance of one in the second case,

G. BURGUENER, L. LOPEZ, L. GIOVANINI3504

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



the latter affects alli ndividuals in the population. These events can occur with a probability
associated with each one at each time step.

The morbidity of the virus is a measure of how fast the virus kills the host, only affects those
who are in the state of infection. This model also incorporated other probabilistic parameters
such as the likelihood of infection by contact with vectors, the probability of re-infection and
the likelihood of spontaneous infection. The model of Shih Ching Fu incorporates hundreds of
individuals per cell. In ascale of work this may be valid, but has the unintended effect of "soft-
ening" dynamics similarly to the previous examples. In our model we simulate an individual
per cell maximum.

3 METHODS

A first definition of our automata network is:

• Each cell represents an individual in one of the possible states, or the state of empty
cell. No distinction is made between the state of the deceased and the empty cell. Births
involve passing empty cell to cell in a state susceptible.

• The transition between states is probabilistic. The transition probabilities correspond to
the parameters of the classical model. These parameters are deterministic in the classical
model, but as a result of an aggregation of individual probabilities under the assumption of
a large population. Therefore, the probability is the transition behind the classical model
and not vice versa. Applied directly to each controller, there is evidence of decreasing
variability with increasing population, to coincide with the deterministic evolution of the
classical model.

• The initial distribution is random, provided the assumption of homogeneous distribution
for large population sizes.

• It simulates a random motion of the automaton through a reciprocal change in state neigh-
boring cells, ie, a cell goes from E1 to E2 status as a neighbor state changes from E2
to E1. This movement seeks to emulate the approximate movement of real people (who
really do not follow random movements), which contributes to the homogeneous distri-
bution and contacts between infectious and susceptible.

• Potentially infectious contact is made between infectious individuals (symptomatic and
asymptomatic) and is susceptible within the neighborhood defined as a zone of influence
of infectious individuals. Infection is also probabilistic and directly related to the corre-
sponding parameter in the classical model.

• For simplicity, the grid type used is rectangular, and the Moore neighborhood is kind,
with a size not defined a priori.

• The boundary condition is fixed, with a contour consisting of non interacting empty cells,
compatible with the situation in a city, an area of high population density area surrounded
by a much lower density.

The automata are then defined as a stochastic Moore machine (White et al., 2007) by A =
(E,X, Y, δ, β, ρ), where:
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• E, the set of possible states comprises 7 states: S (susceptible), E (exposed), I (infec-
tious), A (asymptomatic), J (infectious reported), R (recovered) and D (dead or empty).

• X is the set of input (real numbers). An automaton recives input only when state S, issued
by another in state I or A, when the automaton is in the vicinity of the issuer. Transitions
that do not involve contact with infectious individuals are made in probabilistic form
independently of a possible entry (transitions on empty entry ε).

• Y is the output set (equal to X) issued in state I or A, corresponding to the input received
in state S. The output corresponds to the probability of infection from contact that has
the automata in stage I or A, obtained from distributing the beta value for that automaton
in the neighborhood under consideration.

• δ is the state transition function, which applied to the active state at iteration k, the state
decides probabilistically active at iteration k + 1. The function is applied in two steps,
one for the state change and recovery from infection and the other corresponding to the
movement. To decide the status changes to define two probability matrices: one for empty
transition ε and a blank entry for the transition from contact with infectious

• Since each element of the matrix pij the probability of moving from state i to j in each
time step, and placing the states S, E, I , A, J , R and D in increasing order from row or
column 1 to 7, the transition matrix for empty entry is defined in table 1

S E I A J R D
S 1− µ 0 0 0 0 0 µ
E 0 1− (ε+ µ) ερ ε(1− ρ) 0 0 µ
I 0 0 1− (α + γ1 + µ) 0 α γ1 µ
A 0 0 0 1− (γ1 + µ) 0 γ1 µ
J 0 0 0 0 1− (γ2 + µ+ δ) γ 2 µ+ δ
R 0 0 0 0 0 1− µ µ
D µ 0 0 0 0 0 1− µ

Table 1: Transition matrix for empty entry

The symbols in table 1 correspond to the parameters used in the classical model (Chowell
et al., 2005). Defining the size of the neighborhood as ν and the input value as λ (β may
correspond to or comes from a qβ as symptomatic or asymptomatic infection, respectively), the
contact transition matrix is defined in table 2

S E
S 1− (λ/ν) λ/ν
E 0 1

Table 2: contact transition matrix

Finally, the movement is equally likely from a cell centered in an area of predefined size to
any other, including itself, including in the area. The cells are swapped positions, which can be
interpreted as changes of state.
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• β is the output function, which gives the value of infection rate if the automaton is instate
I or A.

