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Abstract. In the present paper a numerical model which describes the radial dynamics of a strongly
forced periodic oscillating bubble coupled with the translational motion in a highly viscous liquid like
sulfuric acid solutions was developed. All hydrodynamics forces acting on the bubble were considered
in the model. A novel method to account for the History force on bubbles with variable radius is pre-
sented. As a result the m-SBSL state characterized by pseudo-orbits made by the translating bubble near
the pressure antinode of a spherical acoustic field is described. The dependence of the bubble mean
levitation position with the amplitude of the driving pressure was numerically simulated and analyzed.
The numerical model at low forcing pressures was compared with an analytical solution. The agreement
between them is good in the range of driving frequencies typically used in SBSL. It is also shown that
the proposed algorithm successfully reproduces the path instability of previous reported Argon bubbles
in Ethylene Glycol.
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1 INTRODUCTION

The isolation of a single sonoluminescent bubble first achieved byGaitan et al.(1992) (SBSL)
encouraged the study of a transient cavity trapped in an acoustic field in a highly controlled
manner. SBSL is a remarkable example of energy focusing phenomena using the fact that bu-
bbles can respond to pressure forces in a non-linear way under very specific conditions. As the
main goal is to achieve higher temperatures inside the bubble, liquids with low vapor pressure,
as sulfuric acid solutions, have been used by many researchers: Flannigan and Suslick(2005),
Hopkins et al.(2005), Urteaga et al.(2007), Urteaga and Bonetto(2008), Dellavale et al.(2012).
The presence of vapor during main collapse does not favor thegoal to achieve higher energy
concentrations and higher temperatures because water dissociation effects absorb part of the me-
chanical energy available,Puente and Bonetto(2005). The high viscosity of this liquid prevents
the pinch-off of the bubble during main collapse due to Rayleigh-Taylor shape instability as the
acoustic pressure is increased. The use of this highly viscous liquid revealed a curious effect
in which the bubble, periodically excited, moves through the fluid describing pseudo-orbits.
This new state was first reported byDidenko et al.(2000) and it is known as moving-SBSL
(m-SBSL). See Fig.(1). Toegel et al.(2006) shows that this “spatial instability” is due to the
action of the history force on the bubble. His calculations and comparisons with experiments
were made in another viscous liquid: Ethylene Glycol. The numerical model ofToegel et al.
(2006) was based on the analytical expression developed byMagnaudet and Legendre(1998)
of the hydrodynamic force experienced by a spherical bubblewhich has a variable radius. Fur-
ther numerical investigations of the m-SBSL state were madeby Sadighi-Bonabi et al.(2009),
Galavani et al.(2010), Mirheydari et al.(2011) andSadighi-Bonabi et al.(2011). However, all
these calculations are based on the same numerical scheme ofToegel et al.(2006) and were
made in an organic viscous liquid named N-methylformamide.
In this work we propose a different scheme to solve the coupled radial and translational dynam-
ics of a strongly collapsing bubble based on the “window method” to compute the history force.
In addition, we present a comprehensive analysis of all the forces acting on a translating Argon
bubble in a 85%w/w sulfuric acid solution (SA85) in the parameter range in which the bubble
is sonoluminescent.
The paper is organized as follows: in Sec.(2) we describe the coupling between the radial dy-
namics and the translational motion. Details of the numerical scheme developed to calculate
the history force are also given in Sec.(2). In Sec.(3) we show the evolution of all the hydrody-
namics forces acting on an Argon bubble in SA85 in the time scale of a radial period. In Sec.(4)
we show the hydrodynamic forces over a larger time scale in which the spatial movement of
the bubble in SA85 is visible. In Sec.(5) we theoretically analyze the positional instability as
a function of the driving pressure amplitude. In Sec.(6) we compared the solution of the pro-
posed model for the translational motion of a bubble subjected to very small radial oscillations
with an analytical solution for bubbles with fixed radius translating in an accelerating liquid. In
Sec.(7) we show the pseudo-orbits described by an Argon bubble in Ethylene Glycol in com-
parison with the state-of-art of m-SBSL simulations and finally in Sec.(8) we summarize our
conclusions.

2 THE MODEL

2.1 Radial Dynamics

To describe the radial dynamics of the bubble we used the Keller-Miksis form of Rayleigh-
Plesset Equation (RPE)Keller (1980). This model considered the radiation dumping effect

L.M. RECHIMAN, D.H. DELLAVALE, F.J. BONETTO256

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 1: Experimental observations of m-SBSL of a bubble inSA85. The experiments were carried out in the
Laboratorio de Cavitación y Biotecnología of Instituto Balseiro at Centro Atómico Bariloche.(A) Photograph of
the m-SBSL state in the experimental setup ofUrteaga and Bonetto(2008). The spherical resonator has an external
diameter of 89 mm and was made of borosilicate glass. Attached to the very thin walls of approximately250µm
are glued the piezoceramic transducer drivers. (B) Photograph of the m-SBSL state of an Argon bubble in the
experimental setup ofDellavale(2012). The spherical resonator was made of quartz and has an external diameter
of 60 mm. The flask walls have 1 mm thickness. The photograph was taken by a Nikon D50 camera with a totally
open diaphragm and the integration time was 1 second. The concentration of Argon gas dissolved in the liquid was
16 mbar. (C) Photograph of the m-SBSL state of an Argon bubblein the experimental setup ofDellavale(2012)
using Hitachi KPF120 monochrome CCD camera with a totally open diaphragm. The integration time was 350
milliseconds. The size of the orbit wasdr ≃ 3mm located in a mean radial position shifted from the center of
the flaskr < 4mm. The concentration of Argon gas dissolved in the liquid was 16 mbar. (D) A closer look of
the pseudo-orbit described by the translating Argon bubbleof case (C). The pictures were taken by Dr. Damián
Dellavale.

