REDUCED THREE-WAVE MODEL TO STUDY THE HARD TRANSITION TO CHAOTIC DYNAMICS IN ALFVEN WAVE-FRONTS

S. A. Elaskar ${ }^{1}$ and J. R. Sanmartin ${ }^{2}$
${ }^{1}$ Departamento de Aeronáutica, Universidad Nacional de Córdoba, CONICET Av. Velez Sarfield 1611. Córdoba (5000). Argentina.
e-mail: selaskar@efn.uncor.edu
${ }^{2}$ Escuela Técnica Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, Madrid (28040), España. e-mail: jrs@faia.upm.es

Abstract

The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model (equal damping of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase), no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic dynamics that is absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralelling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable.

Key words: Plasmas, Alfven waves, cubic coupling of three waves near resonance, derivative non-linear Schrödinger equation, hard transition to chaos.

1. INTRODUCTION

Nonlinear Alfven-wave interactions may be present in astrophysical, space and laboratory plasmas, with effects that range from heating to driving of current. A recent space example involves orbiting conductive tethers, which, if in electrical contact with the ionosphere, radiate Alfven waves. ${ }^{1}$ Wave structures (called Alfven wings) attached at or near both tether ends present an Airy-functions behavior if linearly described. ${ }^{2}$ Nonlinear effects, which should appear at the near wave-front, might be affected by the magnetic self-field generated by the very current of the tether. ${ }^{3}$

In the case of Alfven waves, some strong nonlinear effects are known to be described by the derivative nonlinear Schrödinger (DNLS) equation, ${ }^{4}$ which admits soliton solutions. ${ }^{5}$ A variety of behaviors allowed by the DNLS equation and its modifications have been analyzed. ${ }^{6}$

Here we show how the DNLS equation may also serve to describe weak non-linear effects represented by the coherent coupling of a few waves, and we explore its complex dynamics. The local, coherent interaction of three waves at or near resonance (3WRI) is an ubiquitous feature of nonlinear mediums. The 3WRI is specially important in both unmagnetized and magnetized plasmas, where dispersive effects can keep nonlinearities weak and electromagnetic waves make coupling to external energy sources easy. The 3WRI has been extensively studied and remains a basic nonlinear paradigm. ${ }^{7}$

The 3WRI evolution for lossless quadratic coupling, with a mode linearly unstable and the two other modes equally damped, is described by a three-dimensional (3D) flow of two wave amplitudes and one relative phase (a reduced 3-wave interaction). If damping rates exceed the growth rate Γ of the unstable mode the system is attracted to point-sets of vanishing 3D volume, and its long-time behavior may be chaotic. ${ }^{8-10}$ For small Γ, a consistent analysis of the flow using a multiple time-scales method, led to an 1D chaotic map. ${ }^{11}$ Actually, the system exhibits a hard transition to complex phase-space dynamics: no matter how small $\Gamma>$ 0 there exists a fully developed attractor that is absent at $\Gamma \leq 0$ and is chaotic for some parametric domain; this is example of a broad scenario for chaos also present in the resonant coupling of two oscillators at frequency ratio $2: q, \quad q$ integer, with the first oscillator unstable. ${ }^{12}$ Also, the hard transition was found to persist when the daughter waves had unequal dampings, the flow then being 4D rather than $3 \mathrm{D} .{ }^{13,14}$

Cubic interaction, corresponding to $q=2$ (or 1:1 frequency ratio) in the two-oscillator case, allows a variety of coupling structures. A reduced 3-wave truncation of the non-linear Schrödinger equation showed chaotic behavior at finite $\Gamma ;{ }^{15} \mathrm{a}$ hard transition was encountered in a two-oscillator model of a spherical swing. ${ }^{12,16}$

In the present paper we explore, numerically, weakly nonlinear dynamics in a truncation of the DNLS equation that shows more complex cubic coupling using the reduced model (3D model). ${ }^{17}$

In Sec. 2 we present the reduced 3-wave model of the DNLS equation. In Sec. 3 we analytically determine the $\Gamma=0$ attractor of the system. In Sec. 4 we derive analytical results
on the small, positive Γ attractor(s). Sec. 5 shows the numerical results. A conclusions are given in Sec. 6.

2. REDUCED 3-WAVE MODEL OF THE DNLS EQUATION

The derivative nonlinear Schrödinger equation describes the evolution of circularly polarized Alfven waves of finite amplitude propagating along an unperturbed uniform magnetic field in a cold, homogeneous and lossless plasma. The description uses a two-fluid, quasineutral approximation (with electron inertia and current displacement neglected). Taking the unperturbed magnetic field B_{0} in the z direction, the DNLS equation reads ${ }^{4-6}$

$$
\begin{equation*}
\frac{\partial \phi}{\partial t}+\frac{\partial}{\partial z}\left[\phi\left(1+\frac{|\phi|^{2}}{4}\right)\right] \pm \frac{i}{2} \frac{\partial^{2} \phi}{\partial z^{2}}+\hat{\gamma} \phi=0 \tag{1}
\end{equation*}
$$

where ϕ, t and z are dimensionless perturbed field and variables,

$$
\begin{equation*}
\phi \equiv \frac{B_{x} \pm i B_{y}}{B_{0}}, \quad \omega_{c i} t \rightarrow t, \quad \frac{\omega_{c i}}{V_{A}} z \rightarrow z \tag{2}
\end{equation*}
$$