• P(o), the initial state vector is composed of the probabilities for each initial state be given
an automaton. Gt defined as the total number of cells in the grid and as Si, Ei, Ii, Ai, Ji,
Ri, Di the initial number of individuals in each state in the grid (being the sum equal to
Gt and the population total, and that God includes the empty cells), the vector is defined
as P (o) = [Si/G,Ei/G, Ii/G,Ai/G, Ji/G,Ri/G,Di/G]

The cellular automata are defined by R = G(T,C) where:

• The topology T is square. The neighborhood is kind Moore, and is only seen for cells in
stage I or A. The boundary conditions are fixed, with a contour consisting of empty cells
not interacting.

• The connectionC is unidirectional from cells in state I orA to the cells in a state S that are
within the vicinity. The connection is isotropic and equal anywhere in the neighborhood,
and provides an entry for each cell in S consisting of the value of λ that has the cell I or
A, used to make the transition to the state probabilistic E. The cells in a state S which
are included in several neighborhoods in a given time step will have many opportunities
to change state as the number of neighborhoods in which they are included.

The pseudocode for the proposed controller system can be described as follows:

1: for day=1 to N do
2: for each grid cell do
3:
4: {Infection}
5:
6: if cell state = I then
7: if neighboring cell

= S then
8: Z ∼ U [0, 1]
9: if Z<β/ν then

10: move to state
E

11: end if
12: end if
13: else
14: if cell state = A

then
15: Z ∼ U [0, 1]
16: if Z<qβ/ν then
17: move to state

E
18: end if
19: end if
20: end if

21:
22: {Exposed to infec-

tious}
23:
24: if cell state = E then
25: Z ∼ U [0, 1]
26: if Z<εr then
27: cell state = I
28: if εr<Z<εr

then
29: cell state = A
30: end if
31: end if
32: end if
33:
34: {Step-by reported}
35:
36: if cell state = I then
37: Z ∼ U [0, 1]
38: if Z<α then
39: cell state = J
40: end if
41: end if
42:

43: {Recovery}
44:
45: if cell state = I or A

then
46: Z ∼ U [0, 1]
47: if Z<γ1 then
48: cell state = R
49: end if
50: end if
51: if cell state = J then
52: Z ∼ U [0, 1]
53: if Z<γ2 then
54: cell state = R
55: end if
56: end if
57:
58: {Death from dis-

ease}
59:
60: if cell state = I or J

then
61: Z ∼ U [0, 1]
62: if Z<δ then
63: cell state = D
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64: end if
65: end if
66:
67: {Births and natural

deaths}
68:
69: if cell state 6= D

then
70: Z1 ∼ U [0, 1]
71: Z2 ∼ U [0, 1]

72: if Z1<µ then
73: cell state = D
74: end if
75: if Z2<µ then
76: cell state = S
77: end if
78: end if
79:
80: {Movement of indi-

viduals}

81:
82: Z1, Z2 ∼ U [−r, r]
83: aux = cell state(i,j)
84: cell state(i,j)=cell

state(i+ Z1,j + Z2)
85: cell state(i + Z1,j +

Z2)= aux
86: end for
87: end for

4 ADJUSTMENT AND RESULTS

When attempting to adjust the classical model with the parameters minimized, there are
several obstacles and alternatives to use. First, there is the problem of the scale used. Obviously
the larger the grid and employed population, the closer we are to large population of the classical
model (as well as the higher the computational cost of the simulation). As the extension of the
validity of this hypothesis is just something that is challenging to apply the model of automata,
it is neither necessary nor desirable to use too large grid sizes when it comes to analyzing the
temporal behavior of the epidemic, but what is the purpose of validating the model automatically
using as parameter the classical model.

