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Abstract. An accurate prediction of void generation and phase distribution on heat transfer under
sub-cooled boiling regime is required in many industrial and laboratory applications. In this paper a one-
dimensional code was implemented in order to study the mass and heat transfer amount phases during
high heat transfer in water-steam systems. To obtain a well-postulated model, in a first step it was imple-
mented a one-dimensional Eulerian-Eulerian two-fluid model. Attention was focused on the interfacial
momentum exchange between phases caused by drag efforts. The two-fluid model implemented was
generated following the solvers and libraries implemented on CFD OpenFOAM R© code due to its full
access, easy solver generation and modification. Finally, a mechanistic model from literature to predict
sub-cooled boiling and bulk condensation is implemented and assessed with experimental data. This
paper presents the constitutive relations implemented and highlighting the mechanistic model for mass
exchange prediction.
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1 INTRODUCTION

Subcooled boiling flow and associated heat transfer are encountered in many industrial appli-
cations. Particularly, in nuclear power reactors this phenomena affects the neutron moderation
characteristics and implicitly the reactivity response of the system, just as flow instabilities.
Two-Phase Eulerian models on subcooled boiling regime have been studied during the last
50 years. Much efforts have been applied to understand the subcooled boiling through one-
dimensional empirical correlations models ((Levy, 1967), (Jens and Lottes, 1951), (Saha and
Zuber, 1974), and (Thom, 1966)). All these models do not take into account thermal and hydro-
dynamics properties variations. In addition, they fail to describe a complete fluid regime and, to
this date, they have not been employed in CFD applications. Moreover, these models do not al-
low the calculation of local parameters that perform a well description of the phenomenon. RPI
(Rensselaer Polytechnic Institute) wall boiling based on local parameters (such as evaporation
rate, bubble departure frequency, etc) developed by (Kurul and Podowski, 1991) has been used
without any difficult in both CFD and one-dimensional problems.

The most applied approach to modeling separated flow is the Eulerian two-phase model and
was used in the present research. This is based on assumptions of interface exchange, one
pressure to both phases, and different continuous and dispersed velocities. The momentum
interaction between both phases is phenomenologically missed by the assumptions proposed
above. This is analyzed by empirical correlations based on experimental results.

Furthermore, is well know that, even though the implemented model has been widely ac-
cepted, an inherently non-hyperbolic and non-conservative ill-posed problem arises from the
mathematical point of view (Issa and Kempf, 2003).

This drawback occurs even for the model hypothetical assumptions (i.e., an incompressible
and inviscid model), this occurs by the lack of some physical properties as well as the appear-
ance of complex eigenvalues (loss of hyperbolicity). The characteristics values analysis is not
done in this paper. In these sense, special techniques were applied in order to obtain stable
results. Among these, staggered grid were used to add numerical diffusion. Include additional
interfacial terms in the momentum equation (i.g., virtual mass force) can achieve a stability
equation system (Hwang, 2003).

In the present paper, a one-dimensional six-equation two-phase model are described to mod-
eling the hydrodynamic and thermal behavior. Results was compared with classical benchmark
cases available in the literature, finding excellent agreement with both experimental data.

2 MATHEMATICAL FORMULATION

The basic equations used in the present numerical research of two-phase flow are based on
Euler-Euler model for a continuous liquid phase a and a dispersed bubbles phase b. This widely
studied model in the scientific literature has been developed by different authors throughout
the years((Ishii and Hibiki), (Evje and Fjelde, 2002)). The specific formulation to solve a two-
phase flow is two sets of conservation equations for the balance of mass, momentum and energy
for each of the phases. The formulation is focused on one-dimensional flows inside pipes of
constant cross section. The continuity equation, assuming incompressibility of each phases can
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be written as:

∂α

∂t
+∇ · (αUa) =

Erate − Crate
ρa

(1)

where αa denote the phase fraction of a, ρa is the density of the material, and Ua is the phase
velocity. The scalar values Erate and Crate represent the evaporation and condensation rate per
unit volume respectively. Both values are regarded as constant source terms. The conservation
momentum equation is:

∂(αUa)

∂t
+∇· (αUaUa) = −∇· ( α

ρa
(τa+Ra))−

α

ρa
∇pa+αg+

Ma

ρa
+
CrateUb − ErateUa

ρa
(2)

∂(βUb)

∂t
+∇ · (βUbUb) = −∇ · ( β

ρb
(τb +Rb))−

β

ρb
∇pb + βg+

Mb

ρb
+
ErateUa − CrateUb

ρb
(3)

here, both τa and τb are the laminar stress tensor of phase a and b respectively, Ra is the phase
Reynols stress tensor, p is the pressure, andMa,b is the interfacial force per unit volume and will
be the object of specific study in next sections. The last is the gain or loss of momentum due to
phase change. The laminar stress tensor is defined for each phase φ, as

τφ = −ρφνφ[∇Uφ +∇TUφ] +
2

3
ρφνφ(∇ · Uφ)I (4)

where νφ is the molecular kinematic viscosity of the fluid constituting phase φ, and I is the
identity matrix. The phase Reynolds stress tensor is given by

