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Abstract. The implementation of a Lagrangian particle transport model in non-homogeneous turbulent
flow is presented. The model proposes one-way interaction between the continuous and the discrete
phases where the behavior of the continuous one is previously solved with other CFD software. Particle
dynamics include four forces terms: buoyancy, inertial, drag and added mass. Also, a Discrete Random
Walk (DRW) formulation is added to model the changes on the trajectory of the particles due to
turbulence.

The temporal integration is carried out using a Runge-Kutta-Felhberg (RKF) integrator, and a novel
analytical integrator is used to solve particle-wall collisions. To manipulate the time-step on each particle,
a three-layer filter is developed: an user layer, a RKF layer and a physical layer determined by the particle
relaxation time. Also, it is proposed an efficient implementation that uses shared memory techniques to
parallelize the execution.

To validate the developed code, laminar and turbulent academic tests are presented. Finally,
experimental test data from a pilot plant are reproduced using the in house code along with a commercial
CFD software, showing a good agreement with data and a radical improvement in time computing
comparing with the CFD software.
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1 INTRODUCTION AND MOTIVATION

Particle transport simulation has found uses in many scientific fields and industrial
applications. Atmospheric dispersion of pollutants, sediment transport in rivers, drug delivery
in human airways, nuclear fission products transport are examples where an accurate description
of particle transport is of great practical importance.

Simulating this phenomenon is of special interest in turbulent flow systems. Turbulence can
be simulated using Direct Numerical Simulation (DNS), but this option is computationally cost
prohibitive for high Reynolds numbers. Alternatively, Large Eddy Simulation (LES) techniques
are much more computationally efficient as they solve the large scale flow structures (most of
the kinetic energy) but employ a sub-grid turbulence model for the small scales (Batcherol,
1953).

Current commercial CFD codes has limited capabilities for lagrangian simulation. For
example, the massively used ANSYS-CFX package has not implemented a random walk model
for LES turbulence modeling. In addition, coalescence models are only available for euler-euler
multiphase modeling. Finally, the computing times required become excessive for industrial
problems. Then, it is necessary developing an own implementation, with enough versatility and
control, to solve engineering problems including those mentioned features.

In section 2 physical and numerical models are explained in deep. Coalescence phenomena
are not yet considered, leaving it for future works. Code validation in front to academic tests
are showed in section 3. In section 4 experimental data from a pilot plant facility of a oil-water
gravity separation tank are reproduced by means of the in house code and a CFD commercial
package. Finally, section 5 aboard the most relevant conclusions.

2 PHYSICAL AND NUMERICAL MODELS

2.1 Turbulent Flow Model

The numerical simulation of particle transport in a fluid flow requires modeling the
continuous phase (the driven phase) and the discrete phase, the particles (the advected phase).

If the concentration of particles is high, the particle-particle interaction and its effect on
the fluid (four-way coupling) must be modeled. For intermediate concentrations, particle
interaction may be neglected (two-way coupling). For low concentrations, the fluid flow is
not considerably influenced by the particle flow (one-way coupling) (Hryb et al., 2009).

According to Elghobashi (Elgobashi, 1994), the volume fraction of particles (αp) defines the
type of interaction:

• αp < 10−6: one-way coupling

• 10−6 < αp < 10−3: two-way coupling

• 10−3 < αp: four-way coupling

In the present work, a dilute concentration is assumed (αp < 10−6), the flow does not
depend on the particle dynamics, therefore it can be solved in an uncoupled way. This allows
calculating the fluid and the particle flow in separated stages. First, the fluid is calculated using
CFD software and then the particle transport is simulated by the code developed in this work.
This strategy is called Eulerian-Lagrangian one-way coupling, which only requires that the
continuous phase states may be calculated in the particle position to couple the models.

The model of the continuous phase assumes viscous incompressible flow and constant fluid
properties (density, viscosity). Turbulence is modeled by Large Eddy Simulation (LES).
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The governing equations for LES are obtained by filtering the time-dependent Navier-Stokes
equations. The filtering process filters out the eddies whose scales are smaller than the grid
spacing used in computations.

∇ · vf = 0 (1)

ρf
dvf

dt
= ρf

∂vf

∂t
+ ρfvf · ∇vf = −∇p+∇ · [(µf + µt)(∇vf +∇vf T )] + ρfg (2)

µt

ρf
= (Cs∆)2|(∇vf +∇vf T )| (3)

with the Smagorinsky constant Cs = 0.18. Equation 3 is the Smagorinsky subgrid-scale
model for LES, where the approximation νSGS ∝ l qSGS is used, being l the length scale of
the unresolved motion (usually the grid size ∆) and qSGS the velocity of the unresolved motion
(ANSYS, 2010).