through the time derivative of gas pressure, and liquid compressibility is taken into account
up to first order. We neglect the presence of vapor inside the bubble, provided the low vapor
pressure of SA85 (pv = 2.45 Pa). Then, condensation and evaporation effects inside thebubble
are not included. The Keller-Miksis form of RPE can be written as follows:

(1− Ṙ(t)

cl
)R(t)R̈(t)+

3

2
Ṙ2(t)(1− Ṙ(t)

3cl
) =

1

ρl
(1+

Ṙ(t)

cl
)(pg(R(t))−p(r, t))+

R(t)ṗg(R(t))

ρlcl
− 4νlṘ(t)

R(t)
− 2σ

ρlR(t)
(1)
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In Eq.(1), R(t) is the radius of the bubble,̇R(t) is the radial velocity of the bubble interface,
R̈(t) is the radial acceleration of the bubble interface,ρl is the liquid density,cl is the speed of
sound in the liquid,σ is the surface tension,νl is the kinematic viscosity of the liquid,pg(R(t))
is the pressure of the gas contents inside the bubble andp(r, t) denotes the driving pressure
field.
The radial dynamics of the bubble is fully dependent on the model used to compute the heat
exchange between the gas and the liquid across the interface. The model must represent the
isothermal evolution of the gas during the rarefaction phase of the acoustic cycle (expansion
of the bubble) and the adiabatic evolution in the final stage of main collapse. In this work we
assume that the pressure profile of the gaspg(R(t)) is uniform inside the bubble and that the
gas follows a polytropic evolution:

pg(R(t)) =

(

p0 +
2σ

R0

)[

R3
0 − h3

R3(t)− h3

]γ(R,Ṙ,T )

(2)

In Eq.(2), γ(R, Ṙ, Tb) is the variable polytropic coefficient given byHilgenfeldt et al.(1999):

γ(R, Ṙ, Tb) = 1 + (Γ− 1) exp

[

− A

Pe(t)B

]

,

P e(t) =
R(t)|Ṙ(t)|
χg(R(t))

.

(3)

In Eq.(3), Pe is the Péclet number,Γ is the adiabatic coefficient of the gas,χg(t) =
kg

ρg(R(t))cpg

denotes the thermal diffusivity of the gas,kg is the thermal conductivity,ρg is the gas density,
cpg is the specific heat at constant pressure and the constant parameters are:A = 5.8 and
B = 0.6.
The time derivative of gas pressure is:

ṗg(t) = −γ(R, Ṙ, Tb)
3R2(t)Ṙ(t)

R3(t)− h3
pg(t) (4)

The temperature profile of the gasTb is also considered uniform inside the bubble. The time
variation of the gas temperature is obtained from the van derWaals process equation plus a
diffusive heat loss term which has influence during the afterbounce phase of the oscillations
Hilgenfeldt et al.(1999),

Ṫb = −[γ(R, Ṙ, Tb)− 1]
3R2(t)Ṙ(t)

R3(t)− h3
Tb(t)− χg

Tb(t)− T0

R2(t)
(5)

In Eq.(5), T0 is the ambient temperature andh is the Van der Waals hard core radius of the gas.
The bubble is located within a spatial-time varying pressure fieldp(r, t). Assuming a spherical
geometry, the spatial distribution of the pressure field within the resonator is given by the zero-
order spherical Bessel functionJ0(r) = sin(k0r)

k0r
Akhatov et al.(1997), then the pressure field

forcing the bubble is:

p(r, t) = p0 −
sin(k0r)

k0r
p0a sin(2πf0t) (6)
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In Eq.(6), p0 is the uniform ambient pressure,k0 =
2πf0
cl

is the wave number of the fundamental
mode,p0a is the amplitude of the acoustic pressure at the center of thevolume (resonator),f0
is the fundamental driving frequency (T = 1

f0
) andr =

√

x2 + y2 + z2 is the distance from
the origin of coordinates. The amplitude of the pressure applied on the bubble at positionrb is
pba =

sin(k0rb)
k0rb

p0a. Although, the acoustic pressure on the bubble at positionrb (pba) is reported in
most sonoluminescent works, in this papar we will report thepressure at the resonator center
p0a, which is the control parameter.
The liquid velocity can be analytically calculated by linearizing Navier-Stokes equation and
neglecting viscous stress and volume forces,Toegel et al.(2006):

~ul(r, t) = − 1

ρl

∫ t

0

∇p(r, τ)dτ (7)

2.2 Translational Dynamics

In this section, the translational dynamics of the bubble istaken into account together with the
highly nonlinear radial oscillations forced by the drivingacoustic pressure.Magnaudet and Legendre
(1998) indicated that this problem is characterized by two dimensionless numbers: the transla-

tional ReynoldsRet =
R(t)|~U (r,t)|

νl
where~U(r, t) = ~Vb − ~ul(r, t) is the relative velocity between

the bubble translational velocity and the liquid velocity,and the radial ReynoldsRer =
R(t)|Ṙ(t)|

νl
.