Rφ = −ρφνφ,t[∇Uφ +∇TUφ] +
2

3
ρφνφ,t(∇ · Uφ)I +

2

3
ρφκφ,tI (5)

Where κφ,t is the phase kinematic energy, and νφ,t is the phase turbulent kinematic viscosity.
The following simplifications are proposed for these equations: The turbulence parameters and
the Reynolds stresses are neglected since the one-dimensional model only retains the compo-
nent associated with axial diffusion ∇ · ( α

ρa
τa). These effects are small compared to the axial

convective flow of momentum ∇ · (αUaUa). This does not mean that turbulence effect are
completely neglected, the more significant radial or transverse turbulent diffusion effect are in-
cluded within wall friction correlations if it is necessary. Another approximation is to assume
the both phasic pressure p is equal. The interfacial pressure are also assumed equal to the phasic
pressures as well (Shieh et al.).

Under subcooled conditions the water-steam flow energy equation is solved for only liquid
phase, while vapor is assumed to be saturated everywhere (Kurul and Podowski, 1991). It would
be irrelevant to solve an energy equation for the gaseous phase under these conditions.

The continuous phase energy equation written in terms of specific enthalpy has the following
form:

∂(βhb)

∂t
+∇ · (βhbUb) = − 1

ρb
∇ · (βqb) +

β

ρb

Dp

Dt
+
Eratehsat − Cratehb

ρb
+
qWAW
ρb

(6)
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where qb is the heat flux inside phase b, the last term of the right hand side is the heat flux qW
from the wall with contact area per unit of volume AW . The internal heat flux is defined by the
Fourier law:

qb =
λb
Cp
∇hb (7)

here λb is thermal conductivity and Cp is the specific heat.
The phase continuity equation is rewritten to avoid degeneration of the model to single-phase

case and to kept the phase fraction of each phase between zero and one. Thus, rewriting the
phase velocity in terms of the relative mean and relative velocity (See http://openfoamwiki.net/
index.php/BubbleFoam).

Ur = Ua − Ub;U = αUa + βUb; (8)

we find:
Ua = U + βUr; (9)

Substituting into the phase continuity equation

∂α

∂t
+∇ · (αU) +∇ · (α(1− α)Ur) = 0 (10)

The non-linear term in Eqn. 10 is iterativelly solved in a fully implicit manner provided a
bounded solution for the phase fraction field.

The momentum equation is rewritten in non-conservative form to extract the volume fraction
from the transport terms, leading to

∂Ua
∂t

+∇ · (UaUa) +∇ · ( τa
ρa

) +
∇α
α

(
τa
ρa

) = −∇p
ρa

+ g +
Ma

αρa
(11)

∂Ub
∂t

+∇ · (UbUb) +∇ · ( τb
ρb

) +
∇β
β

(
τb
ρb

) = −∇p
ρb

+ g +
Mb

βρb
(12)

where the stress tensor is defined as in equation 4.

∂Ua
∂t

+∇ · (UaUa) +∇ · (νa∇Ua) + νa
∇α
α

(∇Ua) = −∇p
ρa

+ g +
Ma

αρa
(13)

∂Ub
∂t

+∇ · (UbUb) +∇ · (νb∇Ub) + νb
∇β
β

(∇Ub) = −∇p
ρb

+ g +
Mb

βρb
(14)

2.1 Interfacial Momentum exchange

Different mechanisms of interfacial momentum transfer have been discussed for two-fluid
models in the past. These by studying of dimensionless equation of motion and making compar-
isons with experimental results (Enwald et al., 1996). The total interfacial force acting between
two phases arises from several independent physical effects:

Ma = −Mb = MD +MSL +MWL +MVM +MTD (15)

which represent drag force and non-drag forces (lift force, wall-lubrication force, virtual mass
force and turbulence dispersion respectively) (Pellacani et al.).
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2.1.1 Drag force

This force represents the resistance opposed to the motion of bubbles, drops and particles in
the continuous fluid. Its direction is opposite of the bubbles’s relative velocity. The following
form is used to model interphase drag force acting on phase α due to phase β

MD = Cαβ(Ub − Ua) = Cαβ(Ua − Ub) (16)

where compute Cαβ from the drag coefficient as follow:

Cαβ =
3

4
αβ(β

CD,aρb
da

+ α
CD,bρa
db

)|Ur| (17)

where da and db are the phase particle diameters, and CD,a and CD,b are the drag coefficients
computed with respect to each phase. Many empirical and semi-empirical equations have been
proposed to approximate the effect of drag forces acting in experimental or analytical condi-
tions of bubble or drops around other fluid (Clift et al., 1978). Some of these are Schiller and
Naumman (Schiller and Naumann, 1933), Wen Yu drag model (Gidaspow, 1994), Ishii-Zuber
drag model (Ishii and Zuber, 1979).

On dispersed multiphase flow at low particle Reynolds number, the drag coefficient for flow
past spherical particles may be computed analytically under Stokes’ law.