$\omega_{c i}$ is the ion cyclotron frequency and V_{A} is the Alfvén velocity. The upper (lower) sign in Eqs. (1) and (2) corresponds to a left-hand (right-hand) circularly polarized wave propagating in the z direction; $\hat{\gamma}$ would be some appropriate growth/damping linear operator. ${ }^{15}$ Equation (1) can be derived under the following ordering scheme for perturbed quantities (n and v_{z} are plasma density and velocity along the z-axis):

$$
\frac{B_{x}}{B_{0}} \approx \frac{B_{y}}{B_{0}} \approx \sqrt{\frac{n-n_{0}}{n_{0}}} \approx \sqrt{\frac{v_{z}}{V_{A}}}
$$

To study weakly nonlinear interactions, we consider an approximate solution of Eq. (1) consisting of three traveling waves,

$$
\begin{equation*}
\phi=2 \sum_{j=1}^{3} \phi_{j}(t) e^{i \lambda_{j}}, \quad \lambda_{j}=k_{j} z-\omega_{j} t \tag{3}
\end{equation*}
$$

satisfying a resonance condition $2 k_{1}=k_{2}+k_{3}$. Wave number and frequency of modes are related by the linear (lossless) dispersion relation for circularly polarized Alfven waves at low wave number, $\omega_{j}=k_{j} \mp k_{j}^{2} / 2$.

Both the growth/damping and the nonlinear term in Eq. (1) make the complex amplitudes ϕ_{j} vary slowly in time. Introducing Eq.(3) in (1) and considering only the k_{1}, k_{2} and k_{3} components one arrives at

$$
\begin{align*}
& \dot{\phi}_{1}+\gamma_{1} \phi_{1}+i k_{1}\left[\left(\left|\phi_{1}\right|^{2}+2\left|\phi_{2}\right|^{2}+2\left|\phi_{3}\right|^{2}\right) \phi_{1}+2 \phi_{1}^{*} \phi_{2} \phi_{3} e^{i v t}\right]=0, \tag{5a}\\
& \dot{\phi}_{2}+\gamma_{2} \phi_{2}+i k_{2}\left[\left(2\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}+2\left|\phi_{3}\right|^{2}\right) \phi_{2}+\phi_{1}^{2} \phi_{3}^{*} e^{-i v t}\right]=0 \tag{5b}\\
& \dot{\phi}_{3}+\gamma_{3} \phi_{3}+i k_{3}\left[\left(2\left|\phi_{1}\right|^{2}+2\left|\phi_{2}\right|^{2}+\left|\phi_{3}\right|^{2}\right) \phi_{3}+\phi_{1}^{2} \phi_{2}^{*} e^{-i v t}\right]=0 \tag{5c}
\end{align*}
$$

where $\dot{\phi}_{j}$ is $d \phi_{j} / d t$ and $v \equiv 2 \omega_{1}-\omega_{2}-\omega_{3}$ is a frequency mismatch. We assume that all other components, in particular those involving wave numbers $2 k_{2}-k_{1}, 2 k_{3}-k_{1}, 2 k_{2}-k_{3}$, and $2 k_{3}-k_{2}$, arising from using (3) in the nonlinear term of Eq.(1), are strongly damped. ${ }^{15}$

Setting $\phi_{j}(t)=a_{j}(t) \exp \left[i \psi_{j}(t)\right]$ in Eqs. (5a-c) with a_{j}, ψ_{j} real, and using the resonance condition, the above three complex equations are reduced to four real equations,

$$
\begin{gather*}
\dot{a}_{1}=-\gamma_{1} a_{1}-\left(k_{2}+k_{3}\right) a_{1} a_{2} a_{3} \sin \beta \tag{6a}\\
\dot{a_{2}}=-\gamma_{2} a_{2}+k_{2} a_{1}^{2} a_{3} \sin \beta \tag{6b}\\
\dot{a_{3}}=-\gamma_{3} a_{3}+k_{3} a_{1}^{2} a_{2} \sin \beta \tag{6c}\\
\dot{\beta}=v+\left[a_{1}^{2}\left(k_{2} \frac{a_{3}}{a_{2}}+k_{3} \frac{a_{2}}{a_{3}}\right)-2\left(k_{2}+k_{3}\right) a_{2} a_{3}\right] \cos \beta-k_{2}\left[a_{1}^{2}-a_{2}^{2}\right]-k_{3}\left[a_{1}^{2}-a_{3}^{2}\right] \tag{6d}
\end{gather*}
$$

where $\beta \equiv \pi+v t+\psi_{2}+\psi_{3}-2 \psi_{1}$.
We restrict the analysis to the case $\gamma_{2}=\gamma_{3} \equiv \gamma$. Multiplying Eq. (6b) by $2 k_{3} a_{2}$, Eq. (6c) by $2 k_{2} a_{3}$, and subtracting from each other there results

$$
\begin{equation*}
\frac{d}{d t}\left(k_{3} a_{2}^{2}-k_{2} a_{3}^{2}\right)=-2 \gamma\left(k_{3} a_{2}^{2}-k_{2} a_{3}^{2}\right) \tag{7}
\end{equation*}
$$