Particularly, the history force is acting on the bubble whenthe bubble size is maximum and the
translation is at lowRet (Ret < 1). The translational motion of the bubble has been calculated
taking into account all the forces acting on it. The force balance on the bubble is of the form:

~Fb = −4

3
πR3(t)∇p(r, t) − 2

3
πρl

d(R3(t)~U(r, t))

dt
− 6πρlνlR(t)~U(r, t) − 4

3
πρlR

3(t)~g if Ret or Rer >> 1

~Fb = −4

3
πR3(t)∇p(r, t) − 2

3
πρl

d(R3(t)~U(r, t))

dt
− 6πρlνlR(t)~U(r, t) − 4

3
πρlR

3(t)~g−

− 8πρlνl

∫ t

−∞

exp

[

9νl

∫ t

τ

1

R2(s)
ds

]

erfc

[

√

9νl

∫ t

τ

1

R2(s)
ds

]

d

dτ
(R(τ)~U (r, τ))dτ if Ret andRer << 1

(8 a,b)

In Eq.(8 a,b), the first term is the Bjerknes force, which results from theinteraction between
the gradient of the pressure field and the bubble volume oscillations. The second term is the
added mass force, which is the result of an accelerating or decelerating body that displaces some
volume of the surrounding fluid as it moves. The third term is the steady drag, which increases
in a linear form with the relative velocity because of the lowcharacteristic translationalRet
number of the present problem and the fourth term is the buoyant force. For slow radial and
translating dynamics, the history force must also be taken into account (Eq.(8b)). It should be
emphasized that the history force is non-local in time. The integral term in Eq.(8b) shows that
the value of the history force depends on the past evolution of the bubble dynamics. A further
treatment of this force will be given in Sec.(2.3).
The steady drag force of the present model takes into consideration a dirty bubbleBatchelor
(1967), given that bubbles of less than100µm are more likely to suffer surfactant deposition on
its surfaceLeighton(1994).
According toMagnaudet and Legendre(1998) there exist critical values for the Reynolds num-
bers, in particularRect = 0.5 andRecr = 7.0 for the activation or deactivation of the history
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force. The smooth transition between both dynamics was firstmade byToegel et al.(2006) by
introducing switches of the form :

θr(t) =
1

1 +

[

Rer(t)
Recr

]4

θt(t) =
1

1 +

[

Ret(t)
Rect

]4 .

(9)

Finally Eq.(8 a,b) are rewritten as follows:

~Fb = −4

3
πR3(t)∇p(r, t)− 2

3
πρl

d(R3(t)~U(r, t))

dt
− 6πρlνlR(t)~U(r, t)− 4

3
πρlR

3(t)~g−

− θt(t)θr(t)8πρlνl

∫ t

−∞

exp

[

9νl

∫ t

τ

1

R2(s)
ds

]

erfc

[

√

9νl

∫ t

τ

1

R2(s)
ds

]

d

dτ
(R(τ)~U (r, τ))dτ

(10)

The system of Eq.(1),(5) and (10) is non-autonomous and was solved by double-stepping adap-
tive step-size Runge-Kutta algorithmPress et al.(1992). Is important to point out that in the
present work we do not neglect the inertia of the bubble, though ~Fb = mb~ab 6= 0 wheremb is
the mass of the bubble and~ab is the translational acceleration of the bubble.

2.3 HISTORY FORCE

The history force is related to the unsteady viscous flow developed behind a moving body. Many
expressions for the history force on bubbles with constant radius in an unsteady flow at finite
Reynolds number have been formulated:Yang and Leal(1991), Mei et al.(1994).
Namely, Magnaudet and Legendre(1998) developed an analytical expression for the history
force acting on a translating bubble in the zero-Reynolds(translational) regime but with variable
radius.
Based on this analytical formulation, it can be seen that Eq.(10) is an integrodifferential equation
for the bubble position. In Eq.(10) the most time-consuming contribution is associated with
computation of the history force integral. The calculationof the history force involves large
storage efforts and requires the integration over the entire lifetime of the bubble. For example,
the simulation of 10000 radial cycles, which involves approximately 1000 integration steps
each, requires of 1.2 Gb memory for storing the 15 variables (double-precision floating point:
8 bytes) to solve the history force in Eq.(10).
In the present work we solve Eq.(10) with an approach different from the one implemented by
Toegel et al.(2006). As a first step we approximate the kernel of the integral of the history force
model in Eq.(10) by the solution proposed byRen and MacKenzie(2007):

K(t, τ) = exp(H)erfc(
√
H) ≃ a

(a− 1)
√
πH +

√
πH + a2

(11)