CD =
24

Reφ
, Re << 1 (18)

where particle Reynolds number to phase φ is computed as:

Reφ =
|Uφ|dφ
νφ

(19)

For particles Reynolds numbers sufficiently large, the drag coefficient becomes independent
of Reynolds number:

CD = 0, 44, 1000 <= Re < 1, 5× 105 (20)

In the transitional region between 0, 1 <= Re < 1000 for spherical particles, both viscous
and inertial effect are important. Hence, the drag coefficient is function of Reynolds number.
Several empirical correlations are available for spherical particles. The best choose is Schiller-
Naumman drag coefficient model bounded for the constant value 0, 44:

CD = max

(
24

Reφ
(1 + 0.15Re0.687φ ), 0.44

)
(21)

The Following section describe the non-drag forces:

2.1.2 Shear-Induced lift force

The lift force (or shear-induced Lift Force) acting on a dispersed phase β passing by a contin-
uous phase α shear field. Mainly acting in the lateral direction. The lift force plays an important
role and has a large effect on the radial distribution of bubbles. This is given by (Drew and La-
hey Jr, 1987):

MSL = αβ(βρbCL,a + αρaCL,b)Ur × (∇× U) (22)
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where CL,φ is the non-dimensional lift coefficient estimated by a empirical correlation. This
contribution to the interfacial momentum term is neglected due to Ur × (∇ × U) vanishes for
one-dimensional models.

2.1.3 Wall-Induced lift force

Due to no-slip condition at the wall, the bubbles near the wall are affected by the Wall Lift
Force (or Wall-Lubrication force) towards the center of the bulk and prevent attaching on the
wall. This force acts in lateral direction away from the wall to avoid accumulation of bubbles
on the wall. This effect is neglected for one-dimensional models.

2.1.4 Virtual mass Force

Virtual mass force or added mass force is produced from the relative acceleration of one
phase respect to the other. For this reason this force is neglected when running steady state
problems. The force is calculated by the following widely-used correlation.

MVM = αβCVMρb(
DUb
dt
− DU b

a

dt
) (23)

where CVM is the virtual mass coefficient, and U b
a is the local liquid velocity evaluated at the

bubble center position.

2.2 Wall Friction Momentum Models

The pressure drop in two-phase flow is closely related to the flow pattern, for this reason,
numerous researchers have been concerned with local pressure drop in well-characterized two-
phase flow patterns. Several phenomenological models were developed for different flow pat-
terns (e.g., annular, slug, and stratified flows). In these specific models difficulties arise associ-
ated to the uncertainties on the flow regime transitions (Ghiaasiaan, 2008).

The pressure drop in two-phase flow has often been predicted by empirical correlations that
remain the most widely applied method. These additional expressions for the frictional pressure
drop are included on momentum equations. These represent the neglected effect of transver-
sal stress tensor acts on the walls of the pipe. One possibility is to use the homogeneous flow
models, but in that case, the equations reduce to drift or mixture models of one momentum
equations. This option are a powerful tool because performs reasonably well in mixed con-
figurations (e.g., dispersed bubbly) (Wallis, 1969). Another choice is Martinelli-Nelson that is
related to separated flow regime.

On two-phase models (e.g., liquid-gas configuration) we know how to compute the pressure
gradient which would occur if the fluid were flowing alone in the pipe (dp

dz f
and dp

dz g
). The

pressure gradient on the fluid denoted by (dp
dz

) is defined as the frictional pressure drop in the
pipe. Most empirical correlations are based on two-phase multiplier approach denoted by the
symbol φ2 with appropriated subscripts (e.g., φf02 to the ratio between the frictional pressure
drop for the two-phase flow respect the to the frictional pressure drop for related single-phase).
Since the strong dependency of the pressure drop with the flow regime for both liquid and gas,
four different combinations are possible. The individual phase pressure drops are calculated
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by apportioning of the two-phase pressure drops (dp
dz

). One possibility for this is the Lockhard-
Martinelli correlation or Chisholm technique improved from Lockhard-Martinelli model.

2.3 Lockhard-Martinelli empirical correlation

The Lockhard-Martinelli (L-M) approach computes the overall two-phase friction pressure
drop in terms of the liquid-alone wall friction pressure drop [see equation 24] and in terms of
the gas-alone wall friction pressure drop dp

dz g
:

(
dp

dz
)2φ = φf

2(
dp

dz
)f (24)

(
dp

dz
)2φ = φg

2(
dp

dz
)g (25)

where φf and φg are the liquid and gas two-phase multipliers respectively. L-M assumes that
the two-phase multipliers are related through the Martinelli parameter defined as:

χ2 =
(dp
dz

)f

(dp
dz

)g
=
φg

2

φf
2 (26)

Lockhart and Martinelli correlated the liquid and gas two-phase multipliers (φf 2 and φg2) as
functions of χ. The Martinelli parameter represents the degree to which the two-phase mixture
behaves as the liquid rather than as the gas.

Each frictional pressure drop (dp
dz f

and dp
dz g

) depends on the flow regimes of the phases (vis-
cous or turbulent) and it is discussed in the follow chapter.