Eq.(7) shows $k_{3} a_{2}{ }^{2}-k_{2} a_{3}{ }^{2}$ (but not $a_{2}{ }^{2}$ or $a_{3}{ }^{2}$) to decay exponentially with time. For a study of the long time behavior of the system, we may then take $k_{3} a_{2}^{2}=k_{2} a_{3}^{2}$ from the outset. Note that the frequency mismatch is positive and negative for left-hand (LH) and right-hand (RH) polarization respectively: using Eq.(4) one finds in dimensional form

$$
\begin{equation*}
\frac{v}{\omega_{c i}} \approx \pm\left(\frac{\omega_{1}}{\omega_{c i}}\right)^{2}\left(\frac{k_{2}-k_{3}}{k_{2}+k_{3}}\right)^{2} \tag{8}
\end{equation*}
$$

This sign difference will later be shown to lead to fundamentally different dynamics for the two polarizations. Finally we may both take $k_{3}<k_{2}$ and equal signs for a_{2} and a_{3} with no loss of generality (for opposite signs, setting $\beta \rightarrow \pi+\beta$ would again leave the system invariant); also, we may take all three a_{1}, a_{2}, a_{3} positive.

Writing $\gamma_{1} \equiv-\Gamma<0$ and introducing new variables

$$
\sqrt{k_{2} k_{3}} a_{1}^{2} \rightarrow a_{1}^{2}, \quad\left(k_{2}+k_{3}\right) \sqrt{k_{3} / k_{2}} a_{2}^{2} \rightarrow a_{2}^{2}
$$

system ($6 \mathrm{a}-\mathrm{d}$) is reduced to three real non-linear equations

$$
\begin{gather*}
a_{1}=\Gamma a_{1}-a_{1} a_{2}^{2} \sin \beta \tag{9a}\\
a_{2}=-\gamma a_{2}+a_{1}^{2} a_{2} \sin \beta, \tag{9b}\\
\dot{\beta}=v-2\left(a_{1}^{2}-a_{2}^{2}\right)(\bar{V}-\cos \beta)-a_{2}^{2} / \bar{V}, \tag{9c}
\end{gather*}
$$

where

$$
\begin{equation*}
\bar{V} \equiv \frac{1+k_{3} / k_{2}}{2 \sqrt{k_{3} / k_{2}}}>1, \quad\left(\frac{k_{3}}{k_{2}}<1\right) \tag{10}
\end{equation*}
$$

The limit case $\bar{V}=1$ would exactly recover a truncation of the 1D nonlinear Schrödinger equation describing the parametric excitation of linearly damped waves by the oscillating two-stream instability in plasmas. ${ }^{15}$ We also note that some resonant interactions of two oscillators with frequency ratio $1: 1$, which have been analyzed by López-Rebollal and Sanmartín, are described by system (9a-c) with the last term in (9c) missing. ${ }^{12}$

3. $\Gamma=0$ ATTRACTOR FOR THE REDUCED 3-WAVE MODEL

In this section we discuss analytical results that can be readily obtained from system (9a-c) and we determine its $\Gamma=0$ attractor. A trivial result concerns the flow divergence in (3D) phase-space $a_{1}{ }^{2}, a_{2}{ }^{2}$, and β, reading

$$
\frac{\partial}{\partial a_{1}^{2}} \frac{d a_{1}^{2}}{d t}+\frac{\partial}{\partial a_{2}^{2}} \frac{d a_{2}^{2}}{d t}+\frac{\partial}{\partial \beta} \frac{d \beta}{d t}=2(\Gamma-\gamma) .
$$

Nonlinear conservative coupling naturally preserves volume. For $\Gamma<\gamma$, as assumed here, the long-time attractor of the system will be a point-set of vanishing 3D volume.

Again from system (9a-c) one obtains equations that would represent conservation laws in the no-dissipation limit,

$$
\begin{equation*}
\frac{d}{d t}\left(a_{1}^{2}+a_{2}^{2}\right)=2 \Gamma a_{1}^{2}-2 \gamma a_{2}^{2} \tag{11}
\end{equation*}
$$

For $\Gamma<0$, Eq.(11) proves the equilibrium state $a_{1}=a_{2}=0$ to be a global attractor. In this section we consider the long-time attractor of system $(9 a-c)$ at $\Gamma_{2}=0$. Note that the entire flow is now asymptotic to the surface $a_{2}=0$, because $a_{1}{ }^{2}+a_{2}{ }^{2}$ will keep diminishing in Eq.(11) unless a_{2} vanishes. Since that surface is invariant, trajectories should be asymptotic to its critical elements with transverse stable manifolds.

