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Abstract. The modeling of catalytic reactors as sets of elliptic problems with boundary cor
tions of Dirichlet, Neumann, and mixed types, is studied. The main issue in the modelisatiol
solution procedure is the nonlinearity and presence of boundary singularities that are esse
to these systems.

After the introductory items, the main objective of this article is treated: the modelinc
catalytic reactors as sets of elliptic problems with essential border singularities. A systel
elliptic (stationary) advection-diffusion equations with boundary conditions of Dirichlet, Ne
mann and, also, of really demanding essential singular nonlinear Robin type is posed ar
algorithm for their numerical solution is proposed.

This second set of examples are associated to problems drawn from Chemical Engine
(Simplified Catalytic Reactors) with the aim of providing reasonable solutions and accept
a posteriori error estimates. The modeling and simulation of the reactor is also an issue in
article.

More research is still needed, in particular in the transient initialization modeling by parab
equations, but the methods appear to be powerful and simple tools for obtaining accurate
element solutions and error estimation and is able for adaptivity of meshes.

It is interesting to note that, including convex polygonal domains, the method is efficient
it appears to be not related to the order of the numerical algorithm.
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1 INTRODUCTION

In this work several properties associated to the modeling of catalytic reactors as sets of
tic problems with boundary conditions of Dirichlet, Neumann, and mixed types, are stuc
The main issue in the modelisation and solution procedure is the nonlinearity and preser
boundary singularities that are essential to these systems. The focus of this work is in first
to study elliptic problems where the domains present essential border singularities in orc
assess different types of error estimators. An illustrating example is treated first: the clas
test problems based on variants of the Poisson equation with boundary conditions of Diric
Neumann and Robin type.

Then, the main objective of this article is treated: the modeling of catalytic reactors as se¢
elliptic problems with essential border singularities. A system of elliptic (stationary) advecti
diffusion equations with boundary conditions of Dirichlet, Neumann and, also, of really
manding essential singular nonlinear Robin type is posed and an algorithm for their nume
solution is proposed.

This second set of examples are associated to problems drawn from Chemical Engine
(Simplified Catalytic Reactors) with the aim of providing reasonable solutions and accepta
posteriori error estimates. The modeling and simulation of the reactor is also a critical iss
this article. In this sense generalizations of the model are proposed as well as the justificat
the necessary simplifications that allow the reactor to be included in a more complex stru
of chemical engineering reactors.

More research is still needed, in particular in the transient initialization modeling by parak
equations, but the method appears to be a powerful and simple tool for obtaining accurate
element solutions and error estimation and is able for adaptivity of meshes.

It is interesting to note that, including convex polygonal domains, the method is efficient
it appears to be not related to the order of the numerical algorithm.

When the singularities are created by the non conforming boundary conditions in a vert
the polygonal domain the method is also efficient even in the nonlinear case.

1.1 Monolith converters

Monolith converters (i.e. with impermeable walls) have been thoroughly used in the las
years as afterburners of combustion engine exhausts and, e.g, for catalytic reactions in petr
chemistry (see, for example the review of Cyboufskgnd the references therein).

The development objective is to meet clean-air standards established by the different
tries in a relatively successful effort for pollution control.

The catalytic oxidation of hydrocarbons, nitrogen oxides, carbon monoxide and other
taminants of exhaust gases of automobiles is performed on the walls of thousands of
parallel) passages of the monolith converter.

The physical characteristics of the industrial monoliths favors the process modelisatiol
cause of the uniformity of the flow, mass and heat transfer conditions across the monolitt
we will concentrate on a single passage model as a representative of the whole device.
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One of the critical aspects of the class of converters addressed in this paper is the reduc
the so called cold-start emissions. By those we mean the amount of contaminants not con
during the initial low temperature performance of the device.

The control strategy is to raise the temperature with, e.g., an alternator driven heater.
simplest model for the results of the heater action is a ramp as defined in the article. S
obtain an one parameter boundary control problem (the control strategy then reduces to s
the time for pre-heating ending).

