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Abstract. In a previous work, J. Ponthot et al., Mec Comput, XXIV:441-454 (2005), have extended a
large strain elastoplastic constitutive model based on hyperelasticity and multiplicative decomposition of
deformation gradient tensor, to viscous case based on a contribution of the same main author . In this
way a very useful tool has been obtained, able to deal with both rate dependent and rate independent
problems.

In this work a brief review of theoretical details is presented and numerical implementation of the
model in a three-dimensional finite element code (SOGDE3D) is performed. The finite element code was
developed for solving elastoplasticity in solids under large strains in three-dimensional space.

A Newton Raphson scheme has been used to solve the non-linear consistency condition in order to
compute the viscoplastic multiplier.

An analysis of large viscoplastic deformation problems under plane strain condition are provided in
order to test the proposed model. A comparison between two and three-dimensional versions of SOGDE
code is achieved to validate the implementation and some results available in the literature helped to
confirm the correct recovery of elastoplastic response by the viscoplastic model.
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1 INTRODUCTION

The main objective of this work is to combine a three-dimensional (3D) finite element code
with a viscoplastic model. The first element in the combination is the SOGDE3D code, de-
veloped by Careglio et al. (2005) for solving elastoplasticity in solids under large strains in 3D
space. It is based on the constitutive model due to García Garino and Oliver (1995, 1996) which
has been implemented in the relative simple hexahedral linear finite element (H1) and the well
known hexahedral linear one with constant pressure (H1/P0) (Zienkiewicz and Taylor (1994)).

The viscoplastic constitutive model implemented in SOGDE3D is a generalization of the
Perzyna (1966) constitutive model due to Ponthot (2002). It was originally developed for the
hypoelastic model, proposing for J2-flow materials a unified integration algorithm as an exten-
sion of the classical radial return scheme to the viscoplastic domain. In Ponthot et al. (2005)
the same constitutive model was adapted for an hyperelastic material and in García Garino
et al. (2006) linear viscoplasticity have been presented and discussed. Also Castelló and Flores
(2010) made an implementation of the viscoplastic model, obtaining results for the same linear
viscoplastic case but using a three-node triangular finite element with two degrees of freedom
per node (Castelló and Flores (2008)).

In García Garino et al. (2011) the viscoplasticity model was generalized and tested for non-
linear consistency equation in two-dimensional (2D) problems. At that time, the platform cho-
sen to implement the viscoplastic model was SOGDE2D code (García Garino (1993)). A mathe-
matical interpretation of viscoplastic parameters was carried out and proved in some numerical
examples.

This work presents a brief review of the theoretical framework of the problem in section
2. Then the implemented numerical scheme is shown in section 3 and numerical examples
as a plate with a hole (Alfano et al. (2001)) and the GRECO beam (an academic benchmark
proposed by the GRECO project whose results were compiled by El Mouatassim (1989)) are
analysed in section 4. Both examples are discretized on its geometry with H1/P0 elements.
Some conclusions about the work accomplished are detailed in section 5.

2 LARGE STRAIN ELASTO/VISCOPLASTIC MODEL

2.1 Kinematics

The kinematics of the problem is based on the very well known multiplicative decomposition
of the deformation gradient tensor FFF in its elastic and plastic components (Lee (1969)), as
shown in equation (1).

FFF = FFF e FFF vp. (1)

An additive decomposition of the Almansi strain tensor eee can be derived from the multiplica-
tive decomposition of the deformation gradient tensor (García Garino (1993)). Viscoplastic eeevp

and elastic eeee components can be distinguished,

eee = eeee + eeevp . (2)

The total Almansi strain and its elastic component are defined in equation (3) and (4) respec-
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tively.

eee =
1

2
(ggg − bbb−1) , (3)

eeee =
1

2
(ggg − bbbe−1) . (4)

where the spatial metric tensor is denoted as ggg, the Finger tensor is defined as bbb−1 = FFF−T FFF−1

and its elastic component as bbbe−1 = FFF e−T FFF e−1.
The rate of the deformation tensor ddd is obtained computing the Lie derivative Lv (Marsden

and Hughes (1983)) of Almansi strain tensor eee, and admits an additive decomposition in its
elastic and viscoplastic components ddd = ddde + dddvp.

2.2 Viscoplastic model

The equations that define the viscoplastic model in the current configuration are similar to
the classic elastoplastic model, as well as the Kuhn-Tucker conditions considering an extended
yield criterion f̄ to the viscoplastic case, defined later in equation (17). Then, the model is based
in the expressions listed below,

σσσ =
∂ψe(eeee, bbbe−1)

∂eeee
, (5)

dddvp = λ̇vp nnn, (6)

λ̇vp ≥ 0 f̄ ≤ 0 λ̇vp f̄ = 0. (7)

In equation (5), the Cauchy stress tensor σσσ is defined through an hyperelastic model (Ponthot
et al. (2005)) where ψe is the elastic free energy function defined later in equation (8). Equation
(6) describes the flow rule where, similarly as in the elastoplastic model, λvp is the viscoplastic
multiplier, and nnn denotes the unit outward normal to the yield surface (n : n = 1).

2.3 Viscoplastic model for metals

Elastic strains are small for metals under large strains (Simo and Hughes (1998)). In this case
the tensor FFF e approaches to the Identity. Consequently tensor bbbe−1 tends to the spatial metric
tensor ggg . In this case it is possible to write the elastic component of the free energy function as
a quadratic function of the elastic component of Almansi strain tensor eeee and material constants
λ and µ, as shown in equation (8) (García Garino (1993)).

