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Universidad Nacional del Litoral

Santiago del Estero 2829, 3000 Santa Fe, Argentina
e-mail: ceneuman@fiqus.unl.edu.ar

Key Words: Elliptic problems, Border singularities,A posteriorierrors, Robin boundary con-
ditions, Catalytic Chemical Reactor Modeling.

Abstract. The modeling of catalytic reactors as sets of elliptic problems with boundary condi-
tions of Dirichlet, Neumann, and mixed types, is studied. The main issue in the modelisation and
solution procedure is the nonlinearity and presence of boundary singularities that are essential
to these systems.

After the introductory items, the main objective of this article is treated: the modeling of
catalytic reactors as sets of elliptic problems with essential border singularities. A system of
elliptic (stationary) advection-diffusion equations with boundary conditions of Dirichlet, Neu-
mann and, also, of really demanding essential singular nonlinear Robin type is posed and an
algorithm for their numerical solution is proposed.

This second set of examples are associated to problems drawn from Chemical Engineering
(Simplified Catalytic Reactors) with the aim of providing reasonable solutions and acceptable
a posteriori error estimates. The modeling and simulation of the reactor is also an issue in this
article.

More research is still needed, in particular in the transient initialization modeling by parabolic
equations, but the methods appear to be powerful and simple tools for obtaining accurate finite
element solutions and error estimation and is able for adaptivity of meshes.

It is interesting to note that, including convex polygonal domains, the method is efficient and
it appears to be not related to the order of the numerical algorithm.
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1 INTRODUCTION

In this work several properties associated to the modeling of catalytic reactors as sets of ellip-
tic problems with boundary conditions of Dirichlet, Neumann, and mixed types, are studied.
The main issue in the modelisation and solution procedure is the nonlinearity and presence of
boundary singularities that are essential to these systems. The focus of this work is in first place
to study elliptic problems where the domains present essential border singularities in order to
assess different types of error estimators. An illustrating example is treated first: the classical
test problems based on variants of the Poisson equation with boundary conditions of Dirichlet,
Neumann and Robin type.

Then, the main objective of this article is treated: the modeling of catalytic reactors as sets of
elliptic problems with essential border singularities. A system of elliptic (stationary) advection-
diffusion equations with boundary conditions of Dirichlet, Neumann and, also, of really de-
manding essential singular nonlinear Robin type is posed and an algorithm for their numerical
solution is proposed.

This second set of examples are associated to problems drawn from Chemical Engineering
(Simplified Catalytic Reactors) with the aim of providing reasonable solutions and acceptable a
posteriori error estimates. The modeling and simulation of the reactor is also a critical issue in
this article. In this sense generalizations of the model are proposed as well as the justification of
the necessary simplifications that allow the reactor to be included in a more complex structure
of chemical engineering reactors.

More research is still needed, in particular in the transient initialization modeling by parabolic
equations, but the method appears to be a powerful and simple tool for obtaining accurate finite
element solutions and error estimation and is able for adaptivity of meshes.

It is interesting to note that, including convex polygonal domains, the method is efficient and
it appears to be not related to the order of the numerical algorithm.

When the singularities are created by the non conforming boundary conditions in a vertex of
the polygonal domain the method is also efficient even in the nonlinear case.

1.1 Monolith converters

Monolith converters (i.e. with impermeable walls) have been thoroughly used in the last 25
years as afterburners of combustion engine exhausts and, e.g, for catalytic reactions in petroleum
chemistry (see, for example the review of Cyboulsky1, and the references therein).

The development objective is to meet clean-air standards established by the different coun-
tries in a relatively successful effort for pollution control.

The catalytic oxidation of hydrocarbons, nitrogen oxides, carbon monoxide and other con-
taminants of exhaust gases of automobiles is performed on the walls of thousands of (near
parallel) passages of the monolith converter.

The physical characteristics of the industrial monoliths favors the process modelisation be-
cause of the uniformity of the flow, mass and heat transfer conditions across the monolith. So
we will concentrate on a single passage model as a representative of the whole device.
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One of the critical aspects of the class of converters addressed in this paper is the reduction of
the so called cold-start emissions. By those we mean the amount of contaminants not converted
during the initial low temperature performance of the device.