The main parts of this article related to monolith converters begin with the modeling of
problem in cylindrical coordinates introducing several simplifications. The statement of
boundary control problem follows, i.e. the inlet temperature raising and stabilization. The
step is to develop a finite element model of the variational (weak) equations. We set a d«
mesh algorithm in order to estimate the errors of approximétibarther model simplification
and polynomial approximation of nonlinear terms in the heat balance equation is proposed
of them is to represent the processes on the wall (catalytic) boundary by a global polync
function of temperature and concentrations. A brief study of the stationary state equation
liptic) and approximate solutions is performed in order to exemplify the reactor behavior. At
stage is necessary to specify the whole set of physical constants. Determination of inlet he
policies is necessary, resulting in a cold start heating process till an optimal desired tem
ture and then in approximations of heat and molar distributions. With an approximate ir
temperature distribution we calculate the molar distributions of the reacting chemical spe
and then we recalculate the temperatures in a stable process simulation. We then estim.
approximation errors in the case of the stationary state model.

When the objective is to study the regularity of solutions it is necessary to simplify the mc
because the sustantive mathematics for the treatment of nonlinear systems of partial differ
equations is lacking.

2 BASIC MODEL

We model a single passage of the monolith.
The hydrocarbon oxidation can be represented by

cmHn+(m+%)02:mcoz+gH20 @)
(e.g., for propanein = 3, andn = 8), the carbon monoxide combustion
2C0 4 0y = 2CO, (2)
and the nitrogen oxides elimination
2NO, + 22 CO = Ny + 22 CO, (3)

For simplicity we do not take into account the reactionsNr, elimination.
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The advection-diffusion molar balance for the chemical species 1:s, in ther reactions,
reads$+®

r P Y;
V(D; pVY;) — pVVY; — Z vijRijm = (gt ) (4)

7j=1
whereY; denotes the molar fraction of speciep = P/R,T is the density] is the absolute
temperaturefR, the ideal gas constant, atithe pressure (so we suppose negligible presst
drop); R, is the rate of the homogeneous)(;j*" reaction, and;; the matrix of stoichiometric
coefficients. The species diffusivitids, = D;(T'), are, in general temperature dependent. Tl
advection term includes the velocity of the air flux in the tube.
The heat balance reatts

1 °\ M;AH; < oT
—V(KVT)-VVT — — iR = —— 5
o, VEVT) = VY Z prea > viln = (5)

j=1
where the thermal diffusivitys’ = K(T') is temperature dependent/; are the molecular
weight, andA H; the enthalpy of species The specific heat of the gas ds,. So we have
a system of problems similar to the called second boundary value prdblems

For example, in the case of the oxidation of propane with oxygen in air (1 atm), the reac
is

CgHg +5 OQ =3 C02 + 4H20 (6)

and the previous variables reatl; = Y4, molar fraction of propaney,, molar fraction of
oxygen, and the kinetics of homogeneous (H) and heterogeneous (p, wall) reactions are

R = Age” 7 (< y2y,y, 7)
AH — 41H RgT ALO
and
RA =A e_% P YA (8)
P P RgT

whereAy and A, are the preexponential (Ahrrenius) factors, dfgdand E, are the activation
energies of the homogeneous and heterogeneous reactions

The cylindrical symmetry allows us to set boundary conditions in the four sides of a rec
gular half section of the tube. In the inner side and the outlet side we pose natural (Neun
conditions. On the wall side, where the catalytic reaction actually performs, is necessa
consider the heterogeneous reaction rates (faster than the homogeneous ones at operati
peratures) and the heat production (chemical reactions) and heat dissipation on the mol
In the inlet side the conditions are essential (Dirichlet) and it is necessary to know the n
fractions and temperature of the gas.
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2.1 Weak Formulation

We transform the conservation equations to cylindrical coordinateg,(z), and, based on
the supposed radial symmetry we are only concerned wlnd z. A further dimensional
reduction leads to the variablesandé (r = Rn, z = L&). The weak Galerkin formulation
in the new variables = T andw; = Y;, i = 1:s, s being the number of chemical species, i
then set{ € H'(Q) is a test function{2 being the unit square, and' the Sobolev space of
distributions of square integrable as well as their first derivatives).