Regarding to the liquid and gas two-phase multipliers (φf 2 and φg
2) compute, algebraic

correlations have been proposed based on the Lockhard-Martinelli approach. One of these was
performed by Chisholm (Chisholm and Laird, 1958):

φf
2 = 1 +

C

χ
+

1

χ2
(27)

φg
2 = 1 + C · χ+ χ2 (28)

where C are computed as a function of both phases regimes(turbulent or viscous). The value of
coefficient Cl,g is defined by the subscripts turbulent t and viscous v for liquid l and gas phases:
Ct,t = 20, Cv,t = 12, Ct,v = 10, Cv,v = 5.

Wallis (Wallis, 1969) proposed a very simple model where two-phase separated without in-
teraction in two concentric cylinders is assumed. The pressure drop in both phases is calculated
from single-phase flow theory. This analytical theory give the following expression:

(
1

φf
2 )

1/n

+ (
1

φg
2 )

1/n

= 1 (29)

where n = 2 for laminar flow, n = 2, 375 to 2, 5 for turbulent flow analyzed on a basis of
friction factor, and n = 2.5 to 3.5 for turbulent flow. Figure 1 compares the gas multiplier using
L-M and (Wallis, 1969).

The Heat Transfer and Fluid Flow Service (HTFS) model (Claxton et al., 1972) propose the
Baroczy correlation to calculate the two-phase multipliers (φf 2 and φg2). This correlation is
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Figure 1: Two-phase multiplier φg to turbulent-turbulent flow

used over a broad ranges of phasic volume fractions, phasic flow rates and phasic flow regimes.
This model compute the coefficients using L-M approach where the correlation coefficient C is
expressed as:

C = −2 + (28− 0, 3G1/2) exp

(
−(log10Λ + 2, 5)2

2, 4−G(10−4)

)
(30)

where G is the total mass flow rate and Λ is the Baroczy dimensionless index defined as

Λ = ρg
ρf

(
µf
µg

)0,2
.

To compute the frictional pressure drop (dp
dz

) in all models, combined the equation 24 through
26, and 28, then:

(
dp

dz

)
2φ

= φg
2

(
dp

dz

)
g

=

(
dp

dz

)
g

+ C

[(
dp

dz

)
f

·
(
dp

dz

)
g

]1/2
+

(
dp

dz

)
f

(31)

In this work the friction pressure drop model based in terms of the two-phase friction multi-
pliers was implemented. The Chisholm theoretical model (Chisholm and Laird, 1958) based
on Lockhart-Martinelli was applied to obtain the individuals phases drop pressures. These wall
shears can be defined from the overall frictional pressure drop and the parameter Z2 as

τf = α

(
dp

dz

)
2φ

(
Z2

β + αZ2

)
(32)

τg = β

(
dp

dz

)
2φ

(
1

β + αZ2

)
(33)
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where

Z2 =
λfρfUf

2 βw
β

λgρgUg
2 αw

α

(34)

These dependent flow regime variable allows to model the whole evaporation range. Here,
αw and βw represent an estimated liquid and gas volume fraction in the wall respectively. For
bubble regime the αw and βw are assumed as αw = α and βw = β.

A comparison between Martinelli-Nelson, Lockhard-Martinelli, and a Homogeneous model
is given in Figure 2(a) in terms of an adimensional number defined as the overall frictional pres-
sure drop over alone-phase frictional pressure drop. Furthermore, 2(b) shows the independent
frictional drop pressures gives by Lockhard-Martinelli for each phase. These results were ob-
tained from (Wallis, 1969) test where a mixture flow (Water-air) is carried on a pipe of 0, 197"
(5, 0038 mm) and 1m of length, 1000 psi (68, 96 bar) of pressure, the values were computed to
3, 22× 106 lb/h ft2 = 4, 3671× 103 kg/s m2.
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Figure 2: Frictional pressure drop models: a) Comparison between diferents models , b)
Lockhard-Martinelli model

2.4 One-phase wall friction empirical correlation

The Darcy-Weisbach friction factor is evaluated from correlations as a function of Reynolds
number according to the hydraulic regime. For laminar flow (0 ≤ Re < 2200) the Darcy-
Weisbach friction factor is calculated according to the equation of Hagen-Poiseuille:

λl = 64/Re (35)

At turbulent flow conditions (Re ≥ 3000), the equation of Colebrook (Cordes, 1969) can be
used:

1√
λt

= −2 log10

(
2, 15

Re
√
λt

+ 0, 27
r

DH

)
(36)
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where ε is r is the surface roughness and DH is hydraulic diameter.

Another turbulent friction factor is given by the Zigrang-Sylvester approximation (Lerchl
and Austregesilo, 1995) to the Colebrook-White correlation, which is

1√
λt

= −2 log10

[
0, 27

r

DH
+

2, 15

Re
[1.14− 2 log10(

r

DH
+

21.25

Re0.9
)]

]
(37)

The last model was implemented on myTwoPhaseEulerFoam solver. To avoid the dis-
continuity at transition region (2200 ≤ Re < 3000) between laminar and turbulent flows, an
interpolation equation was used in this zone:

λlt =

(
3.75− 8.250

Re

)
(λt,3000 − λl,2200) + λl,2200 (38)

where λt,3000 is the turbulent friction factor at Reynold number of 3000, and λl,2200 is the laminar
friction factor at Reynold number of 2200. Figure 3 shows this transition region to different wall
roughness.
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Figure 3: Darcy-Weisbach friction factor model
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3 NUMERICAL IMPLEMENTATION

The Two-phase eulerian model is based on OpenFOAM R© (Open Field Operation and Manip-
ulation) suite solver twoPhaseEulerFoam. This software uses a finite volume discretization
(Versteeg and Malalasekera, 2007), (Ferziger and Perić, 1999) and has free access to the code
under the GNU-GPL license. The work of Jasak (Jasak, 1996) provides a description and im-
plementation of the method especially in the OpenFOAM frame work.