The control strategy is to raise the temperature with, e.g., an alternator driven heater. The
simplest model for the results of the heater action is a ramp as defined in the article. So we
obtain an one parameter boundary control problem (the control strategy then reduces to specify
the time for pre-heating ending).

The main parts of this article related to monolith converters begin with the modeling of the
problem in cylindrical coordinates introducing several simplifications. The statement of the
boundary control problem follows, i.e. the inlet temperature raising and stabilization. The next
step is to develop a finite element model of the variational (weak) equations. We set a double
mesh algorithm in order to estimate the errors of approximation2. Further model simplification
and polynomial approximation of nonlinear terms in the heat balance equation is proposed. One
of them is to represent the processes on the wall (catalytic) boundary by a global polynomial
function of temperature and concentrations. A brief study of the stationary state equations (el-
liptic) and approximate solutions is performed in order to exemplify the reactor behavior. At this
stage is necessary to specify the whole set of physical constants. Determination of inlet heating
policies is necessary, resulting in a cold start heating process till an optimal desired tempera-
ture and then in approximations of heat and molar distributions. With an approximate initial
temperature distribution we calculate the molar distributions of the reacting chemical species,
and then we recalculate the temperatures in a stable process simulation. We then estimate the
approximation errors in the case of the stationary state model.

When the objective is to study the regularity of solutions it is necessary to simplify the model
because the sustantive mathematics for the treatment of nonlinear systems of partial differential
equations is lacking.

2 BASIC MODEL

We model a single passage of the monolith.
The hydrocarbon oxidation can be represented by

CmHn + (m+
n

4
) O2 
 mCO2 +

n

2
H2O (1)

(e.g., for propane:m = 3, andn = 8), the carbon monoxide combustion

2 CO + O2 
 2 CO2 (2)

and the nitrogen oxides elimination

2 NOx + 2xCO 
 N2 + 2xCO2 (3)

For simplicity we do not take into account the reactions forNOx elimination.
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The advection-diffusion molar balance for the chemical speciesi, i = 1:s, in ther reactions,
reads3;4;5

∇(Di ρ∇Yi)− ρV∇Yi −
r∑

j=1

νijRjH =
∂(ρYi)

∂t
(4)

whereYi denotes the molar fraction of speciesi, ρ = P/RgT is the density,T is the absolute
temperature,Rg the ideal gas constant, andP the pressure (so we suppose negligible pressure
drop);RjH is the rate of the homogeneous (H) jth reaction, andνij the matrix of stoichiometric
coefficients. The species diffusivitiesDi = Di(T ), are, in general temperature dependent. The
advection term includes the velocityV of the air flux in the tube.

The heat balance reads3;4

1

ρCp

∇(K∇T )− V∇T −
s∑

i=1

Mi∆Hi

ρCp

r∑
j=1

νijRjH =
∂T

∂t
(5)

where the thermal diffusivityK = K(T ) is temperature dependent,Mi are the molecular
weight, and∆Hi the enthalpy of speciesi. The specific heat of the gas isCp. So we have
a system of problems similar to the called second boundary value problems6.

For example, in the case of the oxidation of propane with oxygen in air (1 atm), the reaction
is

C3H8 + 5 O2 
 3 CO2 + 4 H2O (6)

and the previous variables read:Y1 = YA, molar fraction of propane,YO, molar fraction of
oxygen, and the kinetics of homogeneous (H) and heterogeneous (p, wall) reactions are

RAH = AHe
− EH

RgT (
P

RgT
)2YAYO (7)

and

RAp = Ape
− Ep

RgT
P

RgT
YA (8)

whereAH andAp are the preexponential (Ahrrenius) factors, andEH andEp are the activation
energies of the homogeneous and heterogeneous reactions

The cylindrical symmetry allows us to set boundary conditions in the four sides of a rectan-
gular half section of the tube. In the inner side and the outlet side we pose natural (Neumann)
conditions. On the wall side, where the catalytic reaction actually performs, is necessary to
consider the heterogeneous reaction rates (faster than the homogeneous ones at operation tem-
peratures) and the heat production (chemical reactions) and heat dissipation on the monolith.
In the inlet side the conditions are essential (Dirichlet) and it is necessary to know the molar
fractions and temperature of the gas.
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2.1 Weak Formulation