The boundary and initial contitions are, fo 1:s,

w; = Yig,u = Tp, & = 0 (inlet) (9)
5 0, 9 0,¢ =1 (outlet) (10)
8(;;1 =0, g—:; = 0,m7 = 0 (center) (12)
D ow; Eip K Ou
R an Z Vij Jpe fge Wi, — R 877 Q(U Wi, - - - ;ws)7n =1 (Wau> (12)
w; = Y;,im‘; u = T;m,t =0 (start) (13)
whereQ(u, wy, . .., ws) models the heat balance in the wall.

The mass balance for specids = 1:s) leads to a set of equations that we omit for reasons
space, they lead to eqgs. 29—-38, and the heat balance to a set of equations that lead to eqgs.
the last ones are included because they are approximated by polynomials in the sequel,

R / / % Cw ua—ndndﬁ (14)
)g—zndndf (15)
R, a¢
/ / Pé %gK )az"d”d§ (17)
/ / —1/1 (1—mn U%ndndﬁ (18)
+Z/ / PMAHY%Z% Ajpe” o lwmdndﬁ (19)
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L B )dé (20)
R 0|n:1PCp U, Wy, ...,Ws
1 [t ou
—1'? - T0¢K(u)a_€77d77 (21)
£=0
1,1 au
—— [ | vGinanac 22

2.2 Inlet Control

We have reset the problem in the dimensionless domain of coordif@atgse [0, 1] x [0, 1]
(& = 0, being the inlet¢ = 1, the outlet, andy = 1, the wall side) and we may state the
boundary control problem: to optimize the functional

trpl trpl
wai//nchmm@mw+//Nwmmw—;mm%mw (23)
0J0 0J0

typl .
+/ IT(0, 0, £) — Tig() 2 et (24)
0J0

+Acwwﬁﬁ (25)

whereY (1,1, t) is the vector of outlet molar fractions for each timé <t < ¢;, (¢, is the final
time for evaluation)(' is a weight matrix for the relative concentrations of outlet contaminan
T?:(n) is a reference outlet temperature distribution desirable for optimal performance of
converter, 7" ,(n) is a reference inlet temperature, h&f@K, and, for simplicity,v(¢) is the
temperature in the specification of the inlet Dirichlet boundary condition

T0,n,t)=v(t), 0<n<1,0<t<ty (26)

i.e. v(t) = Ty, from initial conditions. The functiom represents the (alternator) preheatin
(see, e.g’). The norms in the functional involve relative weightsd(, 3, v, 9) for the terms.

A simple —but realistic,— model foo(¢) is, in this problemu(t) = 300 + a(t)t where
Otc a(t)tdt < Cy anda(t) < Co, 0 < t < t. for physical reasons (bounds and(Cs), [0, t.]
being the warm-up interval. Here for simplicity

450 +300 0<t<t
= tC - - ¢
v(t) { 750 t>t, (7)
In this framework we look for the value f = min{C,/225,t’} that optimizes the functional
and the energy is bounded by the physical constants. Note that the third integral in the func
also contributes to a function of this parameter. The preheating policy is relevant in the st
process and must be taken into account for best simulation results.
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2.3 Polynomial FEM

We state a polynomial finite element model in the dimensionless domain. A double mesl|
proach is adopted, the first coarser than the second, as a start for further extrapolation, d
decomposition, or mixture methods.

2.3.1 The elements

Let {KZ}M_| be a partition by rectangular elements of the donsair- [0, 1] x [0,1]. Each
one of the ordef] elementsK” is further divided in several, ordér, rectangular subelements.
We define for each one of the rectangular elemé&nté® of the two grids, the set of bilinear
formsB;(K) = {v: vis bilineal inK, i.e. v(z) = ago+a10z1 +apnz2s+anz122, ¢ € K, a;; €
R,i,5 = 0,1}. A bilinear fuctionv € B;(K) is uniquely determined by its valuega'),
i = 1,2,3,4, in the corners of the element, and thatii and K, are two such elements
with the common edgé& and the functions; € B;(K;) are equal in the vertices df, then
vy — vy = 01in S (because ob; — v, linearity in 5).
We define the spact” subspace of Sobolev spaéf (Q2): VH = {v € C°(Q): v|x €
Bi(K),VK € {KH}M_ 1 In this framework the nodal values are global degrees of freedornr
In an analogous way we define the subspldte
We look for the chemical species mass distribution (variablg¢sand the temperature distri-
bution (variableu) represented by their respective values on the nodes. The grid is comp
by an array of rectangles\y x Ng or N, x N,) defined by axis sides adapted partitions.