The gauss’ theorem was used to the spatial discretization of equations 10, 13 and 14. Tempo-
ral discretization to perform the temporal integration is a simple order backward-euler. Convec-
tion terms require the faces cell values (φf ) to be calculated from the values in the cell centroid
values (owner φP and neighbor φN cell), which is obtained using different convection differenc-
ing scheme. These operations produces an algebraic version of the transport partial differential
equations (PDE):

aPφP
n +

∑
aNφN

n = RP (39)

This equation can be expressed in matrix form as:

[A][x] = [b] (40)

The PIMPLE (hybrid PISO/SIMPLE) algorithm is chosen for the pressure-velocity coupling.
The standard PISO algorithms is not feasible for simulations of this kind of flows due to the
stringent constraint on time step size imposed by PISO. For this purpose PIMPLE algorithm
was applied. This hybrid coupling has better control convergence stability than PISO. A graph-
ical representation of the solution loop procedure applied in the solver can be seen in Figure 4.

The PDE in equation 40 is represented in OpenFOAM R© code using the classes of statics
functions finiteVolumeMethod (fvm) and finiteVolumeCalculus (fvc). Both operators con-
tain the differential operators (e.g.∇,∇2,and ∂

∂t
) to solve the transport variable on the PDE.

The functions fvm calculate implicit derivatives to return a matrix object. Some fvc functions
calculate explicit derivatives and other explicit calculations to return a geometric field (Guide,
2004).

The main advantage of OpenFOAM’s source code solvers is its equation representation,
whose syntax is really similar to the mathematical one. Following an present an example is
presented to show this relatively ease syntax code on the mass transport equation alphaEqn.H.

alphaEqn.H

{
surfaceScalarField phic("phic", phi);
surfaceScalarField phir("phir", phia − phib);
...
for (int acorr=0; acorr<nAlphaCorr; acorr++)
{

fvScalarMatrix alphaEqn
(

fvm::ddt(alpha)
+ fvm::div(phic, alpha, scheme) 10
+ fvm::div(−fvc::flux(−phir, beta, schemer), alpha, schemer)
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Figure 4: Detail of twoPhaseEulerFoam Model
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);
...

alphaEqn.relax();
alphaEqn.solve();

#include "packingLimiter.H"

beta = scalar(1) − alpha;
... 20

}
}
rho = alpha*rhoa + beta*rhob;

Like the above source code, twoPhaseEulerFoam solver is already implemented in
OpenFOAM software based on the scheme architecture that can be see on Figure 4.

The purpose of this paper is to develop the complete source code to solve one-dimensional
two-phase problems. This is a successful alternative to simplify the mathematical complexity
problem, and achieve good results on physical problems where the geometry is very simply
(e.g. forced convection cooling on pipes).

To reach these objectives, the main operators fvm and fvc were implemented on octave as
part of the octave-of suite(See http://code.google.com/p/octave-of/) and rated in a root file of the
code. All these functions were implemented for one-dimensional flow. The main solver script
calls the same operators and functions as twoPhaseEulerFoam to achieve the transition
state solution.

Figure 4 shows the implementation of wall subcooled boiling model in twoPhaseEulerFoam
based on (Kurul and Podowski, 1991). These models and their implementation will be described
in more depth in the following sections.

3.1 Wall subcooled boiling model

The subcooled boiling phenomena occurs previews to the critical heat flux. The heat flux
applied to the wall is too high to avoid the local evaporation on the nucleation sites, whereas
the bulk flow is kept on subcooled single-phase conditions. The saturation temperature is ex-
ceeded only in the near-wall region. The mean temperature like as the bulk temperature is still
bellow saturation condition. The steam bubbles are generated on the potential nucleation sites
and departures the heated wall toward the core subcooled flow. The bubbles grow on the wall
and leave it when achieve a critical bubble size. The model is detailed below in terms of a liquid
phase l and a saturated steam phase g.