We transform the conservation equations to cylindrical coordinates (r, ϕ, z), and, based on
the supposed radial symmetry we are only concerned withr and z. A further dimensional
reduction leads to the variablesη andξ (r = Rη, z = Lξ). The weak Galerkin formulation
in the new variablesu = T andwi = Yi, i = 1:s, s being the number of chemical species, is
then set (ψ ∈ H1(Ω) is a test function,Ω being the unit square, andH1 the Sobolev space of
distributions of square integrable as well as their first derivatives).

The boundary and initial contitions are, fori = 1:s,

wi = Yi0, u = T0, ξ = 0 (inlet) (9)

∂wi

∂ξ
= 0,

∂u

∂ξ
= 0, ξ = 1 (outlet) (10)

∂wi

∂η
= 0,

∂u

∂η
= 0, η = 0 (center) (11)

−Di

R

∂wi

∂η
=

r∑
j=1

νijAjpe
−

Ejp
Rguwi,

K

R

∂u

∂η
= Q(u,w1, . . . , ws), η = 1 (wall) (12)

wi = Yi,ini, u = Tini, t = 0 (start) (13)

whereQ(u,w1, . . . , ws) models the heat balance in the wall.
The mass balance for speciesi (i = 1:s) leads to a set of equations that we omit for reasons of

space, they lead to eqs. 29–38, and the heat balance to a set of equations that lead to eqs. 39–47,
the last ones are included because they are approximated by polynomials in the sequel,

1

R2

∫ 1

0

∫ 1

0

Rg

PCp

∂ψ

∂η
K(u)u

∂u

∂η
ηdηdξ (14)

+
1

R2

∫ 1

0

∫ 1

0

Rg

PCp

ψ
∂u

∂η
K(u)

∂u

∂η
ηdηdξ (15)

+
1

L2

∫ 1

0

∫ 1

0

Rg

PCp

∂ψ

∂ξ
K(u)u

∂u

∂ξ
ηdηdξ (16)

+
1

L2

∫ 1

0

∫ 1

0

Rg

PCp

ψ
∂u

∂ξ
K(u)

∂u

∂ξ
ηdηdξ (17)

+
2

L

∫ 1

0

∫ 1

0

V̄0

T0

ψ(1− η2)u
∂u

∂ξ
ηdηdξ (18)

+
s∑

i=1

∫ 1

0

∫ 1

0

PMi∆HiYO

RgCp

ψ
r∑

j=1

νijAjHe
−

EjH
Rgu

1

u
wiηdηdξ (19)
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+
1

R

∫ 1

0 |η=1

Rg

PCp

ψQ(u,w1, . . . , ws)dξ (20)

+
1

L2

∫ 1

0 |ξ=0

T0ψK(u)
∂u

∂ξ
ηdη (21)

= −
∫ 1

0

∫ 1

0

ψ
∂u

∂t
ηdηdξ (22)

2.2 Inlet Control

We have reset the problem in the dimensionless domain of coordinates(ξ, η) ∈ [0, 1] × [0, 1]
(ξ = 0, being the inlet,ξ = 1, the outlet, andη = 1, the wall side) and we may state the
boundary control problem: to optimize the functional

J(v) =

∫ tf

0

∫ 1

0

‖CY (1, η, t)‖2
α dηdt+

∫ tf

0

∫ 1

0

‖T (1, η, t)− T o
ref(η)‖2

β dηdt (23)

+

∫ tf

0

∫ 1

0

‖T (0, η, t)− T i
ref(η)‖2

γ dηdt (24)

+

∫ tc

0

‖a(t)‖2
δ dt (25)

whereY (1, η, t) is the vector of outlet molar fractions for each timet, 0 ≤ t ≤ tf , (tf is the final
time for evaluation),C is a weight matrix for the relative concentrations of outlet contaminants,
T o

ref(η) is a reference outlet temperature distribution desirable for optimal performance of the
converter,T i

ref(η) is a reference inlet temperature, here750K, and, for simplicity,v(t) is the
temperature in the specification of the inlet Dirichlet boundary condition

T (0, η, t) = v(t), 0 ≤ η ≤ 1, 0 ≤ t ≤ tf (26)

i.e. v(t) = Tini from initial conditions. The functiona represents the (alternator) preheating
(see, e.g.,7). The norms in the functionalJ involve relative weights (α, β, γ, δ) for the terms.