2.3.2 The elementary matrices from mass balance

The bilinear test functions let us represent functiom;, : = 1:s andu as

M M
w; = Z wim(t)djma i = ls, u= Z um(ﬁ)wm (28)

where M is the cardinal number of the set of nodes, and the coefficieptt), i = 1:s and
um(t) are dependent on time for each

We define the set of nodal indexes ag(m), with them the elemenk’,,, matrix for each
chemical specieg i = 1:s, is

1 Oy, Oty
w; ———D;(u)——ndnd 29
;EI E/KmRzﬁn ()annné“ (29)
1 1 0u (%W
+ ;61 Wig /K : 2 wka—anDz’(U) _877 ndnd§ (30)
1 Oy Oy
+ w; — ——D;(u)——ndnd 31
;EI K/K,,LLW% (u) 5 mdnde (31)
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1 10u alpg
: — ), ——D;(u)——ndnd 32
+;€;w€/KmL2wku3§ (w) 8577775 (32)
2% 877[)( 2
. 20 w1 —
+> [ L Rt 33)
. PYp 1 _En
+ZUMZV@'3’/ R—g@bkAjHae B hy mdndg (34)
Lel 7=1 m
: 1 _ Zip
+ ) w; VZ"/ —YAje Tovih,dE (35)
%; gjz_; ’ mﬂ@Q,n:lR wap ‘
1 Oy
s> [ L DTy 2y (36)
g ‘ K00, e=0 L #Di(To) o¢
1 0u
+3 wy i Yty 5 ndndg (37)
vel m
+Zw§e/ Yethendnd§ =0, kel (38)
tel Km

where! stands for the border element index assignation.

2.3.3 The elementary matrices from heat balance

The several functions of temperaturappearing in the heat balance equation are approxima
by polynomials. For example, in the case of propane oxidation, the function
(exp(—Er/(Ryu))/u) = (exp(—13435/u)/u) from the sixth integral (homogeneous chemice
reaction) is replaced (approximated) pjt:) = (—4.754e-9 + 2.309¢-11u — 3.706e-14u? +
1.966e-17 u3 in an analogous way for the following functions of temperature we obtain appr
imationsp; (u) for K (u)u(0u/0on)/C,, ... ,ps(u) for u(ou/0¢),

ps+j(u) for AHexp(—Eju/Ryu)/(uC,), for ther values ofj = 1:r,

Prye(u) for Q(u,wy, ..., ws)/Cp, priz(u) for K(u)(0u/0€) (see equations 14-21). With them
the variational heat balance eleméqy}, equation reads

R, 0

| g (39
R

+ [ gastmalandnde (40)
R, 0

[ st (41)
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R
+ /K Lo apannde (42)
2V
+ [ L)L o ndndg (43)
K 0
> PM;Y, :
230 [ RS v w)windnds (44)
i=1 Y Km 9 j=1
+f B o (u)de (45)
Kron,m BRPT
1
s Tty (46)
K09, €=0
+> up [ UnbendndE =0, kel (47)
tel Km

Further algebraic manipulation leads to a sparse polynomial equation analogous to eg
38. For example the first integral,(is the degree of polynomial;)

| Sy (ZW) ndnds (48)

877 =0 el

is transformed to a polynomial in terms of the forh= uy u;?uyuy?, wherel; € 1,1 = 1:4,
anda = (ay, as,a3,a4) € N§, |a| = >~ a;, being the monomial degree. Analogous polynomi
equations are obtained for the other terms, their programming and resolution resulting €
than their formal statement. #parse system of polynomiassa collection of polynomials of
the general form

Z CraU” (49)

a€Ay

where the4,, are fixed finite subsets of;.

The coefficients;, , were the element integrals. The notation and solution metodology 1
lows the lines set by Sturmfeéfs The direct method (based in @mer basis) or the homotopy
method were alternatively applied depending on the dimension of the whole problem.