In Eq.(11), the constant isa = 2.9110. This value fora is selected as the one that minimizes
the relative error, andH denotes the integralsH = 9νl

∫ t

τ
1

R2(s)
ds. Fig.(2) shows the value of

the kernel used in the model ofMagnaudet and Legendre(1998) and the approximation using
the form ofRen and MacKenzie(2007). For a wide range ofH values, the relative error is less
than0.3%. By using this approximation we avoid overflow problems in the case of largeH
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arguments. In the upper panel of Fig.(2), the type of convergence of the kernel whenH → ∞
thenK(t, τ) → 0 can be seen. This implies that the contributions to the forceat the present
time from very previous times are less important than the contributions from the immediate past
time.
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Figure 2: Solution of the history force kernel model and the approximation proposed byRen and MacKenzie
(2007).

One possible method to solve the Eq.(10) is to evaluate the integral of the history force at
each time integration step of the coupled ODE1 system. To make this possible, we stored
15 variables involved in the argument of the history integral: t, R(t), Ṙ(t), ux

l (r, t), u
y
l (r, t),

uz
l (r, t), u̇

x
l (r, t), u̇

y
l (r, t), u̇

z
l (r, t), ẋb(t), ẏb(t), żb(t), ẍb(t), ÿb(t) andz̈b(t). Here, the subscript

“ l” denotes the liquid, while “b” indicate bubble. Strictly speaking, we should store all the
bubble evolution from the very beginning of the simulation.This has the drawback of the time
required to evaluate the integral at each time step. Also themodel of the history force is valid a
finite time backwards as it was indicated byMagnaudet and Legendre(1998).
Dorgan and Loth(2007) and van Hinsberg et al.(2011) implemented a truncated integration
interval to calculate the Basset force (analogous to history force but for particles with fix radius)
which requires storage and integration over a much shorter period of a particle’s history.
So the next question to answer must reconcile the computing time of the history force, the
validity of the model to reproduce the physical effect and the validity of the method used to
solve the history force integral: How long backwards do we have to consider the dynamics to
calculate the history force?.
Dorgan and Loth(2007) indicated in their work that the “window model” is valid if the term
d(R~U )

dt
varies slowly, then:

∫ t

t−twin

Kwin(t, τ)dτ ≃
∫ t

−∞

K(t, τ)dτ (12)

1ODE: ordinary differential equation
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Kwin(t, τ) =

{

K(t, τ) t− twin < τ < t

0 τ < t− twin

(13)

Following this criteria we determined the size of the backwards window to calculate the history
force integral. According to the model of the history force used in the present work, in which
this force is acting during slow radial and translational dynamics, we start the analysis in a fix
time when the bubble has a maximum radius and is when the history force will act. In Fig.(3)
we show the previous dynamics of an Argon bubble in SA85 withR0 = 9.0µm and forced
by p0a = 1.65 bar atf0 = 30 kHz. Fig.(3) also shows how the value of the x-component of
the history force (without the switches), at the time when the bubble has the maximum radius,
changes with the amount of time backwards considered to makethe calculation. It can be seen
that the contribution of this force at any given time is finite. In addition, the very first previous
points have the biggest weight and then the biggest contributions to the history force. The
variation ofd(RUx)

dt
is also displayed in the lower panel of Fig.(3). It can be seen that during a 400

points window the variations are small compared with the variations at main collapse, first and
second rebound. With this size of window we are allowed to research theR0 = [3.0; 12.0]µm
andp0a = [1.2; 2.7] bar parameter phase space for Argon bubbles in SA85, becausethe criteria
of small variations within the window is conserved.

Property Value

Densityρl 1778.6 kg

m3

Dynamic viscosityµl 0.015Pa.s

Kinematic viscosityνl 8.4×10−6 m2

s

Speed of soundcl 1473.0m
s

Vapor pressurepv 2.45Pa

Surface tensionσ 0.074N
m

Table 1: Properties at20oC of Sulfuric acid solutionSO4H2(85%wt) -H2O(15%wt). Poling et al.(2008) and
Young and Grinstead(1949)

.

3 HYDRODYNAMIC FORCES DURING A RADIAL CYCLE

A typical simulation made with the present model implies thecalculation of 10000 radial cycles
of the bubble. In this section we focus on the description of main variables in a time scale
imposed by the ultrasound, typicallyT = 1