A simple —but realistic,— model forv(t) is, in this problem,v(t) = 300 + a(t)t where∫ tc
0
a(t)tdt ≤ C1 anda(t) ≤ C2, 0 ≤ t ≤ tc for physical reasons (boundsC1 andC2), [0, tc]

being the warm-up interval. Here for simplicity

v(t) =

{
450 t

tc
+ 300 0 ≤ t ≤ tc

750 t > tc
(27)

In this framework we look for the value oftc = min{C1/225, t∗c} that optimizes the functional
and the energy is bounded by the physical constants. Note that the third integral in the functional
also contributes to a function of this parameter. The preheating policy is relevant in the startup
process and must be taken into account for best simulation results.
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2.3 Polynomial FEM

We state a polynomial finite element model in the dimensionless domain. A double mesh ap-
proach is adopted, the first coarser than the second, as a start for further extrapolation, domain
decomposition, or mixture methods.

2.3.1 The elements

Let {KH
m}M

m=1 be a partition by rectangular elements of the domainΩ = [0, 1] × [0, 1]. Each
one of the orderH elementsKH

m is further divided in several, orderh, rectangular subelements.
We define for each one of the rectangular elementsK 8;9 of the two grids, the set of bilinear

formsB1(K) = {v : v is bilineal inK, i.e. v(x) = a00 +a10x1 +a01x2 +a11x1x2, x ∈ K, aij ∈
R, i, j = 0, 1}. A bilinear fuctionv ∈ B1(K) is uniquely determined by its valuesv(ai),
i = 1, 2, 3, 4, in the corners of the element, and that ifK1 andK2 are two such elements
with the common edgeS and the functionsvi ∈ B1(Ki) are equal in the vertices ofS, then
v1 − v2 = 0 in S (because ofv1 − v2 linearity inS).

We define the spaceV H subspace of Sobolev spaceH1(Ω): V H = {v ∈ C0(Ω̄) : v|K ∈
B1(K),∀K ∈ {KH

m}M
m=1} In this framework the nodal values are global degrees of freedom.

In an analogous way we define the subspaceV h.
We look for the chemical species mass distribution (variableswi) and the temperature distri-

bution (variableu) represented by their respective values on the nodes. The grid is composed
by an array of rectangles (NH ×NK orNh ×Nk) defined by axis sides adapted partitions.

2.3.2 The elementary matrices from mass balance

The bilinear test functionsψ let us represent functionwi, i = 1:s andu as

wi =
M∑

m=1

wim(t)ψm, i = 1:s, u =
M∑

m=1

um(t)ψm (28)

whereM is the cardinal number of the set of nodes, and the coefficientswim(t), i = 1:s and
um(t) are dependent on time for eachm.

We define the setI of nodal indexes asI(m), with them the elementKm matrix for each
chemical speciesi, i = 1:s, is∑

`∈I

wi`

∫
Km

1

R2

∂ψk

∂η
Di(u)

∂ψ`

∂η
ηdηdξ (29)

+
∑
`∈I

wi`

∫
Km

1

R2
ψk

1

u

∂u

∂η
Di(u)

∂ψ`

∂η
ηdηdξ (30)

+
∑
`∈I

wi`

∫
Km

1

L2

∂ψk

∂ξ
Di(u)

∂ψ`

∂ξ
ηdηdξ (31)
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+
∑
`∈I

wi`

∫
Km

1

L2
ψk

1

u

∂u

∂ξ
Di(u)

∂ψ`

∂ξ
ηdηdξ (32)

+
∑
`∈I

wi`

∫
Km

2V̄0

LT0

ψku
∂ψ`

∂ξ
(1− η2)ηdηdξ (33)

+
∑
`∈I

wi`

r∑
j=1

νij

∫
Km

PYO

Rg

ψkAjH
1

u
e
−

EjH
Rgu ψ` ηdηdξ (34)