Another choice that shows necessary and important effects on the overall performance is the
size and shape of the neighborhood. The use of alternative forms shows no significant change,
so Moore is chosen for simplicity of programming and computation. The size of the neighbor-
hood, however, determines the degree of global influence of the heterogeneity. The larger the
neighborhood size used, the closer the results to the assumption of spatial homogeneity of the
classical model. This is because a very large neighborhood can influence the infectious even
in low density areas of infectious, "softening" the effect of heterogeneity. If we used a grid
size neighborhood-wide, the spatial distribution of individuals would not matter, and the result
would be equivalent to a perfectly homogeneous distribution because each infectious influence
would spread throughout the grid, regardless of location..

Figure 1: Evolution in time of the model, can see the hetorogeneity distribution along time,neighborhood size
(ratio) is r = 12

A third problem arises at the time of transfer the parameters of the classical model to the
automata (see table 3 ). How to apply different sets of parameters obtained from the minimiza-
tions is not straightforward. In the classical model, these parameters represent daily rates per
person, but can not go directly to a daily variation by multiplying the number of individuals,
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because they are instantaneous rates that depend on the number of individuals in each moment,
which does not vary during the time between one step and another in the discrete case but it
does in the continuous case for the classical model.

β ρ γ1 γ2 α q Ne Ni
8,3 0,087 0,246 0,97 0,465 0,0008 207 136

Table 3: Minimized parameters from classical model

The linear terms generally respond to exponential decay rate F (t) = F (0)e(−k1t), that must
correspond to the discrete version:f(n) = f(n − 1)k2, with 0 < k2 < 1 Using a time step of
one day, F (0) must correspond to f(1) and F (1) = F (0)e(−k1) must do so f(2) = f(1)k2,
then k2 = e(−k1).

The exponential decay can be expressed as discrete f(n) = f(n− 1)− f(n− 1)(1k2). The
second term on the right side represents how much function decreases at each step. In our case,
corresponds to how many individuals go out of state, so that (1 − k2) = (1 − e(−k1)) is the
parameter used to decide in each stochastic iteration step to the next state. In the case of having
a non-linear term, a good approximation was not achieved, so that it was a good approximation.

Finally, it is possible to make a modification of the model in the compartment J . This
compartment is included in the classical model of necessity, since the data reported correspond
to individuals and not the total number of patients. However, the rate of infection is considered
equal to the compartment I . For all purposes of the model, the behavior varies with respect to
symptomatic infectious individuals. It is then possible to remove the magazine and obtain J at
the end of each iteration from the rate reported. This results in an initial error, as in the classical
model there is no initial individuals J . However, this modification can be used to obtain an
additional advantage.

With all these considerations, we first performed a simulation that meets the assumptions
of the classical model as much as possible. To do this, we used a total population size of ten
times the population of Geneva in 1918, evenly distributed on the grid. The neighborhood
size was enlarged to the maximum, so that each infectious interact evenly with everyone. J
compartment was included explicitly. To approach more realistic conditions, simulations were
performed after the actual population size, and small neighborhoods. The initial distribution of
individuals is kept uniform.

The problem is that the adjustment of parameters in the classical model for any set of values
that minimizes the error, regardless of whether they have physical significance or is likely to
occur and, of course, say nothing of their behavior under other conditions, in this case, a discrete
population, where the total homogeneity is not possible.

The parameter set used in this case, the parameter q that affects the infection rate in passing
the asymptomatic state is zero, implying that these individuals are not infected at all. In addition
to the low proportion of exposed who become infectious symptoms (less than a tenth), the
effect on the automata model is a rapid decline in the effective rate of infection, because each
infectious individual is, after a short time, surrounded by a large proportion of asymptomatic
individuals who can not infect anyone and which can not spread.

We tried to solve the problem by adjusting the rate of infection, but no improvements are
obtained because the effect of reduction of infectivity persists to stay q. In contrast, for a small
adjustment of q, the behavior reverts to the expected one when evaluating different possible
probability distributions on the rate of infection, it is necessary to make an adjustment of statis-
tical parameters that characterize each distribution: mean and standard deviation. In the scale
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Figure 2: Comparison between classical model (a) and cellular automata (b), may see the efect of heterogeneity in
the kinetics of disease

used, this is impractical because the computational cost would sue. If we reduce the scale, the
variability between different realizations and each realization in particular is very large, far from
the observed. This is where it is useful to remove the compartment J .