2.2 Particle transport Model

Particle transport modeling is a type of multiphase model, where particles are tracked
through the flow in a Lagrangian way. The tracking is carried out by a set of ordinary differential
equations in time for each particle, which consists on equations for position and velocity. These
equations are then integrated using the fourth-order Runge-Kutta-Fehlberg (RKF) method,
which solves not only an initial value problem (IVP), but also a system of IVP, adapting the
time-step to control the solution error(Burden and Faires, 2003).

For particle transport the second order differential equation
d2xp

dt2
= ap must be solved. It

can be converted into a first order differential equations system doing:

dvp

dt
= ap (4)

dxp

dt
= vp (5)

x(t = 0) = x0

v(t = 0) = v0

Following the Newton law, the acceleration of the particle can be calculated according
to(Hryb et al., 2009):

ρp
dvp

dt
= Fi + Fb + Fd + Fm (6)

Four forces acting on the particle are taking into account:

• Fi = ρf
dvf

dt
is the inertial force which depends on local fluid properties.

• Fb = (ρp − ρf )g is the buoyancy force due to the action of gravity acceleration.

• Fd =
3

4

ρf

dp
CD(vf − vp)|vf − vp| is the drag force due to the action of the fluid opposing

to the particle trajectory.
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• Fm = −ρ
f

2

d(vp − vf )

dt
is the added mass force due to the fact that the fluid near the

particle is also being accelerated.

The drag coefficient depends on the particle Reynolds number Rep = ρfdp|vf −vp|/µf and
can be estimated according to experimental correlations:

CD =
24

Rep
Rep < 0.1 (7)

CD =
24

Rep
+

3√
Rep

+ 0.34 0.1 < Rep < 1000 (8)

CD = 0.445 Rep > 1000 (9)

So, to solve 4 and 5 using RKF, the function ap can be expressed like

ap(t,x,v) = 1

ρp+ ρf

2

{3
2
(∇·[(µf+µt)(∇vf+∇vf T )]−∇p)+(ρp−ρf )g+3

4
ρf

dp
CD(vf−vp)|vf−vp|}

(10)

2.3 Discrete Random Walk

In laminar flows, the path of a particle is deterministic (there is a unique path for a particle
injected at a given location in the flow). In turbulent tracking, changes in the trajectory of the
particles due the turbulence fluctuations are taking account using a discrete random-walk model.
As a result of this, two particles with the same initial state can follow separate trajectories.

Once solved RKF and found dt, each particle position is updated according to(Oksendal,
2000)

xpnew = xp +∇(
µt

σρf
)dt+ w

√
2 dt

µt

σρf
(11)

where w is a random gaussian variable with values between [−1, 1] and mean zero and
σ = 0.7 is selected from Tominaga(Tominaga and Stathopoulos, 2007).

2.4 Geometry Discretization and Implementation Details

In this work, equations 1, 2 and 3 are solved using the software ANSYS-CFX® v13.0 which
uses an element-based Finite Volume Method. This solver requires a FVM mesh (typically
an hybrid mesh) to calculate the state of the continuous phase on cell-centers. After that, the
Lagrangian stage must be done, where the particles trajectory are calculated. If it is considered
steady flow this process must be done only once. On the other hand, for unsteady flows, N
states of the continuous phase must be calculated and then, for particle transport two options
are available: a) transport the particles for each state and then average its trajectories, b) average
the flow states and calculate the particles trajectory on the averaged flow.

The implementation developed by the authors is written in C++ using the Object Oriented
Paradigm (OOP) and paralleling the execution over shared memory with the library OpenMP.
This code is an add-on of the library PFEM2 previously presented by the authors (Gimenez and
Nigro, 2011).
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The code manages only Finite Element (FEM) triangular (2d) or tetrahedral (3d) meshes,
then mesh conversions must be done, keeping one-to-one the relationship between the points of
the FVM mesh and the nodes of the FEM mesh to preserve the quality of the continuous phase
representation. Cell-centered states also must be projected to nodal values using averaging
algorithms.

To update its position and velocity, each particle must know the element in the mesh where it
is placed. Identifying the element, the nodal values (vf , p and their derivatives) are interpolated
in the particle position xp. With this information equations 4 and 5 can be solved.