+
∑
`∈I

wi`

r∑
j=1

νij

∫
Km∩∂Ω, η=1

1

R
ψkAjpe

−
Ejp
Rguψ` dξ (35)

+
∑
`∈I

wi`

∫
Km∩∂Ω, ξ=0

1

L2
ψkDi(T0)

∂ψ`

∂ξ
ηdη (36)

+
∑
`∈I

wi`

∫
Km

ψkψ`
1

u

∂u

∂t
ηdηdξ (37)

+
∑
`∈I

w′
i`

∫
Km

ψkψ` ηdηdξ = 0, , k ∈ I (38)

whereI stands for the border element index assignation.

2.3.3 The elementary matrices from heat balance

The several functions of temperatureu appearing in the heat balance equation are approximated
by polynomials. For example, in the case of propane oxidation, the function
(exp(−EH/(Rgu))/u) = (exp(−13435/u)/u) from the sixth integral (homogeneous chemical
reaction) is replaced (approximated) byp(u) = (−4.754e-9 + 2.309e-11u − 3.706e-14u2 +
1.966e-17u3 in an analogous way for the following functions of temperature we obtain approx-
imationsp1(u) for K(u)u(∂u/∂η)/Cp, . . . ,p5(u) for u(∂u/∂ξ),
p5+j(u) for ∆Hiexp(−EjH/Rgu)/(uCp), for ther values ofj = 1:r,
p̃r+6(u) for Q(u,w1, . . . , ws)/Cp, pr+7(u) for K(u)(∂u/∂ξ) (see equations 14-21). With them
the variational heat balance elementKm equation reads∫

Km

Rg

R2P

∂ψk

∂η
p1(u)ηdηdξ (39)

+

∫
Km

Rg

R2P
ψkp2(u)ηdηdξ (40)

+

∫
Km

Rg

L2P

∂ψk

∂ξ
p3(u)ηdηdξ (41)
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+

∫
Km

Rg

L2P
ψkp4(u)ηdηdξ (42)

+

∫
Km

2V̄0

LT0

ψkp5(u)(1− η2)ηdηdξ (43)

+
s∑

i=1

∫
Km

PMiYO

Rg

ψk

r∑
j=1

νijAjHp5+j(u)wiηdηdξ (44)

+

∫
Km∩∂Ω, η=1

Rg

RP
ψkp̃r+6(u)dξ (45)

+

∫
Km∩∂Ω, ξ=0

1

L2
ψkT0pr+7(u)ηdη (46)

+
∑
`∈I

u′`

∫
Km

ψkψ` ηdηdξ = 0, k ∈ I (47)

Further algebraic manipulation leads to a sparse polynomial equation analogous to eqs 29–
38. For example the first integral (qj is the degree of polynomialpj)

∫
Km

∂ψk

∂η

 q1∑
i=0

ci

(∑
`∈I

ψ`u`

)i
 ηdηdξ (48)

is transformed to a polynomial in terms of the formua = ua1
`1
ua2

`2
ua3

`3
ua4

`4
, where`i ∈ I, i = 1:4,

anda = (a1, a2, a3, a4) ∈ N4
0, |a| =

∑
ak being the monomial degree. Analogous polynomial

equations are obtained for the other terms, their programming and resolution resulting easier
than their formal statement. Asparse system of polynomialsis a collection of polynomials of
the general form ∑

a∈Ak

ck,au
a (49)

where theAk are fixed finite subsets ofN4
0.

The coefficientsck,a were the element integrals. The notation and solution metodology fol-
lows the lines set by Sturmfels10. The direct method (based in Gröbner basis) or the homotopy
method were alternatively applied depending on the dimension of the whole problem.

2.4 Double mesh error estimation

The setting of a double mesh finite element approach leads to an estimation of local errors.
This estimation of errors is necessary to the development of an adaptive method (in the

finite element model mesh), that leads to refinements in the approximation and the quasi-
uniformization of the errors with minimal number of elements. In this case the adaptive mesh
modification leads to a refinement of the rows of rectangles nearer to the wall.