f0
≃ 33µs. We considered as a base case an Argon

bubble in SA85 driving atf0 = 30.0 kHz with p0a = 1.65 bar and an amount of non-condensible
gas equivalent toR0 = 9.0µm. The liquid properties used in the proposed model are listedin
Table(1). In Fig.(4) the radius of the bubble as a function of time can be seen. It is also shown
that from the bubble ambient radius up to the maximum radius,the Péclet number isPe << 1,
which implies that the non-condensible gas inside the bubble follows an isothermal evolution.
During the main collapse and rebounds, thePe >> 1 and the gas follows a polytropic evolution.
The temperature computed by this model is also shown. It can be seen that during main collapse
the gas temperature reaches 18300 K. The inset in Fig.(4B) shows that during the expansion
phase, the non-condensible gas is in thermal equilibrium with the liquid atTl = 293.15 K.
In Fig.(5) the module of each force acting on the bubble as the radius ofthe bubble varies in
response to the forcing acoustic field can be seen. In all cases we show the buoyant force to
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Figure 3: (upper panel) The solid black line is the radius of the bubble at previous times calculated with the
numerical model considering the coupling between the radial and translational dynamics but without the feedback
of the history force. The red line is the history force in the x-direction on the bubble at maximum expansion
(tback = 0) calculated with different numbers of points backwards. The parameters of the Argon bubble in SA85
are: R0 = 9.0µm andp0a ≃ pba = 1.65 bar atf0 = 30.0 kHz. (lower panel) The solid black line indicates the
value of the kernel approximated by Ren-Mackenzie form in logarithmic scale. With red line is shown the absolute

value of d[R(t)~Ux(r,t)]
dt

in logarithmic scale. For the time interval defined by 400 points backwards, indicated with

gray dotted line, the variations ofd[R(t)~Ux(r,t)]
dt

are rather small compared with the variation during main collapse.
The variations are lower than0.01% from the mean value. During this time interval the “window model” used to
calculate the history force is valid according toDorgan and Loth(2007). This analysis is similar for the y-direction
and z-direction.

compare the magnitudes. Although the Bjerknes force is responsible for the trapping of this size
of bubble in the antinode, it is the force with the smallest magnitude of all and it is minimum
during main collapse. The added mass force is maximum duringmain collapse and so is the
steady drag force. Regarding the history force it can be seenthat is null during main collapse
and it will act when the bubble is in the expansion phase and during each maximum of the
bubble rebounds. The latter is best illustrated in Fig.(6) which shows how the switches turn
on and turn off the action of the history force during the radial cycle. Also the characteristic
Reynolds numbers of the problem are displayed in comparisonwith the thresholds values of
the model that controls the switches of the history force. The maximum values ofRet = 17
andRer = 180 occurs during main collapse. It can be seen that during most of the time the
Ret < 1 is less than the unit. This is in agreement with the validity range of the Stokes-
like drag solution used in the present model. Fig.(7) shows that the maximum translational
displacement of the bubble occurs at the time of main collapse and rebounds of the radial cycle.
This coincides with sudden growth of added mass force and drag force in agreement with the
results ofSadighi-Bonabi et al.(2009). It can be seen that the maximum force applied on the
bubble during main collapse reaches|~Fb| = 400µN .
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Figure 4: (A) In black is shown the radius as function of time of an Argon bubble in SA85.R0 = 9.0µm and
p0a = 1.65 bar driven atf0 = 30 kHz. In red is shown the Pe number. The red dotted line indicatesPe = 1. During
the expansion phase up to maximum radius thePe << 1 and the gas inside the bubble follows an isothermal
evolution (γ ≃ 1). During main collapse and rebounds thePe >> 1 and the gas inside the bubble follows
a polytropic evolution until adiabatic. AsPe → ∞ the polytropic coefficient tends to the adiabatic coefficient
γ → Γ. (B) Temperature of the gas inside the bubble. The inset shows that the gas is in thermal equilibrium with
the liquid (Tl = 293.15 K) during the expansion phase up to main collapse.

4 HYDRODYNAMIC FORCES AT LONG TIMES

In this section we show the results in a longer time scale. We have seen that the translational
displacement of the bubble is of the order of∼ µm per radial cycle. To be able to see typical
translational displacement of the order of∼ mm we made the simulations over 10000 radial
cycles. Fig.(8) shows the simulated m-SBSL state of an Argon bubble in SA85 driven atp0a =
1.65 bar atf0 = 30.0 kHz with an amount of gas equivalent toR0 = 9.0µm. The initial
conditions for the bubble position are very close to the origin of coordinates (center of the
resonator). We made several tests and the shape of pseudo-orbits obtained can vary with the
initial conditions of bubble position under the same driving parameters. It can be seen that the
final mean levitation position is over the pressure antinode. If the initial condition of the bubble
position is beneath the pressure antinode, the bubble will translate to a final position above
describing a larger path to it. We applied the fft algorithm to x(t), y(t) andz(t) to determine
the characteristic oscillation frequency. In Fig.(9) we show the normalized amplitude spectrum
for the three directions. The peaks in thex(t) andy(t) occur at a frequency of70 Hz, while
in thez(t) direction the frequency of the oscillations is42 Hz. For low frequencies in thez(t)
direction it can be seen a growth in the spectrum associated with the shifted levitation location
from antinode.
From Eq.(10) it can be seen that all forces are tangent at every point of the trajectory except
the Bjerknes force. In Fig.(10) the directions of the Bjerknes force and history force along the
bubble trajectory for the first 1500 radial cycles of the casein Fig.(8) are shown. The values are
averaged in each radial cycle. The Bjerknes force acts like acentripetal force directed towards
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Figure 5: (black) Radius as function of time of an Argon bubble in SA85.R0 = 9.0µm andp0a = 1.65 bar driven
at f0 = 30 kHz. (green line) (A) Bjerknes force module.(B) Added mass force module. The maximum value
during main collapse is|Fam| = 460µN .(C) Quasi-steady drag force module. The maximum value during main
collapse is|Fd| = 40µN . (D) History force module. (blue dotted line) Buoyant forcemodule.