2.5 Particle-Wall Collisions

In confined flows, particle-wall collisions become important. This section explains how the
algorithm manages that event.

Normally, to find the new particle position and velocity, the RKF algorithm calculates
evolution of the variables evaluating in different positions and using different velocities. After
that, it calculates an average of those evolutions and updates the unknown variable.

To detect when the particle is near from any wall, elements which contain one or more nodes
over the boundary are identified. When the algorithm RKF tries to calculate particle states
evolution on one of these elements, it is swapped to an analytical integrator for that particle in
the current time-step. This analytical integration has the feature of managing the collision with
the walls, something that RKF can not do because there is a discontinuity in the velocity.

The analytical integrator tries to advance the entire time-step following a straight line
(particle acceleration is considered null inside boundary elements). If it detects that the new
particle position is in another element or outside the geometry (any area coordinate is negative),
it searches the time of the crossing or the collision, using line-segment intersection in 2d
(Equation 12) or line-plane intersection in 3d (Equation System 13).

(1− α)x0 + αx1 = (1− β)P0 + βP1 (12)
(1− α)x0 + αx1 = (1− β − γ)P0 + βP1 + γP2 (13)

Once it is solved the equations system 12 or 13, the exit time is calculated following 14.

texit = α dt (14)

If the particle collisions with any wall, it is calculated the normal to the surface n in the exit
point, and the velocity of the particle is updated following

vpt1 = ct v
p
t1 (15)

vpt2 = ct v
p
t2 (16)

vpn = cn v
p
n (17)

where vpn = vp · n, vpt1 = vp · t1, vpt2 = vp · t2, and ct and cn are the tangential reflection
coefficient and normal reflection coefficient respectively. Those coefficients allow to simulate
conditions like wall rugosity (if they are chosen randomly), or free-surface (choosing cn = 0).

On the other hand, if the calculated exit point is a crossing one, the particle enters into a new
element and keeps its velocity. Also, in outlet flow boundaries, if a collision is detected and the
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surface element was identified as out_ele (it belongs to outlet), the algorithm detects that the
particle has left the domain, removes it, and stores that event.

Finally, the algorithm continues until completing the time-step. Figure 1a shows a particle
trajectory in one time-step, whereas the Figure 1b presents how the algorithm solves the
collision of the particle with the wall. RKF ElementAnalytical ElementColission PointCrossing Point

(a) (b)

Figure 1: 1a: Trajectory of the particle with the analytical algorithm. 1b: Treatment of the
collision with the wall, the incidence angle θ is changed to θ + ω after collision.

2.6 Selecting time-step

A correct time-step selection becomes very important when high efficiency on computing
times is wanted.

The first layer of selection of the time-step (∆t) is decided by the user. Typically, the user
chooses some ∆tuser to save particle data, but this time is usually too long and the algorithm
may obtain wrong results. RKF allows to control the time-step truncating the local error (usually
∆tRKF < ∆tuser). Although RKF has control of the time-step warrantying some level of error,
sometimes this ∆tRKF is also excessive to represent the dynamics of the problem. Because of
that, the particle response time or particle relaxation time (τ p) is used as initial time-step to
carry out the integration. It characterizes the time required for a particle to adjust or relax its
velocity to a new forces condition. It is an indication of the ability of the particle to quickly
adjust to a new environment or condition. It depends on the mass and mechanical mobility of
the particle, and is not affected by the external forces acting on the particle.

This value is calculated like:

τ p =
ρpdp2

18µf
, Rep < 0.5 (18)

τ p =
4

3

ρpdp

CD|vf − vp|
, Rep > 0.5 (19)
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Summarizing, the ∆t selection algorithm is the next:

Algorithm 1 - Time Selection Algorithm
T = 0
while T < Tfinal
t = 0
dt = τ p

while t < ∆tuser
do RKF
if (erkf < tol)
t = t+ dt
δ = 0.84( tol

Rerror
)0.25

if(δ <= 0.1)
dt = 0.1 ∗ dt;

else if(delta >= 4)
dt = 4 ∗ dt;

else
dt = δ ∗ dt;

if(dt+ t > ∆tuser)
dt = ∆tuser − t;

end while
T = T + ∆tuser

end while

3 VALIDATIONS

3.1 Wooden Sphere in Water

To validate the implementation of the model, the trajectory of a wooden sphere in water is
analyzed following the example presented in (Hryb et al., 2009) where the analytical solution
is presented. Test conditions are:

• vpo = −8[m/s] (along g direction)

• dp = 0.05[m]

• ρp = 700[kg/m3]

• ρf = 1000[kg/m3]

Comparison between numerical results obtained with the in house code with analytical results
is reported in the Figure 2.
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0 0,2 0,4 0,6 0,8 1Time [s]−0,5−0,4−0,3−0,2−0,10height [m] Numerical ResultsAnalytic results
Figure 2: Trajectory of a wood sphere in water.