Consider then the flow on $a_{2}=0$ at $\Gamma=0$, Eq.(9a) then yielding $a_{1}=$ constant. The intersection of the plane $a_{2}=0$ and the cylindrical surface $\mathrm{h}_{0}\left(\mathrm{a}_{1}, \beta\right) \equiv \beta\left(\mathrm{a}_{2}=0\right)=0$ is a line Λ of fixed points,

$$
\begin{gather*}
a_{2}=0, \tag{12a}\\
h_{0} \equiv v-2 a_{1}^{2}(\bar{V}-\cos \beta)=0 . \tag{12b}
\end{gather*}
$$

Figure 1 shows both Λ and the surface $h_{0}=0$ for $\bar{V}>1 ; \Lambda$ would reach up to infinity for $\bar{V}=1$. Linearizing the vector field at the fixed points we find eigenvalues $\lambda_{1}=-2 a_{1}{ }^{2} \times$ $\sin \beta$, and $\lambda_{2}=0$, for eigenvectors tangent to the line $a_{1}=$ constant through the corresponding fixed point, and tangent to Λ, respectively. From the sign of λ_{1} it follows that, for flow on $a_{2}=0, \Lambda$-points with $\beta<\pi$ are stable and $\beta>\pi$ points are unstable; two $a_{1}=$ constant heteroclinic orbits join each symmetric pair of Λ points.

The third eigenvalue is clearly the factor multiplying a_{2} in Eq.(9b), $\lambda_{3}=-\gamma+a_{1}{ }^{2} \sin \beta$, with the associated eigenvector parallel to the a_{2}-axis. It follows that for motion off $a_{2}=0$ the $\beta>\pi$ branch is stable, whereas in the branch $\beta<\pi$, under condition

$$
\begin{equation*}
\bar{V}^{2}<1+(v / 2 \gamma)^{2} \tag{13}
\end{equation*}
$$

there are points P_{0} and $P_{0}{ }^{*}$ that have $\lambda_{3}=0$ and are given by

$$
\begin{equation*}
a_{1}^{2}=\frac{\gamma}{\sin \beta}=\frac{\bar{V} v \mp \sqrt{v^{2}-4 \gamma^{2}\left(\bar{V}^{2}-1\right)}}{2\left(\bar{V}^{2}-1\right)} \tag{14}
\end{equation*}
$$

for - and + signs respectively, with $\beta\left(P_{0}{ }^{*}\right)<\pi / 2$ always, but $\beta\left(P_{0}\right)>\pi / 2$ for $v / 2 \gamma>\bar{V}$. Only Λ-points in the arc $P_{0} P_{0}{ }^{*}$ are unstable off $a_{2}=0$. For the flow in the entire 3D space
the stable fixed points are those in the $\beta<\pi$ branch of Λ below P_{0} and above $P_{0}{ }^{*}$. Note that $a_{1}\left(P_{0}{ }^{*}\right) \rightarrow \infty$ as $\bar{V} \rightarrow 1$.

Figure 1. Line Λ of fixed points on invariant plane $a_{2}=0$ at $\Gamma=0$, and periodic orbits above and below; for $\beta<\pi$ only the arcs QP_{0} and $\mathrm{P}_{0}{ }^{*} \mathrm{Q}^{*}$ are stable off $\mathrm{a}_{2}=0$. Also shown is the cylindrical surface $\mathrm{h}_{0}\left(\mathrm{a}_{1}, \beta\right)=0$.

In the plane $a_{2}=0$ there is another type of critical elements. There are periodic orbits that move below the bottom Q of Λ at constant $a_{1}<a_{1 Q}$, from $\beta=0$ to $\beta=2 \pi$, and that are described by Eq.(9c) now reading $\dot{\beta}=h_{0}\left(a_{1}, \beta\right)$; again, there are periodic orbits above Q^{*} in Fig.1. [Their period is $\pi /\left[\left(\bar{V} a_{10}{ }^{2}-\mathrm{v} / 2\right)^{2}-a_{10}{ }^{4}\right]^{1 / 2}$, which diverges for $a_{10}=a_{1 \mathrm{Q}} \quad\left(a_{10}=\right.$ $a_{1 \mathrm{Q}}{ }^{*}$), when the periodic orbit becomes an homoclinic trajectory at $Q\left(Q^{*}\right)$, as seen in the figure.] Clearly, $a_{2}=0$ perturbations of any such orbits leave the system moving in another nearby orbit. Also, all these periodic orbits are stable off $a_{2}=0$: At vanishing a_{2} we have $\dot{\beta}$ $=\mathrm{O}(1)$ whereas a_{1} changes at a rate of order $a_{2}{ }^{2}$; taking $\mathrm{d}\left(\ln a_{2}\right) / \mathrm{d} t$ from (9b), its average over a period is $-\gamma<0$, the contribution of the $\sin \beta$ term vanishing.