the antinode. In Fig.(11) the relative angle between the trajectory and the Bjerknesforce can be
seen. When the bubble turns around the angle is almost180o while if the bubble path is nearly
straight the angle decreases.
In Fig.(12) we show the module of each force averaged in each radial period. The Bjerknes
force varies within 33.3% over the 10000 radial cycles, while the added mass force oscillates
within 11%. The steady drag force oscillates in a narrow range within 5% an so does the history
force.
In Fig.(13) we show the variation of some interesting parameters from the point of view of
energy concentration along the bubble path. We show that themaximum temperature achieved
by the non-condensible gas inside the bubble during main collapse predicted by this model
varies within a 3% around 18000 K. Moreover, the compressionratio has small oscillations
within 2%. This indicates that there is not a spatial region along the bubble path in which
a significant increment of temperature can be reached. The instant of main collapse when
the bubble interface acquires the maximum radial velocity is characterized byMa = 0.42 in
agreement with the radial model employed.
As it was shown, the bubble translates around a mean verticaldisplaced position from the re-
sonator center. To evaluate the variations of the acoustic pressure at bubble position while it is
translating, we followUrteaga et al.(2007). In Fig(14) it can be seen that the acoustic pressure
at bubble position is slightly lower than the acoustic pressure at the central pressure antinode of
the acoustic field and varies within 1500 Pa.
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Figure 6: (A) (black) Radius of the bubble as function of timeof an Argon bubble in SA85.R0 = 9.0µm and
p0a = 1.65 bar driven atf0 = 30 kHz. (green) The turn on/off of the history force given by theswitchesθr(t)
andθt(t). (B) (black)Rer is over the threshold value during the expansion phase and during the Rayleigh-Plesset
collapse. (green)Ret is only over the threshold during main collapse and during rebounds.

5 POSITIONAL STABILITY

The spatial shifting of the mean levitation position of an Argon bubble in SA85 as the amplitude
of driving pressure increases is numerically analyzed. This experimental fact was reported by
Urteaga et al.(2007) and indicated that it is a limiting factor on the maximum acoustic pressure
that can be applied to the bubble.
In Fig.(15) the trajectories of an Argon bubble withR0 = 9.0µm in SA85 driving atf0 =
30kHz are shown. For pressure amplitudes at the resonator center lower thanp0a < 1.30 bar
no pseudo-orbits appear and the bubble remains fixed in a stable position above the center of
coordinates. Forp0a > 1.32 bar the bubble translates around a mean position, which shifts
towards a bigger radius as the amplitude of the driving pressure rises. A remarkable change
in the shape of the pseudo-orbits can be seen forp0a > 1.70 bar. In Fig.(16) we display the
results for amplitudes of acoustic pressures beyondp0a > 1.65 bar. It is shown that the pseudo-
orbits are wider on a spherical gasket as the amplitude of thedriving pressure is more intense.
Fig.(17) shows the mean levitation position of the bubble for the range of simulations displayed
in Fig.(15) and Fig.(16) as function of the amplitude of the driving pressure at the resonator
center.
All the forces acting on the bubble were computed for the simulations shown in Fig.(17). In
Fig.(18), we show the Bjerknes force, drag force and history force averaged in a radial cycle,
as well as the maximum value of the module of the added mass along 10000 radial cycles for
different pressures at the resonator center. Different behaviors exist when the driving pressure
rises. Forp0a > 1.32 bar there exists a small transition gap where oscillations in each magnitude
are present. As the driving pressure rises, it can be seen from Fig.(18A) that the averaged
Bjerknes force is more intense, and its magnitude is comparable with the averaged history force
(See Fig.(18D)).
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Figure 7: (A) Radius of the bubble as function of time of an Argon bubble in SA85.R0 = 9.0µm andp0a = 1.65
bar driven atf0 = 30 kHz. (B) Magnitude of the net force acting on the bubble. Due to the deltiform growth of the
added mass force and drag force, the main translational displacement of the bubble occurs during main collapse
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velocity of the bubble in the x-component. During most of thetime of the radial cycle the translational velocity
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s
and∼ 100mm

s
, except on main collapse when a sudden growth of translational velocity

during several nanoseconds is observed.