C. Neuman

2853



2.5 Numerical complexity of the model and border singularities

The main difficulty with the model as stated is the numerical complexity with the polynomial
representation of the highly nonlinear terms. That leads to the possible lack of stability in the
main integration.

In order to assess the solutions regularity of these complex systems of differential equations,
the border singularities, that are essential to the basic model, impose a new mathematical diffi-
culty: the theory for this class of highly non linear systems with Robin boundary conditions and
nonlinear singularities in the border is not developed enough in order to guarantee the correct
posing of the problems and the convergence of the iterative methods that are necessary to deal
with the complete problem.

It is possible to obtain numerical solutions and qualitatively estimate the errors of these
solutions, but, the goal of proving convergence of the iterative method (adaptative) can only be
tractable with models of these systems that are far more simple than those exposed so far.

In the next sections such simplified models are introduced and some results are drawn from
them.

3 MATHEMATICAL FORMALIZATION AND SIMPLIFICATION OF THE MODEL

We extract from Kenig’s book11 (chapter on open problems): another interesting example of
boundary value problems is the so called mixed Dirichlet–Neumann problem. Thus, consider a
splitting∂Ω = Σ̄1 ∪ Σ̄2 whereΣi are Lipschitz subdomains of∂Ω, Σ̄1 ∩ Σ̄2 = ∂Σi. We attempt
to prescribe Dirichlet dataf1 onΣ1, and Neumann dataf2 onΣ2, i.e. solve

∆u = 0 in Ω (50)

u|Σ1 = f1 (51)

∂u

∂ ~N
|Σ2 = f2 (52)

Whenf2 ∈ L2(Σ2), andf1 is the restriction toΣ1 of a functionf1 ∈ W 2
1 (Ω), it is possible to

use the Lax–Milgram lemma to find a variational solution to 50–52 wich belongs toW 2
1 (Ω).

If f1 is the restriction of a function inW 2
1 (∂Ω) to Σ1, it might be reasonable to expect that

(∇u)∗ ∈ L2(∂Ω, dσ). Unfortunately, this can be false even whenΩ is smooth.
We have seen that the catalytic reactor models are associated with partial differential equa-

tions and advection–diffusion systems with mixed boundary conditions. The chemical reactions
are concentrated in boundary subsets (location of catalytic substances) with the consequence
that there are numerical and mathematical singularities that have a profound effect in the solu-
tions properties.

So, because the boundary singularities influence the process of error estimation (for adap-
tive algorithms) that are oriented by our group towards the mixed mesh methods for systems of
equations, it is necessary to simplify the models towards a balanced equilibrium between the
representation of the chemical problem and the ability of these methods to detect the singulari-
ties and to converge to the desired solution.
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3.1 Monolith catalytic reactors revisited

Monolith reactors are particularly suitable for carrying out fast reactions in applications where
space is at a premium, e.g., in car exhausts, fuel cell reforming.

Monolith reactors are divided into a number of channels. Reactions take place both in the
fluid bulk and, primarily, on the catalyst-coated inner surfaces of the channels (see Fig. 1.
Flow in the channels is laminar, and significant gradients in temperature and concentrations of
reactants and products exist between the bulk fluid and the surface. Substantial heat transfer
also takes place along the solid walls of the channels. When the thickness of walls is an issue
there appear new porous flow additional PDE to the system of equations. In this work, thin
walls are supposed.

The modelling of monolith reactors can be based on an understanding of the complex interac-
tions between the reaction, mass and heat transfer and fluid flow phenomena. A first-principles
approach appear in first approximation to be essential for predictive models that can quantify
the effects of design and operating decisions on reactor performance. The effective utilization
of such predictive models could lead to significant commercial benefits such as reduced time-
to-market, better utilization of precious metal catalysts, higher efficiency of conversion, and
better and more reliable reactor performance under a wide range of operating conditions. Para-
doxically, from the mathematical point of view, instead, more simplified models are in order.
The objective is to make tractable the regularity of solutions anda posteriorierror estimation
problem that are necessary to guarantee convergence of methods.