The model developed by Kurul and Podowski (Kurul and Podowski, 1991) define the wall
partition based on the division of the total heat flux applied. This is separated in different terms:
turbulent convection liquid, conduction quenching due to the departing bubbles and evaporation
on the near-wall:

Qtot = Qfc +Qq +Qe (41)

The single phase turbulent convection heat flux transfered to the subcooled liquid near the
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wall A1F is calculated by:

Qfc = A1F · hfc(Tw − Tl(nw)) (42)

where Tw is the wall temperature and Tl(nw) is the liquid temperature near the wall. In the
following section we describe the calculation of these variables. A1F is the wall area fraction
where the convection heat flux occur. The value of A1F is the remaining part of the wall
A1F = 1−A2F . Where A2F is the wall fraction area influenced by quenching. The wall heat
transfer coefficient hfc was computed by empirical correlations used by (Kurul and Podowski,
1991).

hfc = StρlCpl|Ul| (43)

where the Stanton number is computed by another empirical correlation:

St =
λf

2

1− 1, 783λf
(44)

the suggested fanning friction factor λf for pure liquid is

λf =
1

ln(R̃eλf )

0,435
+ 5.05

(45)

and the constant R̃e is computed by:

R̃e =
3, 2586× 10−4|Ul,bulk|

νl
(46)

The evaporation model is schematically shown in Figure 5. In a first step, the wall super-
heated (Tsup = Twall − Tsat) is guessed assuming that the total heat flux is dedicated to single-
phase convection [Qw = Qfc and (A1F = 1)] with a temperature defined by (Tsub = Tsat− Tl)
in the near-wall. At the end of chapter discuss about how to define the liquid temperature close
to the wall from the mean value. The one-dimensional model misses the variables behavior on
traversal section. For this, the temperature profile is not defined such as in CFD models.

Tsup =
Qw

hfc
− Tsub (47)

Whit this temperature predictor the model performs the different model steps and compute
the subcooled parameters. Under subcooled condition in the computational on each near-wall
cell, the following parameters are computed: For bubble departure diameter dw several correla-
tions can be applied. At high subcooled boiling (Tsub > 2K) the (Unal, 1976) correlation was
applied. In the present work, a modified (Unal, 1976) correlation by (BOREE et al.) was used.

dw =
2, 42 · 10−5p0,705A√

BΦ
(48)

where the constant values A and B vary with wall temperature and material properties and:

Φ =

{ (
Ul,bulk

0,61

)0,47
if Ul,bulk > 0, 61;

1 if Ul,bulk < 0, 61

S.F. CORZO, S. MARQUEZ DAMIAN, D. RAMAJO, N.M. NIGRO98

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



In the other hand, for low subcooled boiling the Tolubinsky correlation (Tolubinsky and
Kostanchuk, 1970) or linear interpolation was used.

dw = 0, 0014exp(−Tsat − Tl
45

) (49)

The surface density of active nucleation sites N depend mostly on the superheated potency.

N = (210Tsup)
1,805 (50)

The bubble departure frequency can be estimated by the analytical results of (Ceumern-
Lindenstjerna, 1997):

f =

√
4(ρl − ρg)g

3ρldw
(51)

The wall area fraction where evaporation occurs was estimated by Del Valle (Del Valle and
Kenning, 1985) as function of the bubble detachment diameter:

A2F = πNdw
2 (52)

Whereas the convection heat flux dominates on the remaining part of the wall A1F = 1 −
A2F . Once assessed all subcooled parameter the model describes the nucleate wall boiling
process as the periodic releases of bubbles by each nucleation sites. This was computed by the
nucleation site density. Thus, the mass flow evaporation ratio is:

Erate =
π

6
dw

3Nfρg (53)

The quenching wall heat transfer coefficient was calculated based on analytical solutions by
(Del Valle and Kenning, 1985):

hq =
2λl√
π
f

λl
ρlCpl

(54)

Finally, the Newton iterative loop (see figure 5) computes the total wall heat transfer:

Qtot = Eratehlg + (A1Fhfc + A2Fhq)(Tsub + Tsup) (55)

where hlg is the vaporization enthalpy and the first term is the total heat transfer by evapora-
tion. With this values the wall temperature is re-computed to adjust its value with the total heat
transfer.

When the steam bubbles move through the subcooled liquid, they condense, releasing the
latent heat. For subcooled flow, the condensation only occurs away from the wall. The intefacial
mass transfer related to condensation of vapor bubbles in the bulk is defined as:

Crate =
hc(Tsat − Tl)Alg

hlg
(56)
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here hlg is the evaporation enthalpy and Alg is the interfacial area per unit volume. The heat
transfer coefficient for condensation hc was developed by Wolfert (Wolfert et al., 1978) assum-
ing bubbles are at saturated conditions:

hc = ρlCpl

√√√√π

4

|Ug − |Ul|
Ds

λl
ρlCpl

1(
1 + λl

t

λl

) (57)

whereDs is the bubble saturated diameter and λlt is the turbulent thermal conductivity assumed
equal to λl for one-dimensional problems. The interfacial area per unit volume ai correspond
to the area of the gas bubbles into the liquid. For spherical bubbles, Alg is proportional to the
void fraction and inversely proportional to the bubble diameter.

Alg = 6
α

Ds
(58)

The issue refereed above, about the temperature description in near-wall region will be solved
by empirical correlations for temperature and momentum variables. On the other hand the tur-
bulent regime and the non-developed flow impedes this assignment. To this end, in future
researches we propose different alternatives to approach the problem. The main alternative will
be define an relationship between the main temperature computed by the enthalpy equation and
a wall temperature defined easily by a theoretical study about evaporation flows.