Clearing the way to J in the simulation and applies it to deterministically the evolution
of infectious obtained, we get: You can see that passing in deterministically to J , the effect
is "softened" by reducing the expected variability. This is equivalent to a simulation with J
explicit, but on a larger scale. To achieve a variable equivalent to that obtained with J explicit,
should then be reduced scale. If you shrink the scale by a factor similar to the rate of step J and
perform the simulation with J removed from the grid, you get a similar trend to that expected
in the original scale, both overall and behavioral variability. This will reduce the computational
cost achieved by the adjustment of parameters.

In the simulation, the value of the infection rate is the same for all individuals, consid-
ered as the average of individual rates. Classical population models applied to the study of
epidemics using these quantifiers averaged to describe the system, being that it is naturally het-
erogeneous(Lloyd-Smith et al., 2005; Li et al., 2004). This type of estimate does not take into
account the role of individual variation in the infection process. This variation can be of great
influence when the spatial distribution is not uniform and when there is a significant presence
of "superspreaders"(Shen et al., 2004).

Superspreaders are those individuals within the population that are capable of infecting a
greater number of susceptible individuals than the average(Galvani and May, 2005), in other
words, if the reproductive number R0 of the epidemic, a superspreader has a reproductive num-
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ber larger than the average. Thus we can define the individual reproductive number, υ as the
expected number of secondary cases infected by a particular. This parameter can be described
using probability density functions with one or more continuous half as if the function used.
With a continuously distributed degree of infectivity is achieved by adding more heterogeneity
to the model.

These changes in the reproductive number may be due to factors such as:

• Individuals infected and undiagnosed.

• High rates of contact between individuals.

• High viral load in infected individuals.

In our case, the variation of R0 is achieved only through the variation in infection rate.
In one case using a normal probability distribution to generate a grid of individuals infected
with variable values, this probability distribution has β and variance σ half. Another uses a
bimodal probability distribution to generate a grid of infected individuals, this distribution has
two modes: βi and βs for the probability of infection through contact with infected individuals
and superspreaders respectively.

While not specifically stated, in both cases there are also present asymptomatic individuals,
who have a very low infectivity but influence the dynamics of the epidemic as they represent
a significant percentage of the population. In this case the rate of infectivity of asymptomatic
individuals remains at a fixed value, but could also be considered as a third heterogeneous
population modeling together as a trimodal distribution, with modes will be Pa, βi and βs,
for asymptomatic individuals, infective and superspreaders, respectively. For both the normal
distribution as for the bimodal parameters were adjusted average (or fads) and variance. In
this context, the patterns that appear as epidemiological ripples within a short time period are
interpreted as regrowth due to passage of a certain amount of superspreaders to infection status
(see figures 3 and 4).

Figure 3: Simulation results Vs real data using normal distribution
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Figure 4: Simulation results Vs real data using bimodal distribution

5 CONCLUSIONS

As noted earlier, individual-based models are especially useful when trying to model a sys-
tem as a massive collection of entities, all of which influence the global behavior. Modeling by
a set of rules results in a natural stochasticity and therefore implies a heterogeneity. The im-
plementation of different probability distributions for the population of infectious individuals
results in greater heterogeneity and a dynamic that is more like the real thing. The simulation of
random motion through the reciprocal exchange of states between adjacent cells contributes the
homogeneous distribution of the population, which increases the probability of contact between
individuals susceptible and infectious and therefore the spread of the epidemic.

The size of the neighborhood you choose determines the level of overall system heterogene-
ity, thus when working with neighborhoods too small to reach the epidemic could spread not
by the lack of contact between healthy individuals and infection, on the other hand, too large
a neighborhood could generate a distribution too homogeneous resembling the behavior to a
common compartment model and ignoring the effect of each individual if that is what you want
to study.

The inclusion of superspreaders in the population of infectious individuals results in greater
stochasticity in the system. It can be seen that the number of infectious individuals at time t
does not follow a pattern of growth and normal disminution, Prodicus small sprouts along the
epidemic.

Finally, it can be noted that the importance of this type of modeling lies in the fact that
it allows to see a system as a set of individuals or smaller systems that contribute to overall
system performance. Heterogeneity is a property of all populations and understand their role in
population phenomena such as an epidemic is of vital importance because it allows us to better
understand this phenomenon.
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