Figure 1: (A) Monolithic reactor, (B) Channel wall, (C) Porous ceramic (washcoat) with catalyst

The main issues are:

1. Catalytic reactor modeling

2. Parabolic evolution equations

3. Elliptic stationary state equations

(a) Geometry simplification
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(b) Only one species (system of two equations)

(c) Linearization or polynomial modeling

4. A posteriorierror estimation

5. Mixed mesh error estimation

6. Mesh refinement

7. Boundary control (temperature)

The models have to be able to represent the main industrial monoliths properties:

1. Flow and heat and mass transfer uniformity

2. Impermeable walls

3. Thousands of subparallel tubes in the monolith converter

4. Low pressure drop

5. Approximately cilyndrical symmetry

So the basic dimensionless and simplified system of equations (stationary state) are:

• Concentration

−∇(f1(u)∇w) + c1
1

u
~v ∇w + F1(u)w = 0 (53)

• Temperature

−∇(u∇u) + c2
1

u
~v ∇u+ F2(u)w = 0 (54)

• Boundary condition on concentration

−∂w
∂η

= G1(u)w (55)

• Boundary condition on temperature

−∂u
∂η

= −G2(u)w +G3(u) (56)

• Propertiesf1, F1, F2,G1,G2,G3 monotone increasing functions

The last properties of the model defining functions tell us that monotone operator properties
are applicable, so one of the first steps towards solution regularity is completed.
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3.1.1 Modeled physicochemical processes

The main modeled processes are:

1. Catalytic reaction

2. Channel reaction

3. Mass and heat transference between gas and channel walls

4. Heat and mass convection in the gas

5. Heat conduction in the channel walls

6. Internal radiation heat exchange between walls

7. Heat exchange between walls and environment

3.1.2 Test problem (concentration)

A simplified test problem is included in this section in order to show a complete and analytic
solution that can be used for comparison purposes. It also shows the simplest equation for this
catalysis problem:

(b−∆)w = 0 in Ω (57)

w = 1 in Γ1 (inlet) (58)

wη + aw = 0 1nΓ2 (top) (59)

wη = 0 in Γ3 (outlet) andΓ4 (center) (60)

The solution can be stated as a series with the:

Eigenvalues from:λk sinλk = a cosλk, λk : (k − 1)π + εk, εk ' a
λk

, k > 4
and

w(x, y) =
∑
k 6=0

2a cosλk

a cos2 λk + λ2
k

cosh
√
b+ λ2

k(L− x)

cosh
√
b+ λ2

kL
cosλk (61)
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4 SYSTEMS OF ELLIPTIC EQUATIONS

In this section a slightly complex model is presented and solved. The main feature is that con-
vergence of the coupled equations iterative scheme is obtained, associated to the error estima-
tion needed to adaptivity and mesh refinement. Monolith catalytic reactors can be modelled by
systems of partial differential equations as was stated in the previous section. These equations
represent the mass and energy balances inside the reactor. The complete and detailed system,
as shown, is so complex that several simplifications are in order for a mathematical study of the
principal characteristics and properties of the original system.

The first simplifications (they are not essential but very convenient) lead to a system in two
spatial dimensions (radial symmetric submodels) and only one species to be treated, so we have
two equations one for the mass balance of this species and the other for the heat balance of the
reactor.

Figure 2: Schematics of the catalytic reactor do-
main.

The first steps in the mathematical analysis of the problem are towards the study of the
equations in an uncoupled form. For them we perform determination of the ranges for the
approximated solutions and study characteristics of the solutions, if they are monotonic, range
of values of operation, etc. The goal is to consider the possibilities in the case of coupling of
the equations.

In the domain where the problem is studied the catalytic substance is on one of the walls of
the catalytic tube, in this case the upper wall (see Fig. 2). Here the main chemical reaction takes
place. The heat transfer processes also are concentrated in this wall. The other portions of the
boundary of the domain are the inlet where the values of the temperature and concentration are
known, and the other two sides of the unit square where Neumann conditions are imposed.

The length of the reactor is variable. In our examples we take the dimensionless unitary
distance for the sake of simplicity. The longer the reactor, the greater the amount of elimination
reaction of the target species. The mean length of the reactor can be used as a design parameter.