6 COMPARISON WITH THEORETICAL SOLUTION AT SMALL ACOUSTIC PR E-
SSURES

Morrison and Stewart(1976) developed a theoretical solution for the equation of motion of a
bubble moving relative to an accelerating liquid. In their formulation they assumed a fix radius
of the bubble which is subjected to a sinusoidally oscillating liquid. They solved the steady-state
bubble response by transforming the translational equation into the Fourier space. Furthermore,
the ratio between the transformed bubble velocityṽb and transformed liquid velocitỹul is:

ṽb

ũl

=

[

2
3
+ 2
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Ω
2
− 3Ω
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2

]

+ i
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2
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] (14)

In Eq.(14), Ω =
R2

0
2πf0
9νl

is the dimensionless frequency, and the phaseφ between the bubble
velocity and the liquid velocity is given by:

φ = Arctg

[

Im( ṽb
ũl
)

Re( ṽb
ũl
)

]

(15)

We compared the numerical model with this theoretical solution but the range of validity is
only for small acoustic pressures (less than Blake threshold) applied to the bubble because in
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Figure 8: m-SBSL state of an Argon bubble in SA85 with an amount of gasR0 = 9.0µm and driving atp0a = 1.65
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. The simulation was made during 10000

radial cycles. For these particular parameters the bubble levitates in a mean positionxm = 0.0 mm,ym = 0.0 mm
, zm = 1.5 mm above the pressure antinode. The black point indicates the origin of coordinates.
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Figure 9: Normalized amplitude spectrum ofx(t), y(t), z(t) of the case in Fig.(8). The frequency of the oscilla-
tions inx(t) andy(t) is 70 Hz while in z(t) is 42 Hz.
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pressure antinode. The history force is always tangent to the trajectory.
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Figure 11: Angle between the vector ofFBjerknes and the vector tangent to the trajectory for the case of Fig.(10).
At every turn of the bubble trajectory the angle increase up to 180o. When the trajectory of the bubble is almost
straight the angle decreases.

this circumstance the response of the bubble is linear. Fig.(19) shows the magnitude of the
ratio between velocities and the phase for an Argon bubbleR0 = 5.0µm in SA85 under an
applied acoustic pressure ofp0a = 0.01 bar. It can be seen that for low dimensionless frequency
the bubble follows the movement of the liquid, and as the driving frequency rises the bubble
advances the liquid. In the typical range of driving frequencies used in SBSL indicated with
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Figure 12: (A) Module of the Bjerknes force averaged in each radial cycle. (B) Module of the added mass force
averaged in each radial cycle. (C) Module of the steady drag force averaged in each radial cycle. (D) Module of
the history force averaged in each radial cycle.

gray dotted lines the agreement is quite good.

7 SIMULATIONS IN ETHYLENE GLYCOL

With the present model we made simulations of an Argon bubblein Ethylene Glycol as a check
of consistency. In this section we show the simulation of twocases of the phase space reported
by Toegel et al.(2006). In his work he indicated that a bubble in Ethylene Glycol with an
amount of gas equal toR0 = 20.0µm driving by p0a = 1.40bar at f0 = 23kHz is shape stable
and path unstable. The bubble trajectory for this case is shown in Fig.(20).
With the same argument as in the sulfuric acid case, the size of the window to calculate the his-
tory force on a bubble in Ethylene Glycol isN = 500 points backwards. The liquid properties
used in the simulation are listed in Table.(2). It can be seen in Fig.(20) that the transient time
extends during 5000 radial cycles after the bubble reaches anearly periodic movement around
a point located0.5 mm above the origin of coordinates.
On the other hand, if the forcing pressure is diminished up top0a = 1.10 bar, Toegel et al.
(2006) calculations predict that a bubble is shape stable and alsopath stable. This indicates that
no pseudo-orbits are described by the bubble. This last caseis shown in Fig.(21). It can be
seen that the bubble translates to a final position above the pressure antinode without making
pseudo-orbits.

8 CONCLUSIONS

We have presented a numerical implementation which describes the coupling between the radial
and translational dynamics of a periodically excited bubble located in a spherical pressure field.
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Property Value

Densityρl 1100.0 kg

m3

Dynamic viscosityµl 0.022Pa.s

Kinematic viscosityνl 20.0×10−6 m2

s

Speed of soundcl 1660.0m
s

Vapor pressurepv 13.3Pa

Surface tensionσ 0.045N
m

Table 2: Properties of Ethylene GlycolToegel et al.(2006)

.

No approximations were made on the pressure field in this work. We characterized all the forces
acting on the bubble in the radial scale and during several periods until we could observe the
typical pseudo-orbits described by the bubble in a highly viscous fluid as sulfuric acid solution
at 85%w/w. Special attention was paid to the inclusion of thehistory force to the scheme. We
used a suitable different approximation of the kernel of thehistory force model and applied the
window method. The main advantage of the present implementation in comparison to previous
numerical schemes, is that it allows the calculation of the history force at each time instant. We
have shown that the numerical implementation reproduced experimental facts in the range of
parameters reported in the literature. This implementation will allow a deeper study of the path
instability of bubbles in viscous liquids.
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Figure 13: (A) Compression ratio for each radial cycle. (B) Maximum radial velocity at main collapse for each
radial cycle. (C) Maximum temperature achieved by the non-condensible gas inside the bubble in each radial cycle.
(D) Module of the peak of the bubble translational velocity.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.625

1.630

1.635

1.640

1.645

1.650

t/T

P
aa

t 
b

u
b

b
le

 p
o

si
tio

n  [
b

a
r]