2.4 Double mesh error estimation

The setting of a double mesh finite element approach leads to an estimation of local error:
This estimation of errors is necessary to the development of an adaptive method (il
finite element model mesh), that leads to refinements in the approximation and the g
uniformization of the errors with minimal number of elements. In this case the adaptive n
modification leads to a refinement of the rows of rectangles nearer to the wall.
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2.5 Numerical complexity of the model and border singularities

The main difficulty with the model as stated is the numerical complexity with the polynon
representation of the highly nonlinear terms. That leads to the possible lack of stability ir
main integration.

In order to assess the solutions regularity of these complex systems of differential equa
the border singularities, that are essential to the basic model, impose a new mathematica
culty: the theory for this class of highly non linear systems with Robin boundary conditions
nonlinear singularities in the border is not developed enough in order to guarantee the c
posing of the problems and the convergence of the iterative methods that are necessary
with the complete problem.

It is possible to obtain numerical solutions and qualitatively estimate the errors of tt
solutions, but, the goal of proving convergence of the iterative method (adaptative) can on
tractable with models of these systems that are far more simple than those exposed so fal

In the next sections such simplified models are introduced and some results are drawn
them.

3 MATHEMATICAL FORMALIZATION AND SIMPLIFICATION OF THE MODEL

We extract from Kenig’s book (chapter on open problems): another interesting example
boundary value problems is the so called mixed Dirichlet—-Neumann problem. Thus, consi
splitting 92 = 3, U 3, whereX; are Lipschitz subdomains 6f2, ¥, N3, = 0%;. We attempt
to prescribe Dirichlet dat# onX;, and Neumann datg on >, i.e. solve

Au=0 in (50)
U|21 = f1 (51)
ou

I = 52
aN|22 f2 ( )

When f, € L*(%,), and f; is the restriction td3; of a functionf, € WZ(Q), it is possible to
use the Lax—Milgram lemma to find a variational solution to 50-52 wich belon@B@?).

If f, is the restriction of a function iW/2(992) to ¥, it might be reasonable to expect tha
(Vu)* € L*(09, do). Unfortunately, this can be false even wheis smooth.

We have seen that the catalytic reactor models are associated with partial differential «
tions and advection—diffusion systems with mixed boundary conditions. The chemical reac
are concentrated in boundary subsets (location of catalytic substances) with the consec
that there are numerical and mathematical singularities that have a profound effect in the
tions properties.

So, because the boundary singularities influence the process of error estimation (for .
tive algorithms) that are oriented by our group towards the mixed mesh methods for syste!
equations, it is necessary to simplify the models towards a balanced equilibrium betwee
representation of the chemical problem and the ability of these methods to detect the sing
ties and to converge to the desired solution.
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3.1 Monolith catalytic reactors revisited

Monolith reactors are particularly suitable for carrying out fast reactions in applications wt
space is at a premium, e.g., in car exhausts, fuel cell reforming.

Monolith reactors are divided into a number of channels. Reactions take place both ii
fluid bulk and, primarily, on the catalyst-coated inner surfaces of the channels (see Fic
Flow in the channels is laminar, and significant gradients in temperature and concentratic
reactants and products exist between the bulk fluid and the surface. Substantial heat tr
also takes place along the solid walls of the channels. When the thickness of walls is an
there appear new porous flow additional PDE to the system of equations. In this work,
walls are supposed.

The modelling of monolith reactors can be based on an understanding of the complex int
tions between the reaction, mass and heat transfer and fluid flow phenomena. A first-prin
approach appear in first approximation to be essential for predictive models that can quz
the effects of design and operating decisions on reactor performance. The effective utiliz
of such predictive models could lead to significant commercial benefits such as reduced
to-market, better utilization of precious metal catalysts, higher efficiency of conversion,
better and more reliable reactor performance under a wide range of operating conditions.
doxically, from the mathematical point of view, instead, more simplified models are in or
The objective is to make tractable the regularity of solutionsapdsteriorierror estimation
problem that are necessary to guarantee convergence of methods.