In follow chapter we propose to use experimental test from Bartolomej (Bartolomej and
Chanturiya, 1967) experimental test to compare the evaporation model applied into a complete
steady state solution. So that, in appendix section we presents CFD numerical results using
CFX software.
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Figure 5: Detail of evaporation and condensation model
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4 NUMERICAL BENCHMARKS

In this section we analyze the numerical benchmarks presented on the literature with the aim
of study the behaviour of the code implemeted.

4.1 Water Faucet Test

The simplified physical phenomena where the separation of air and water by gravity in a
vertical tube proposed by Ransom (Ransom and Mousseau, 1991) is a well-known benchmarks
problem (Hewitt, 1983). The water Faucet problem has been extensively studied by several
researchers to check the capability of the two-fluid models.

The test consists of a vertical tube of 12m length and 1m diameter. The pipe is assumed to
be adiabatic and in the initial state is filled with a homogeneous two-phase mixture (air, water)
of constant void fraction of α = 0, 8; The boundary and initial conditions are summarized on
table 1 and the physical phenomenon is illustrated schematically in Figure 6.

The presented results have been achieved using a time step of (1 × 10−4 sec.) except cases
that uses high order divergence scheme where the courant number limitation make impossi-
ble to use that time step. Simulations were carried out with three correctors of PIMPLE loop
(nCorrectors = 3), two alpha correctors (nAlphaCorr = 2) and enables the alpha correc-
tion on last PIMPLE loop.

g

Inlet condition Ul, Ug 

Pressure outlet p=1bar

Figure 6: Detail of water faucet test

The numerical results obtained can be compared to the an analytical solution:

{
α = 1− β·vl,0

vl,0
;

vl = (v2l,0 + 2gx)1/2
x < (vl,0t+ 1

2
gt2)

and otherwise β = 1− α.

The water faucet assumes that interfacial momentum interaction are negligible. When the
simulation starts (t = 0), a gravity field (g = 9, 8 m/s2) is applied and this causes the water
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Table 1: Details of Water Faucet Problem

Geometric details
Length (m) 12

Diameter (m) 1
Initial Conditions Boundary Conditions
T (C) 50 Tinlet(C) 50
p(Pa) 105 poutlet(Pa) 105

α 0.8 α 0.8
ul(m/s) 10 uinlet,l(m/s) 10
ug(m/s) 0 uinlet,g(m/s) 0

column to accelerate. Due to the acceleration, a contact discontinuity propagates downwards
until a steady state is reached when the discontinuity arrives at the outlet.

This problem was simulated with tree different meshes of 20, 120, 600 uniform lineal volume
controls. In Figs. 9 a) and b) the numerical and analytical solutions for the void fraction and
water velocity are shown at the instant (t = 0.5sec.).
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Figure 7: Analytical and numerical comparison at (t = 0.5seg.) of water faucet case: a) Void
Fraction, b) Liquid velocity

Figure 8 correspond to several times in which the discontinuity is still within the tube. Al-
though agreement between numerical and analytical solutions in a transient state is not expected,
these figures show that the velocity of propagation of the discontinuity is well reproduced. Be-
sides, numerical solutions for water velocity and void fraction approach analytical values when
the number of volume controls is increased, capturing the contact discontinuity very well.

The problem of well-posed boundary conditions is an essential question in the water faucet
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Figure 8: Analytical and numerical transient of water faucet case: a) Void Fraction, b) Liquid
velocity, c) Gas velocity and d) pressure
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test. An unconditionally well-posed problem is not achieved due to the fact that liquid and gas
velocity are unequal and with opposite directions. For this reason, the numerical result shows
instabilities that grow when the mesh size is refined (Morales-Ruiz et al., 2012).

Finally in Figure 9 shows the comparison between twoPhaseEulerFoam and octave myt-
woPhaseEulerFoam emulator.
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Figure 9: Analytical and numerical comparison at (t = 0.5seg.) between myTwoPhaseEuler-
Foam and octave emulator to the water faucet case: a) Void Fraction, b) Liquid velocity

4.2 Horizontal particle transport

The particle transport is present in many industrial applications, for this reason we propose
a simple test with analytical solution to validate the model in this problem. Figure 12 show a
schematic representation of the physical problem. The test analyze the steady state solution for
solid particles in a free stream of air. The problem allow us ascertain the drag force influence
between continuous and dispersed phases. The analytical solution for dispersed phase velocity
was developed by (Moukalled and Darwish, 2002):

ln[Ub,inlet − Ua] +
Ub,inlet

Ub,inlet−Ua
= 3

8
rhob
rhoa

Cd
da
z + ln[Ub,inlet − Ua,inlet] +

Ub,inlet

Ub,inlet−Ua,inlet
(59)

The test parameters are summarized on table 2 and the dispersed phase is modeled with
particle radius of 1mm. The density relationship is ρd/ρc = 2000. The present results have
been carried out with time step of (1× 10−4 sec.), PIMPLE loop using (nCorrectors = 3) to
the solver scheme, and two alpha correctors (nAlphaCorr = 2) for mass equation. The alpha
correction was enable on last PIMPLE loop. The gravity forces and another interfacial forces
were neglected. The drag force of the disperse and the continuous phases used was a constant
value of Cd = 0, 41 and the regime variable number computed with Schiller-Naumman model.