The simplified equation that models the process: concentrationw of a chemical species (e.g.
propane) in a oxygen rich atmosphere is

−∆w + auw = 0 (62)
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wherea is a parameter andu is the temperature of the domain (we take the unit square)
The boundary condition on the catalytic boundary are

∂w/∂η + buw = 0 (63)

where the symbol∂w/∂η corresponds to the normal derivative ofw andb is a parameter. The
other boundary conditions are standard as was explained.

The simplified equation for the distribution of temperatures in our domain is

−∆u+ cwu = 0 (64)

wherec is a parameter.
The Robin boundary conditions on the catalytic boundary are

∂u/∂η − dwu = −f(u) (65)

whered es a parameter andf(u) is a function of temperatureu (heat transfer processes)
In order to solve this problem we use an iterative method. We start with a concentration

distribution provided by the uncoupled equation. Then the heat equation is solved and the
residues are studied in order to decide if the mesh has to be refined (near the singular vertex) so
we obtain a new temperature distribution. The equation of concentrations is then solved (under
the new temperature distribution) and the residues are calculated.

The new distributions are compared to the previous two and the process continues till an
acceptable level of tolerance.
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Figure 3: Temperature distribution.
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Figure 4: Concentration distribution.

We show a numerical example of this process. The equations are

−∆u− 0.3wu = 0 in [0, 1]2 (66)
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with the boundary conditionsu = 1 for all 0 < y < 1 andx = 0, ∂u/∂η − 0.28wu = −0.3 for
all 0 < x < 1 andy = 1, and homogeneous Neumann conditions in the other sides, and

−∆w = 0 in [0, 1]2 (67)

with the boundary conditionsw = 1 for all 0 < y < 1 andx = 0, ∂w/∂η + uw = 0 for all
0 < x < 1 andy = 1, and also homogeneous Neumann conditions in the other two sides

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

Figure 5: Residues corresponding to the
concentrations.
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Figure 6: Zienkiewicz-Zhu errors for con-
centrations distribution.

In Fig. 3 we show the temperature distribution and in Fig. 4 the concentration distribution.
In Fig. 5 we show the residues corresponding to the concentrations. See that the residue map

detects the singularity (due to the unmatching of the boundary conditions)
In Fig. 6 the Zienkiewicz-Zhu error estimation is shown, for the same estimation as Fig. 5 It

is possible to see the general agreement of both estimations.
In Fig. 7 the concentrations distribution is shown for a problem similar to those treated

precedently but with different boundary condition: the catalyst is located in the middle section
of the wall (the initial and final section of the wall are inert because the active substance is not
present there). The initial mesh is also shown in the plot. In this example the inlet condition
is also changed with respect to the previous examples. Only in the inner part of the inlet the
component that have to react in the tube is seeded. The conversion is greater on the catalyst wall
but the efficiency of the whole process it is not completely effective. The level of conversion
can be modified by the longitudinal enlargement of the tube and is one of the parameters that
can be adjusted in order to comply with the conversion specification.

5 CONCLUSIONS

Different finite element models of monolith catalytic reactors are developed in this article. The
initial ones are fully nonlinear and have to be linearized in order to obtain standard MEF mod-
els. Then, polynomial models are presented and those have proven useful for the approximation
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Figure 7: Concentration distribution. Other boundary condition.

of the concentrations and temperatures in the reactor, that are needed to calculate the level of
efficiency of the dispositive. The application to these models for catalytic reactors of composite,
or mixed, finite element mesh for elliptic problems with border singularities was treated. Two or
more finite element meshes are allowed to share the problem domain. These component meshes
have different intrinsic accuracies and are affected each by a weight or participation factor. The
composite mesh has been used to estimatea posterioridiscretization errors. A semiquantita-
tive error estimator based in a double mesh algorithm has been proposed and we have shown
elsewhere that the pattern of thisa posteriorierror is similar to the exact error (at least in the
test problems). More research is still needed, but the composite mesh method appeared to be
a powerful and simple tool for obtaining qualitative finite element error estimation and allow
for adaptivity of meshes. In this case where the necessity is of border singularity detection the
method is specially useful. When the singularities are created by the non conforming bound-
ary conditions in a vertex of the polygonal domain the method is also efficient even in case of
nonlinear methods.
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