3.2 Particles into a Cylindrical Couette Flow

Another test to validate the implementation is to analyze the trajectory of particles in a
laminar flow into a rotating cylinder. Figure 3 presents the case.

Figure 3: Description of the test. h = 5[m], R = 0.5[m]

Acceleration along z axis is constant due to the forces acting in this direction are constant
(Fz = Fb − Fw where Fb is the buoyancy force and Fw is the weight). Terminal velocity is

assumed to be reached instantaneously with the value Vt =
√

4|g|dp
3Cd

(ρ
p−ρf
ρf

).
Along radial direction the forces acting on the particle depend on r (Fr = Fp + Fcp + FD

where Fp is the pressure gradient force, Fcp is the centripetal force and FD is the drag force).
It can be demonstrated that instantaneous velocity along radial direction has the expression:

Vt(r) =
√

4ω2rdp

3Cd
(ρ

p−ρf
ρf

).
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Two tests are presented. Fields p and Uθ presented in the Figure 3 are used, and physical
parameters dp = 0.001[m], µf = 10−5[Pa s] , ρf = 1000[ kg

m3 ], g = −10[m
s2

]z giving a Reynolds
number greater than 1000 (it can be used Cd = 0.445). The Table 1 summarizes the results
obtained where a relative good agreement is achieved.

ρp[ kg
m3 ] Analytical Vt (z-axis) Numerical Vt(z-axis) Relative Error

2000 −0.17309[m
s

] −0.1731[m
s

] 0.005%
750 0.087[m

s
] 0.0865[m

s
] 0.025%

Table 1: Comparison between analytical and numerical terminal velocities.

Figure 4 shows the trajectories of the particles. If the density of the particle is smaller than
the density of the fluid the particle floats and it is centrifuged, otherwise it sediments and its
trajectory radius diminishes.

(a) (b)

Figure 4: Trajectory of the particles. (a): XY plane. (b): height.

4 REPRODUCING EXPERIMENTAL DATA IN A PILOT PLANT

In secondary oil extraction big quantities of water are employed, and it is called process
water. This process water is injected into oil wells to help to extract crude by drag and buoyancy
forces. The process water must not be thrown again in the environment, and this is why it must
be processed to separate the crude that it contains. This process is carried out with buoyancy
equipment called skimmer, which basically consists of a big tank with internals where the water-
oil mixture enters and the crude is separated by buoyancy and collected on the free-surface while
the water is removed from the bottom.

A key parameter to determinate the efficiency of this equipment is the called characteristic
residence time, which is calculated with teffr = Veff/Q, where Veff is the tank effective volume
and Q is the inlet flow rate (if tr is big the efficiency grows because the crude has more time
to float by buoyancy). However, for experimental cases, this teffr is far from the theoretical tr
because there are dead zones (where the fluid has very small velocities) and recirculation zones.
This reduces Veff and diminishes teffr .

In the subsection 4.1 numerical simulations are compared with experimental results obtained
from a pilot skimmer built to evaluate some gravity separation technologies.
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4.1 Skimmer computational model

Figure 5a presents the geometry which models the studied skimmer. The dimensions of the
skimmer are 0.8[m] of radius and 1.06[m] of height, then V = 2.13[m3]. The flow states (v,
p and µt) were obtained using a mesh with more than two millions of hexahedrons, impossing
Q = 500[l/h] = 0.5[m3/h]. Figure 5b shows the magnitude of the velocity field in a slice. Note
that the outlet flow is distributed 95% through the bottom pipe and 5% through the upper pipe.

(a) (b)

Figure 5: Skimmer computational mesh and a slice with the magnitude of the velocity calculated
by CFD software. The skimmer has one inlet pipe at left, and two outlet pipes at right.

4.2 Residence Times of a Saline Pulse

The upper pipe is closed in this set of experiments, but this is not a problem because its
influence on the data obtained is small. In the Figure 6 a set of experimental data measuring
the conductivity of the outflow is presented. Two big peaks appear around t = 170[s] and
t = 350[s]. Another peak is found around t = 550[s].