Under condition (13) one may say that the stable arc $Q P_{0}$ and the periodic orbits below Q make up one attractor of the flow and the stable arc $P_{0}{ }^{*} Q^{*}$ and the periodic orbits above Q^{*} make up a second attractor. There is a fundamental difference between these two attractors
however. Since Λ points in the $\operatorname{arc} P_{0} P_{0}{ }^{*}$ have an 1D unstable manifold transverse to $a_{2}=0$ there exist singular, heteroclinic orbits that leave this plane at those points, and return to it at a lower a_{1}, as seen from Eq.(11) with $\Gamma=0$. The singular orbit may reach a point in the arc $Q P_{0}$ from the left, keeping $\beta<\pi$ throughout, or may approach the set of periodic orbits. It may also pass just below the surface $h_{0}\left(a_{1}, \beta\right)=0$ to reach the range $\beta>\pi$ still off the plane $a_{2}=0$, making \dot{a}_{1} positive in Eq.(9a); the orbit will then emerge at $\beta=0$ with $a_{1}>a_{1 \mathrm{Q}}$ and again reach a point in the arc $Q P_{0}$ from the left.

4. $\Gamma \rightarrow \mathbf{0}^{+}$ATTRACTOR

When Γ is made positive, there are just two fixed points, P and P^{*}, given by

$$
\begin{gather*}
a_{1}^{2}=\frac{-2 \frac{\Gamma}{\gamma} v\left(2 \bar{V}-\bar{V}^{-1}\right)+4 \bar{V} v \mp 4 \sqrt{\frac{\Gamma}{\gamma}\left[4 \gamma^{2}(4 \bar{V}-5)-2 v^{2}\right]+\left[v^{2}-4 \gamma^{2}\left(\bar{V}^{2}-1\right)\right]}}{8\left[\left(\bar{V}^{2}-1\right)+\frac{\Gamma}{\gamma}\left(3-2 \bar{V}^{2}\right)\right]} \tag{15a}\\
a_{2}^{2}=\frac{\Gamma a_{1}^{2}}{\gamma} \tag{15b}\\
\sin \beta=\frac{\gamma}{a_{1}^{2}} \tag{15c}
\end{gather*}
$$

under condition

$$
\begin{equation*}
\bar{V}^{2}<\frac{v^{2}(\gamma-2 \Gamma)+4 \gamma^{2}(\gamma-5 \Gamma)}{4 \gamma^{2}(\gamma-4 \Gamma)} \tag{15~d}
\end{equation*}
$$

Equation (15a) recovers (14) for P_{0} and $P_{0}{ }^{*}$ and Eq. (15d) recovers (13) when $\Gamma \rightarrow 0$.
The characteristic equation for the stability of those two points is

$$
\begin{equation*}
(\lambda+2 \gamma-2 \Gamma)\left(\lambda^{2}+4 \gamma \Gamma\right)+\frac{2 \gamma \Gamma}{\tan \beta}\left[\frac{\lambda}{\sin \beta}\left\{\frac{1}{\bar{V}}-4(\bar{V}-\cos \beta)\right\}-2 v\right]=0 \tag{16}
\end{equation*}
$$

For $\Gamma=0$, Eq.(19) again recovers the values $\lambda_{1}=-2 \gamma, \lambda_{2}=\lambda_{3}=0$ of Sec. 3. For Γ positive and small, one finds to order $\sqrt{\Gamma}$

$$
\begin{equation*}
\lambda_{2,3}\left(P^{*}\right) \approx \pm \sqrt[4]{v^{2}-4 \gamma^{2}\left(\bar{V}^{2}-1\right)} \times \sqrt{2 \Gamma} \times a_{1}\left(P_{0}^{*}\right) \tag{17}
\end{equation*}
$$

P^{*} at small Γ is thus a saddle-node with an 1D unstable manifold. For the stability of P we must go to order Γ,

$$
\begin{gather*}
\lambda_{2,3}(P) \approx \pm i \sqrt[4]{v^{2}-4 \gamma^{2}\left(\bar{V}^{2}-1\right)} \times \sqrt{2 \Gamma} \times a_{1}\left(P_{0}\right)+\bar{\lambda} \Gamma \tag{18}\\
\bar{\lambda} \equiv \frac{1}{2 \tan \beta}\left(\frac{v}{\gamma}-\frac{1}{\bar{V} \sin \beta}\right)
\end{gather*}
$$

The sign of $\bar{\lambda}$ is obtained by taking $\beta(v / \gamma, \bar{V}, \Gamma)$ from Eq.(15a) with the upper sign. We find that P, which only exists under condition (15d) and is defined for $\bar{V}>1$, is stable above the line $(\nu / 2 \gamma)^{2}=\bar{V}^{2}$ [with $\beta\left(P_{0}\right)>\pi / 2$ as noticed in Sec. 3] and below the line

$$
\begin{equation*}
\left(\frac{v}{2 \gamma}\right)^{2}=\frac{1}{8 \bar{V}^{2}-4 \bar{V}^{4}-1}, \quad\left(\text { for } \bar{V}^{2}<\frac{3}{2}\right) \tag{19}
\end{equation*}
$$

in the parametric plane $(v / 2 \gamma)^{2}, \bar{V}^{2}$. Point P goes through a Hopf bifurcation, $\bar{\lambda}$ becoming positive, when crossing either line. Figure 2 summarizes the stability of P for $\Gamma \rightarrow 0^{+}$.