Catalst

Figure 1: (A) Monolithic reactor, (B) Channel wall, (C) Porous ceramic (washcoat) with catalyst

The main issues are:

1. Catalytic reactor modeling

2. Parabolic evolution equations

3. Elliptic stationary state equations

(a) Geometry simplification
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(b) Only one species (system of two equations)
(c) Linearization or polynomial modeling

4. A posteriorierror estimation
5. Mixed mesh error estimation
6. Mesh refinement

7. Boundary control (temperature)

The models have to be able to represent the main industrial monoliths properties:

1. Flow and heat and mass transfer uniformity

2. Impermeable walls

3. Thousands of subparallel tubes in the monolith converter
4. Low pressure drop
5

. Approximately cilyndrical symmetry

So the basic dimensionless and simplified system of equations (stationary state) are:

e Concentration

—V(ﬁ@ﬁVuO+wq%UVﬂw+Fﬂuﬂu=0 (53)
e Temperature
—V(uVu) + 02%17 Vu+ Fa(u)w =0 (54)
e Boundary condition on concentration
-5 = Gilu (55)
e Boundary condition on temperature
_g_:; = —Ga(u)w + Gs(u) (56)

e Propertiesfi, F1, F», G1, G2, G3 monotone increasing functions

The last properties of the model defining functions tell us that monotone operator prope
are applicable, so one of the first steps towards solution regularity is completed.
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3.1.1 Modeled physicochemical processes

The main modeled processes are:
1. Catalytic reaction
. Channel reaction

. Mass and heat transference between gas and channel walls

2

3

4. Heat and mass convection in the gas

5. Heat conduction in the channel walls

6. Internal radiation heat exchange between walls
.

. Heat exchange between walls and environment

3.1.2 Test problem (concentration)

A simplified test problem is included in this section in order to show a complete and ana
solution that can be used for comparison purposes. It also shows the simplest equation ft
catalysis problem:

(b—A)w=0 inQ (57)

w =1 InTy (inlet) (58)

w, +aw =0 1nT'y (top) (59)

w, = 0 inI'; (outlet) andl’y (center) (60)

The solution can be stated as a series with the:

Eigenvalues from, sin A\, = acos \g, Ag @ (K — 1) + &y, €5 = ﬁ, k>4
and

2 A h/b+ \2(L —
w(x,y) = Z a2c;\)s k)\Q cos il > 7) COS \g (61)
k#OCLCOS E T AL cosh /b + \; L
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4 SYSTEMS OF ELLIPTIC EQUATIONS

In this section a slightly complex model is presented and solved. The main feature is that
vergence of the coupled equations iterative scheme is obtained, associated to the error €
tion needed to adaptivity and mesh refinement. Monolith catalytic reactors can be modelle
systems of partial differential equations as was stated in the previous section. These equ
represent the mass and energy balances inside the reactor. The complete and detailed :
as shown, is so complex that several simplifications are in order for a mathematical study «
principal characteristics and properties of the original system.

The first simplifications (they are not essential but very convenient) lead to a system in
spatial dimensions (radial symmetric submodels) and only one species to be treated, sow
two equations one for the mass balance of this species and the other for the heat balance

reactor.
Catalytic wall

Inlet —> Outlet

- .- >§ .

Figure 2. Schematics of the catalytic reactor do-
main.

The first steps in the mathematical analysis of the problem are towards the study o
equations in an uncoupled form. For them we perform determination of the ranges foi
approximated solutions and study characteristics of the solutions, if they are monotonic, 1
of values of operation, etc. The goal is to consider the possibilities in the case of couplir
the equations.