Figure 6: Conductivity measured in the bottom pipe.

The computational simulation of the residence times of a saline pulse are carried out by
particle transport. A set of around 15000 particles are seeded on random positions in the inlet
pipe and is supposed steady flow for the continuous phase. Physical parameters are:

J.M. GIMENEZ, D. RAMAJO, N.M. NIGRO160

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



• ∆tuser = 20[s]

• µf = 8.89 10−4[Pa s]

• ρf = 1000[Kg/m3]

• ρp = 1000[Kg/m3]

• dp = 5 10−6[m]

The results obtained with the in house code (using a mesh with seven millions of
tetrahedrons) are compared with those obtained with the CFD software (using a mesh with
two and a half millions of hexahedrons) and they are presented in the Figure 7. Note that both
meshes have the same number of nodes or points.

Figure 7: Number of particles detected on outlet pipes at each time. #top and #bottom are
the number of particles detected with the in house code and #top-cfx and #bottom-cfx with
ANSYS-CFX software.

Both the CFD software and in-house code reproduce the first two peaks observed on
experimental results. However, the third peak is not clearly reproduced on both calculations.

A extended simulation was done to estimate the effective residence time and compare it
with the theoretical residence time tr = V/Q = 15345[s] ≈ 4h15′. In the simulation, 14316
particles were seeded and it was executed until the 99% of the particles had left the skimmer
(approximately 5V/Q).

The probability density function dp(t) is calculated as dp(t) = pacum(t)∫∞
0 pacum(t)dt

, then the

expected value of dp can be calculated as tmean =
∫∞
0
t dp(t)dt. Using these expressions,

teffr was calculated, obtaining teffr = 15246[s]. This result has an error of about 1%. Figures 8a
and 8b show the calculated statistical functions.
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(a) (b)

Figure 8: Statistics functions for the residence times.

Finally, Figure 9 shows some snapshots with the particles positions in the skimmer at
different times.

(a) (b) (c)

(d) (e) (f)

Figure 9: Snapshots with particles position at different times. Times (from left to right) are:
0[s], 20[s], 60[s], 100[s], 140[s] and 180[s].

4.3 Computing Times

The in house code allows to parallelize the execution using shared memory with the library
OpenMP.

Tests of the in house code were done with a Intel i7-2600k processor (on 4 cores) and the
CFD Software test was done with a Intel i7-3930k processor (on 5 cores). Performance tests1

for Intel i7-3930k give a factor 13.55 while for Intel i7-2600k they give 8.89, this means that
3930k is 1.52x faster than 2600k (normalized time takes into account this factor).

Both cases simulated 380[s] of real time, tracking around 15000 oil particles (ρp = 900[Kg
m3 ])

in the skimmer presented above.
1http:\www.cpubenchmark.net
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• In house code:
CPU Time: 1322[s] - Normalized Time: 1322[s]

• ANSYS-CFX:
CPU Time: 25200[s] - Normalized Time: 38304[s]

This result shows that the in-house code is 30× faster.

5 CONCLUSIONS

Particle transport has been developed using the Eulerian-Lagrangian one-way coupling
approach and considering a DRW for LES.

In the current implementation, the time integration is carried out by a Runge-Kutta
integration with time adaptability (Runge-Kutta-Felhberg). Also, a novel algorithm to manage
particle-wall collisions is proposed, and a time-step selector is presented to achieve high
performance on computing times.

The implementation, coded in OOP-C++, was validated with an analytical solution and with
experimental results obtained from a pilot plant. Comparing with commercial software, the
computing times achieve a significant improvement and numerical results are similar to those
obtained with it.

Having a in-house code allows to modify it and include new physical models, such as the
coalescence phenomena, particle-particle collisions or random walk on velocity.
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NOMENCLATURE

ap Particle acceleration

αp Particle volume fraction

g Gravity aceleration

µf Fluid viscosity

µt Turbulent viscosity

ρf Fluid density

ρp Particle density

σ Turbulent Schmidt number

τ p Particle Relaxation Time

vf Time average fluid velocity

vp Particle velocity

w Normal Gaussian normal variable

CD Drag Coefficient

cn Normal Reflection Coefficient

ct Tangential Reflection Coefficient

dp Particle diameter

p Time average pressure

Rep Particle Reynolds number
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