Now consider the long-time behavior of the system for Γ very small. Away from the surface $a_{2}=0$ the flow will closely follow $\Gamma=0$ trajectories. If a trajectory approaches a periodic orbit above Q^{*}, the term Γa_{1} in Eq.(9a) will make a_{1} ultimately diverge, as the system slowly drifts through the set of periodic orbits; if the $\Gamma=0$ trajectory approaches the arc $P_{0}{ }^{*} Q^{*}$, the system will first have a_{1} slowly rising along and very close to Λ, till reaching the set of periodic orbits at point Q^{*}. The case for $\Gamma=0$ trajectories approaching either the arc $Q P_{0}$ or the periodic orbits below is dramatically different.

Consider flow in the vicinity of the $\Gamma=0$ heteroclinic orbit corresponding to a Λ-point M on the $P_{0} P_{0}{ }^{*}$ arc, in the approach back to the surface $a_{2}=0$, below P_{0}. If the orbit approaches some point m between Q and P_{0} and because of the term $\Gamma a_{1}, a_{1}$ should eventually start growing at rate Γ, keeping close to Λ. In terms of the eigenvalue λ_{3} of Sec. 3, Eq.(9b) can be written as $\mathrm{d} a_{2} / \mathrm{d} t=\lambda_{3} a_{2}$; since λ_{3} is negative for Λ-points below P_{0} and positive from P_{0} to $P_{0}{ }^{*}$, and the a_{1}-rise takes times of order $1 / \Gamma, a_{2}$ will become exponentially small $\left(-\ln a_{2} \sim 1 / \Gamma\right)$. Once P_{0} is reached, however, a_{2} will start growing; when values $a_{2} \sim \sqrt{ } \Gamma$ are attained, a_{1} can finally reach a maximum M^{\prime} below $P_{0}{ }^{*}$, and the trajectory again start separating from Λ. If the heteroclinic orbit approaches some periodic orbit below Q, a_{1} will first slowly increase while the system drifts among the lower set of periodic orbits to reach Λ.

In the parametric domain of Fig. 2 where P is stable, trajectories starting within some bassin of attraction in phase space have a sequence of points M, m, M^{\prime}, \ldots, converging to point P as given, to lowest order in Γ, by Equations (14) and $a_{2}{ }^{2}=\Gamma \times a_{1}{ }^{2} / \gamma$. The general
attractor structure following the loss of stability of P at crossing line B (or C) at fixed \bar{V}, giving rise to a limit cycle, depends on the value of \bar{V}. At \bar{V} very close to unity the set of periodic orbits is rarely involved in the attractor.

Figure 2. Stability of fixed point P at $\Gamma \rightarrow 0^{+}$, in parametric plane $(\mathrm{v} / 2 \gamma)^{2}, \bar{V}^{2}$. Lines $A,(v / 2 \gamma)^{2}=\bar{V}^{2}-1 ; ~ B,(v / 2 \gamma)^{2}=\bar{V}^{2} ; ~ C$, given by Eq.(19).

5. NUMERICAL RESULTS

In this section we study to cases: $\Gamma=0$ and $\Gamma \rightarrow 0^{+}$by means of numerical integration of the Equations ($9 \mathrm{a}-\mathrm{c}$). The numerical integration is carry out by a single step, $8^{\text {th }}$ order Runge-Kutta method. ${ }^{18}$

5.1 Case $\Gamma=0$

We present two figures, one of them (Figure 3) shows the trajectory and long-time attractor (a periodic orbit) for $\bar{V}=13 / 12\left(\mathrm{k}_{3} / \mathrm{k}_{2}=4 / 9\right), \Gamma / \gamma=0$ and $\nu / \gamma=1.6$ with $\gamma=1$, considering the initial conditions: $a_{1}=1.0, a_{2}=2.7$ and $\beta=5$. One can observe that the trajectory converge asymptotically to a periodic orbit on $a_{2}=0$ plane below the point Q . Figure 4 shows the trajectory, curve Λ and long-time attractor (a periodic orbit) projected on the $a_{1}-\beta$ plane for $\bar{V}=13 / 12\left(\mathrm{k}_{3} / \mathrm{k}_{2}=4 / 9\right), \Gamma / \gamma=0$ and $\mathrm{v} / \gamma=1.6$ with $\gamma=1$, considering as initial conditions $a_{1}=1.0287, a_{2}=0.0001$ and $\beta=1.237$. The initial conditions represents a point placed on surface $h_{0}=0$ close to the $\operatorname{arc} P_{0} P_{0}{ }^{*}$ of the curve Λ. This point has an 1D unstable manifold transverse to $a_{2}=0$ plane; an heteroclinic orbit leaves this plane at this point, and return to it at a lower a_{1} on periodic orbit.

Figure 3. Trajectory and long-time attractor (a periodic orbit) for $\bar{V}=13 / 12\left(\mathrm{k}_{3} / \mathrm{k}_{2}=4 / 9\right), \Gamma / \gamma=0$ and $v / \gamma=1.6$ with $\gamma=1$. Initial conditions: $a_{1}=1.0, a_{2}=2.7$ and $\beta=5$.