Figure 14: Pressure at bubble position given byUrteaga et al.(2007). It can be seen that the pressure applied on
the bubble interphase while the bubble is translating varies within 1500 Pa.
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Figure 15: Simulations of an Argon bubble withR0 = 9.0µm in SA85 driving atf0 = 30kHz with different
pressures amplitudes at the resonator center. (A)p0a = 1.30 bar. (B)p0a = 1.32 bar. (C)p0a = 1.40 bar. (D)p0a = 1.50
bar. (E)p0a = 1.60 bar. (F)p0a = 1.70 bar. The black dot indicates the origin of coordinates. The onset for the
existence of pseudo-orbits is betweenp0a = 1.31 bar andp0a = 1.32 bar. As the amplitude of the driving pressure
is increased the mean levitation positions shift upwards inthe vertical direction. For each case 10000 radial cycles
were solved.
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Figure 16: Simulations of an Argon bubble withR0 = 9.0µm in SA85 driving atf0 = 30kHz with different
amplitude pressures:p0a = 1.65 bar,p0a = 1.70 bar,p0a = 1.80 bar,p0a = 1.90 bar,p0a = 2.00 bar,p0a = 2.10 bar,
p0a = 2.20 bar,p0a = 2.30 bar,p0a = 2.40 bar,p0a = 2.50 bar,p0a = 2.60 bar andp0a = 2.70 bar. It can be seen a
change in the structure of the orbits as the driving pressurerises. For each case 10000 radial cycles were solved.
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Figure 17: Mean levitation distance of an Argon bubble withR0 = 9.0µm in SA85 driving atf0 = 30kHz as
function of the amplitude of the driving pressure at the resonator center. The gray bars indicate the approximate
maximum amplitude of the pseudo-orbits. For driving pressures belowp0a < 1.31 bar no pseudo-orbits appeared.
With dotted line is indicated the onset for the m-SBSL state at p0a = 1.32 bar. The inset shows in detail the
transition between the non-moving bubble and the moving-bubble.
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Figure 18: Force analysis during 10000 radial cycles for thesimulations showed in Fig.(15), Fig.(16) and
Fig.(17).(black) p0a = 1.20 bar. (red)p0a = 1.30 bar. (gray)p0a = 1.32 bar, the onset of the moving state.
(blue) p0a = 1.65 bar. (pink)p0a = 2.00 bar. (green)p0a = 2.70 bar. (A) Bjerknes force module averaged in
a radial cycle. As the pressure at the resonator center increases, the averaged Bjerknes force magnitude is more
intense. (B) Maximum magnitude value of the added mass force. For the cases between1.32 bar< p0a < 1.65 bar,
oscillations exist. For driving pressures higher thanp0a > 1.65 bar, the maximum value no longer increases and in
the steady state it reaches approximately|Fmax

am | ∼ 400µN . (C) Stokes-like drag force averaged in a radial cycle.
The maximum value reached as the driving pressure rises is< Fdrag >T∼ 5µN . (D) History force averaged in a
radial cycle. Oscillations exist when the bubble start to describe pseudo-orbits. The maximum mean value of the
averaged history force as the driving pressure increases is< Fhistory >T∼ 0.4µN . This magnitude is comparable
to the averaged Bjerknes force module.
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Figure 19: (left) Magnitude of the ratio of bubble velocity and liquid velocity. (right) Phase angle relative to liquid
motion. The simulation was made forR0 = 5.0µm Argon bubble in SA85 under a static pressure ofp0 = 0.92
bar and excited with a low acoustic pressurep0a = 0.01 bar where the bubble response is linear. The frequency
sweeping was filtered using the Savitzky-Golay method with 15% span. (gray dotted line) Range of typical driving
frequencies used in SBSL.
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Figure 20: m-SBSL state of an Argon bubble in Ethylene Glycolwith an amount of gasR0 = 20.0µm and driving
with p0a = 1.40 bar atf0 = 23.0 kHz. The initial conditions for the ODE system are:Ri = R0, Ṙ0 = 0.0m

s
,

T 0
b = Tl, x0 = 0.10 mm, ẋ0 = 0.0m

s
, y0 = −0.15 mm, ẏ0 = 0.0m

s
, z0 = 0.10 mm, ż0 = 0.0m

s
. The simulation

was made during 10000 radial cycles. For these particular parameters the bubble levitates in a mean position
xm = 0.0 mm,ym = 0.0 mm ,zm = 0.5 mm above the pressure antinode. The black point indicates the origin of
coordinates.
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Figure 21: Argon bubble in Ethylene Glycol with an amount of gasR0 = 20.0µm and driving withp0a = 1.10 bar
atf0 = 23.0 kHz. The initial conditions for the ODE system are:Ri = R0, Ṙ0 = 0.0m

s
, T 0

b = Tl, x0 = 0.10 mm,
ẋ0 = 0.0m

s
, y0 = −0.15 mm, ẏ0 = 0.0m

s
, z0 = 0.10 mm, ż0 = 0.0m

s
. The simulation was made during 10000

radial cycles. For these particular parameters the bubble translates to a mean positionxm = 0.0 mm, ym = 0.0
mm , zm = 0.19 mm above the pressure antinode without describing pseudo-orbits. This is in agreement with
Toegel et al.(2006) calculations which predict shape and path stability for a bubble under these conditions. The
black point indicates the origin of coordinates.
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