Two different meshes of 20 and 100, uniform lineal volume controls were used. Figure 12
shows the numerical solutions for the dispersed velocity along the pipe like as the Schiller-
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Naumman drag coefficient.

L

d

Inlet condition 
Ul , Ug, 

Outlet 
condition  p

Figure 10: Dispersed phase velocity and S-N drag model

Table 2: Details of Particle Transport Problem

Geometric details
Length (m) 2

Diameter (m) 1
Initial Conditions Boundary Conditions

α 1× 10−5 α 1× 10−5

ucontinous(m/s) 5 uinlet,l(m/s) 5
udispersed(m/s) 1 uinlet,g(m/s) 1
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Figure 11: Dispersed phase velocity and S-N drag model

4.3 Evaporation model test

For the validation of the evaporation model capabilities, the Bartolomej (Bartolomej and
Chanturiya, 1967) test was solved. The continuous temperature field Tl, theUl andUg velocities,
and the void fraction α in the pipe was loaded from steady state results obtained in Appendix.
The CFD script to approach the RPI parameters and the vapor mass flow generated on the wall
was implemented in octave. The code loads the above mentioned variables on the near-wall
cells and running the evaporation model in each one of these cells.

Figure 12 shows the comparison between the obtained results and CFX model described
on Appendix. To achieve the good agreement showed, the evaporation models were slightly
modified and it is explained on Appendix section.
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Figure 12: Evaporation mass flow rate on heated wall: a) Developed model, b) CFX
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5 CONCLUSIONS

A one-dimensional two-phase Euler model is proposed in this paper. A depth analysis about
mass and momentum interfacial iteration was carried out for the most used empirical corre-
lations. This correlations performs well for dispersed bubbly regime presented on subcooled
evaporation. The governing equations for the two-phase model are based on Finite Volume
Methods and implemented in OpenFOAM R© suit. The Octave-of model was successfully imple-
mented based on twoPhaseEulerFoam solver. The results presented reveals a good agreement
respect to experimental dates. Friction looses models are required to recover the misses of
transversal shear stress in one-dimensional domains. Finally, we present a detailed description
of the evaporation and condensation model for subcooled flows. This CFD approach developed
by Kurul and Podowski (Kurul and Podowski, 1991) was implemented and compared with ex-
perimental results. Regarded to the complete implementation of RPI model on one-dimensional
solver a relationship for the near-wall temperature is needed. Predict the temperature close to
the wall will be treated in following papers.

Three benchmarks test was solved to validate the model. The water faucet shows the influ-
ence of the gravity force in the numerical resolution. The drag force influence on the disperse
momentum equation has been studied on a particles transport test. The subcooled boiling evap-
oration rate was tested in a heated pipe where compare the local parameters with CFX results.

More benchmark tests must be tested in the future including a complete analysis of stability.
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6 APPENDIX

6.1 Bartolomej test benchmark

The Bartolomej experiment was performed in a 2 m long heated tube with diameter of 15, 4
mm was selected. The heat flux on the wall was 3, 8 × 105 W/m2. The mass flow was 900
Kg/sec/m2 and the temperature inlet condition Tsub = 58, 2K. An outlet pressure of 4.5MPa.
The model was represented by a 1/6 of the total section. Simulations were carried out using a
3D grid of 87450 cells developed completely in CFX. This code is based on the Finite Volume
Method. Use a semi-implicit arrangement for the pressure linked equation (SIMPLE algorithm)
to the pressure-velocity coupling. Shear stress transport turbulence model was used for the
continuous phase. High order discretization scheme for momentum equation and first order
upwind for turbulence quantities was used here (Ansys, 2006). The following models were used
follow the Krepper (Krepper et al., 2007) recommendations: The Sato model for the bubble
induced turbulence, the Grace model of the interfacial drag (Clift et al., 1978), Tolubinsky
model for the bubble departure diameter. The Non-drag forces was modeled by: Tomiyama
model for lift forces, Equation 23 for Virtual mass forces where CVM = 0, 5, Favre-averaged
turbulent model for the turbulent dispersion force and Antal approach (Antal et al., 1991) for
the wall lubrication force (with Antal coefficient: C1 = −0, 025 and C2 = 0, 075).

Figure 13 shows the water temperature in the bulk and the void fraction distribution. This
sumariezed results show the good agreement for CFD models. The results was compared to an
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Figure 13: Numerical solution of Bartolomej test: a) Temperature and b) Void fraction distribu-
tion.
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advanced code for simulation of design basis in light water reactors named ATHLET (Lerchl
and Austregesilo, 1995). This code developed by Gesellschaft fur Anlagenund Reaktorsicher-
heit (GRS) is a one-dimensional, two-phase fluid-dynamics models based on a five-equation
model. The results are showed on figure 14. The void fraction prediction on the outlet sur-
face presents a good agreement respect to experimental results. The axial distribution of void
fraction is slightly different to experimental results. This might lie in interfacial momentum
correlations.
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Figure 14: Numerical solution of Bartolomej test: Averaged a) Temperature and b) Void fraction
distribution.
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