5.2 Case $\Gamma \rightarrow \mathbf{0}^{+}$

To analyze the loss of stability of point P at crossing the lines B and C by fixed \bar{V}, we presents the results by $\bar{V}=13 / 12\left(k_{3} / \mathrm{k}_{2}=4 / 9\right)$ and $\Gamma / \gamma=0.001$, with $\gamma=1$. Line B corresponds to $\nu / \gamma=2.166$ and line C to $\nu / \gamma=1.16$, so that the unstable range is $1.16 \leq v / \gamma \leq 2.166$ (see Figure 2). Table 1 summarize the numerical results, it is possible to observe the evolution of the attractor structure in function of v / γ, using as initial conditions $a_{1}=2.0, a_{2}=0.1$ and $\beta=2.0$. We found the Feigenbaum cascade to chaos: 1-limit-cycle, 2-limit-cycle, 4-limit-cycled and chaos. Figure 5 shows a 1 -limit-cycle attractor, projected on the $a_{1}-\beta$ plane, for $v / \gamma=1.8$, which is determined following a single trajectory for long times. Figure 6 shows a 2 -cycle-limit attractor by $v / \gamma=1.60125$, Figure 7 shows a 4 -cyclelimite attractor by $v / \gamma=1.601203$ and Figure 8 represents the chaotic attractor by $v / \gamma=1.6$.

Figure 4. Trajectory, curve Λ and long-time attractor (a periodic orbit) for $\bar{V}=13 / 12\left(\mathrm{k}_{3} / \mathrm{k}_{2}=4 / 9\right), \Gamma / \gamma=0$ and $\nu / \gamma=1.6$ with $\gamma=1$. Initial conditions: $a_{1}=1.0287, a_{2}=0.0001$ and $\beta=1.237$.

$\boldsymbol{\nu} / \gamma$	Δt	Time step number	Attractor structure
2.5	0.05	10150000	$\beta=1.724165-\mathrm{a}_{2}=0.03181-\mathrm{a}_{1}=1.00592$
2.2	0.05	40200000	$\beta=1.587941-\mathrm{a}_{2}=0.031625-\mathrm{a}_{1}=1.000073$
2.1	0.005	101600000	1-limit-cycle
2.0	0.05	40200000	1-limit-cycle ascending by periodic orbits
1.8	0.05	40200000	1-limit-cycle ascending by periodic orbits
1.7	0.05	40200000	1-limit-cycle ascending by periodic orbits
1.65	0.05	40200000	1-limit-cycle ascending by periodic orbits
1.64	0.005	51600000	1-limit-cycle ascending by periodic orbits
1.61	0.05	40200000	1-limit-cycle ascending by periodic orbits
1.602	0.005	101200000	1-limit-cycle ascending by periodic orbits
1.60125	0.005	51200000	2-limit-cycle ascending by periodic orbits
1.601203	0.005	41200000	4-limit-cycle ascending by periodic orbits
1.6	0.005	10160000	Chaos
1.58	0.05	20200000	1-limit-cycle ascending by periodic orbits
1.5	0.05	40200000	1-limit-cycle
1.4	0.05	40200000	1-limit-cycle
1.2	0.05	40200000	1 limit-cycle
1.0	0.05	40200000	$\beta=0.712956-\mathrm{a}_{2}=0.039101-\mathrm{a}_{1}=1.23648$

Table 1. Numerical results by $\bar{V}=13 / 12\left(\mathrm{k}_{3} / \mathrm{k}_{2}=4 / 9\right)$ and $\Gamma / \gamma=0.001$, with $\gamma=1$.
Initial conditions: $a_{1}=2.0, a_{2}=0.1$ and $\beta=2.0$

VI. CONCLUSIONS

We have truncated the derivative nonlinear Schrödinger (DNLS) equation describing the interaction of circularly polarized Alfven waves of finite amplitude, to explore weakly nonlinear dynamics in the coherent cubic coupling of three waves near resonance (3WRI), wave 1 being linearly unstable and waves 2 and 3 damped. We have considered a broad scenario for chaos which several 3WRI systems had exhibited: No matter how small the growth rate Γ of the unstable wave there exists certain parametric domain with a fully developed attractor (chaotic in some subdomain) that is absent at $\Gamma \leq 0$. To explore the characteristics of this hard transition to complex phase-space dynamics we have considered a reduced 3-wave model (equal dampings of daughter waves, leading to a 3D flow for wave amplitudes a_{1}, a_{2} and a relative phase).

Figure 5. Lower part of limit 1-cycle attractor projected on the $a_{1}-\beta$ plane for $\bar{V}=13 / 12\left(\mathrm{k}_{3} / \mathrm{k}_{2}=4 / 9\right)$, $\Gamma / \gamma=0.001$ and $v / \gamma=1.8$ with $\gamma=1$.

The reduced model showed the hard transition only occurring for left-hand circularly polarized waves, paralelling the known fact that LH time-harmonic solutions of the DNLS equation (for cold plasmas) are modulationally unstable, a case opposite RH polarized solutions. ${ }^{5}$ A number of features determine the phase-space dynamics of the transition: For Γ $=0$, the entire flow is asymptotic to the space $a_{2}=0$, where a line of fixed points Λ covers

S. Elaskar, J. Sanmartín

a limited a_{1}-range with periodic orbits below and above that range. A branch of Λ has an arc of fixed points unstable off the space $a_{2}=0$, in between stable arcs; singular, heteroclinic orbits off the unstable arc return to that space at lower a_{1}. Chaotic attractors involve repeated slow rises on Λ, and possibly in the lower set of periodic orbits, followed by fast motion along the heteroclinic orbits.