In the domain where the problem is studied the catalytic substance is on one of the wa
the catalytic tube, in this case the upper wall (see Fig. 2). Here the main chemical reaction
place. The heat transfer processes also are concentrated in this wall. The other portions
boundary of the domain are the inlet where the values of the temperature and concentratis
known, and the other two sides of the unit square where Neumann conditions are impose

The length of the reactor is variable. In our examples we take the dimensionless ur
distance for the sake of simplicity. The longer the reactor, the greater the amount of elimin.
reaction of the target species. The mean length of the reactor can be used as a design par

The simplified equation that models the process: concentratiofira chemical species (e.g.
propane) in a oxygen rich atmosphere is

—Aw 4 auw = 0 (62)
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wherea is a parameter andis the temperature of the domain (we take the unit square)
The boundary condition on the catalytic boundary are

Ow/on + buw =0 (63)

where the symbadw/0n corresponds to the normal derivativewofandb is a parameter. The
other boundary conditions are standard as was explained.
The simplified equation for the distribution of temperatures in our domain is

—Au+cwu =0 (64)

wherec is a parameter.
The Robin boundary conditions on the catalytic boundary are

ou/on — dwu = — f(u) (65)

whered es a parameter anfi«) is a function of temperature (heat transfer processes)

In order to solve this problem we use an iterative method. We start with a concentre
distribution provided by the uncoupled equation. Then the heat equation is solved ani
residues are studied in order to decide if the mesh has to be refined (near the singular veri
we obtain a new temperature distribution. The equation of concentrations is then solved (1
the new temperature distribution) and the residues are calculated.

The new distributions are compared to the previous two and the process continues t
acceptable level of tolerance.

1.08

1.06

1.02

0.98
1

1
06 0.8

04 06
02

0.4
02

]

Figure 3: Temperature distribution. Figure 4: Concentration distribution.

We show a numerical example of this process. The equations are

—Au —0.3wu =0 in [0, 1]2 (66)
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with the boundary conditiong = 1 forall 0 < y < 1 andz = 0, du/9n — 0.28wu = —0.3 for
all 0 < x < 1 andy = 1, and homogeneous Neumann conditions in the other sides, and

~Aw=0 in[0,1]? (67)

with the boundary conditions = 1 forall 0 < y < 1 andz = 0, dw/9n + vw = 0 for all
0 <z < 1andy = 1, and also homogeneous Neumann conditions in the other two sides

-
0.2 — 0.2

Figure 5. Residues corresponding to the Figure 6: Zienkiewicz-Zhu errors for con-
concentrations. centrations distribution.

In Fig. 3 we show the temperature distribution and in Fig. 4 the concentration distributic

In Fig. 5 we show the residues corresponding to the concentrations. See that the residu
detects the singularity (due to the unmatching of the boundary conditions)

In Fig. 6 the Zienkiewicz-Zhu error estimation is shown, for the same estimation as Fig.
is possible to see the general agreement of both estimations.

In Fig. 7 the concentrations distribution is shown for a problem similar to those tree
precedently but with different boundary condition: the catalyst is located in the middle sec
of the wall (the initial and final section of the wall are inert because the active substance i
present there). The initial mesh is also shown in the plot. In this example the inlet cond
Is also changed with respect to the previous examples. Only in the inner part of the inle
component that have to react in the tube is seeded. The conversion is greater on the cataly
but the efficiency of the whole process it is not completely effective. The level of convers
can be modified by the longitudinal enlargement of the tube and is one of the parameter
can be adjusted in order to comply with the conversion specification.

5 CONCLUSIONS

Different finite element models of monolith catalytic reactors are developed in this article.
initial ones are fully nonlinear and have to be linearized in order to obtain standard MEF n
els. Then, polynomial models are presented and those have proven useful for the approxir
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Figure 7: Concentration distribution. Other boundary condition.

of the concentrations and temperatures in the reactor, that are needed to calculate the I
efficiency of the dispositive. The application to these models for catalytic reactors of compc
or mixed, finite element mesh for elliptic problems with border singularities was treated. Tw
more finite element meshes are allowed to share the problem domain. These componentr
have different intrinsic accuracies and are affected each by a weight or participation factor
composite mesh has been used to estimgtesterioridiscretization errors. A semiquantita-
tive error estimator based in a double mesh algorithm has been proposed and we have
elsewhere that the pattern of tlagposteriorierror is similar to the exact error (at least in the
test problems). More research is still needed, but the composite mesh method appearec
a powerful and simple tool for obtaining qualitative finite element error estimation and al
for adaptivity of meshes. In this case where the necessity is of border singularity detectio
method is specially useful. When the singularities are created by the non conforming bc
ary conditions in a vertex of the polygonal domain the method is also efficient even in cas
nonlinear methods.
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