Figure 6 . Lower part of limit 2-cycle attractor projected on the $a_{1}-\beta$ plane for $\bar{V}=13 / 12\left(\mathrm{k}_{3} / \mathrm{k}_{2}=4 / 9\right)$, $\Gamma / \gamma=0.001$ and $\nu / \gamma=1.60125$ with $\gamma=1$.

Acknowledgments

This work was supported by Ministerio de Ciencia y Tecnología of Spain, under Grant BFM01-3723, Secretaría de Ciencia y Tecnología of Universidad Nacional de Córdoba and Agencia Córdoba Ciencia. Work by S. Elaskar was, partially, supported by Ministerio de Educación Cultura y Deportes of Spain, under Grant SB01-0080.

Figure 7. Lower part of limit 4-cycle attractor projected on the $a_{1}-\beta$ plane for $\bar{V}=13 / 12\left(\mathrm{k}_{3} / \mathrm{k}_{2}=4 / 9\right)$, $\Gamma / \gamma=0.001$ and $\nu / \gamma=1.601203$ with $\gamma=1$.

Figure 8. Lower part of chaotic attractor projected on the $\mathrm{a}_{1}-\beta$ plane, for $\bar{V}=13 / 12 \quad\left(\mathrm{k}_{3} / \mathrm{k}_{2}=4 / 9\right)$, $\Gamma / \gamma=0.001, v / \gamma=1.6$ and $\gamma=1$.

References

1. S.D.Drell, H.M.Foley and M.A.Ruderman, J. Geophys. Res. 70, 3131 (1965); A.Barnett and S.Olbert, J. Geophys. Res. 91, 10117 (1986); J.R.Sanmartín and M.MartínezSanchez, J. Geophys. Res. 100, 1677 (1995).
2. J.R.Sanmartin and R.D.Estes, J. Geophys. Res. 102, 14625 (1997).
3. G.V.Khazanov, N.H.Stone, E.N.Krivorutsky and E.W.Liemohn, J. Geophys. Res. 105, 15835 (2000); G.V.Khazanov, N.H.Stone, E.N.Krivorutsky, K.V.Gamayunov and E.W.Liemohn, J. Geophys. Res. 106, 10565 (2001); J.R.Sanmartin and R.D.Estes, J. Geophys. Res. 107, SIA 2-1 (2002).
4. A.Rogister, Phys. Fluids 14, 2733 (1971); K.Mio, T.Ogino, K.Minami and S.Takeda, J. Phys. Soc. Japan 41, 265 (1976).
5. E.Mjelhus, J. Plasma Phys. 16, 321 (1976); 19, 437 (1978).
6. S.R.Spangler and J.P.Sheerin, J. Plasma Phys. 27, 193 (1982); T.Hada, C.F.Kennel and B.Buti, J.Geophys. Research 94, 65 (1989); M.V.Medvedev and P.H.Diamond, Phys. Plasmas 3, 863 (1996); T.Passot and P.L.Sulem, Phys. Plasmas 10, 3887 (2003).
7. R.C.Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972), Chap. 6; A. Bers, in Plasma Physics - Les Houches 1972, edited by C.De Witt and J.Peyreaud (Gordon and Breach, New York, 1975), pp. 117-215; J.Weiland and H.Wilhelmsson, Coherent Nonlinear Interaction of Waves and Plasmas (Pergamon, New York, 1977).
8. S.Ya.Vyshkind and M.I.Rabinovich, Sov.Phys.-JETP 44292 (1976); A.S.Pikovsky and M.I.Rabinovich, Physica D 2, 8 (1981).
9. J.M.Wersinger, J.M.Finn, and E.Ott, Phys.Rev.Lett. 44, 453 (1980); Phys.Fluids 23, 1142 (1980).
10. M.N.Bussac, Phys.Rev.Lett. 49, 1939 (1982); C.Meunier, M.N.Bussac and G.Laval, Physica D 4, 236 (1982).
11. D.W.Hughes and M.R.E.Proctor, Physica D 46, 163 (1990).
12. O.López-Rebollal and J.R.Sanmartín, Physica D 89, 204 (1995).
13. D.W.Hughes and M.R.E.Proctor, Wave Motion 20, 201 (1994).
14. O.López-Rebollal, J.R.Sanmartín and E. del Río, Phys. Plasmas 5, 2861 (1998).
15. M.I.Rabinovich and A.L.Fabrikant, Sov. Phys. JETP 50, 311 (1979); D.A.Russell and E.Ott, Phys. Fluids 24, 1976 (1981).
16. J.R.Sanmartín, O.López-Rebollal, and N.de Paola, Physica D 69, 148 (1993).
17. J.R.Sanmartín, O.López-Rebollal, and E. Del Río; S. Elaskar, Physics of Plasmas 11, 2026 (2004).
18. E. B. Shanks, Math. Comp. 20, 21-38 (1966)