ψe =

[
1

2
λ tr(eeee)2 + µ (eeee : eeee)

]
, (8)

The expression for ψe has been used by García Garino (1993); García Garino and Oliver
(1995, 1996) as an alternative to the neohookean models proposed by another authors (Simo
(1988a,b); Simo and Ortiz (1985)).

Replacing equation (8) in (5) the Cauchy stress tensor results

σσσ = λ tr(eeee) 111 + 2 µ eeee . (9)

The yield stress σy is assumed for an isotropic linear hardening of the material as

σy = σy0 + hε̄vp, (10)
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where h is the strain hardening modulus and σy0 is the initial yield stress. The effective stress σ̄
is a function of the deviatoric stress tensor sss,

σ̄ =

√
3

2
sss : sss. (11)

The viscoplastic multiplier rate λ̇vp and the generalized yield function f̄ have been defined
by Ponthot (2002) including in the viscoplastic model the overstress d,

d = 〈σ̄ − σy〉 , (12)

where 〈x〉 denotes the Mac Auley brackets. For this viscoplastic model, contrary to the case of
rate independent plasticity, the effective stress σ̄ is no longer constrained to remain less or equal
to the yield stress σy. Then it is possible that σ̄ ≥ σy and d 6= 0.

The expression for the viscoplastic multiplier rate λ̇ developed by Ponthot (2002) is an in-
creasing function of the overstress d, i.e.

λ̇vp =

√
3

2

〈
σ̄ − σy
η(ε̄vp)1/n

〉m
, (13)

where n is a hardening exponent,m is a rate sensitivity parameter, and η is a viscosity parameter.
Clearly, an inelastic process can only take place if the overstress d is positive.

The kinematic variable ε̄vp is the equivalent to the effective plastic strain and its rate is defined
as

˙̄εvp =

√
2

3
dddvp : dddvp . (14)

Replacing the flow rule given in equation (6) into equation (14), the effective viscoplastic
strain results

˙̄εvp =

√
2

3
λ̇vp . (15)

Combining equations (13), and (15) gives

˙̄εvp =

〈
σ̄ − σy
η(ε̄vp)1/n

〉m
, (16)

so that, in the viscoplastic range, the generalized yield function f̄ has been defined as a new
constraint (Ponthot (2002)),

f̄ = σ̄ − σy − η(ε̄vp)1/n( ˙̄εvp)1/m = 0. (17)

The criterion (17) is a generalization of the classic von-Mises criterion f = 0 for rate-
dependent materials. The latter can simply be recovered by imposing η = 0 (no viscosity
effect), result that has been pointed out in the literature by other authors (Alfano et al. (2001);
Ottosen and Ristinmaa (2005); Wang and Sluys (2000)). In the elastic regime, both f and f̄ are
equivalent since in that case

˙̄εvp = 0 and σ̄ ≤ σy , (18)
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so that one has, similarly to plasticity,
f̄ ≤ 0 . (19)

Moreover, from relation (13), it can be noted, that as viscosity η goes to zero (rate-independent
case), the viscoplastic multiplier λ̇vp remains finite and positive (though indeterminate) since
(σ̄ − σy) also goes to zero. It allows a generalization of the Kuhn-Tucker which, in the vis-
coplastic case, can be extended as shown in equation (7).

3 NUMERICAL SCHEME

The numerical scheme, necessary to implement the discussed theoretical model in a finite
element code, is based on an elastic predictor, plastic corrector approach, adapting the plastic
variables to their viscoplastic counterparts. The elastic predictor scheme, common for both
rate dependent and independent models, is presented in section 3.1 and plastic and viscoplastic
correction schemes in sections 3.2 and 3.3 respectively.

The unknown whose value is necessary to perform the viscoplastic correction of the kine-
matic tensors, is the viscoplastic multiplier defined in equation (13). More specifically, it must
be the solution of the generalized yield criterion (17). To solve that equation, its variables are
discretized and its roots found by means of the Newton Raphson method due to the non-linear
nature of the obtained equation.

Assuming a body on its initial state called 0, then moving through different states 1, 2,...,
produced by increments of load, in accordance with times t0, t1 ..., where ti+1 − ti = ∆t, the
unknowns of this problem are t+∆ts, t+∆tε̄vp and t+∆tσy at the end of the interval.

3.1 Elastic Problem

In this problem the plastic quantities remain frozen, i.e. t+∆tFFF pTR = tFFF p. The trial elastic
component of the deformation gradient tensor results:

t+∆tFFF eTR = t+∆tFFF (t+∆tFFF pTR)−1 = fff tFFF (tFFF p)−1 = fff tFFF e, (20)

where fff is the incremental deformation gradient tensor. The predictor value of the elastic Finger
tensor t+∆tbbbe−1TR is

t+∆tbbbe−1TR =
(
t+∆tFFF e−T t+∆tFFF e−1

)TR
= fff−T tbbbe−1 fff−1. (21)

Finally, the trial stressesσσσTR are computed from equation (21) in terms of the predictor value
of elastic Almansi strain t+∆teeeeTR = 1

2
(t+∆tggg − t+∆tbbbe−1TR).

3.2 Plastic Problem

In this problem the current configuration remains fixed and the internal variables are updated
in order to satisfy the constitutive law. For this problem Simo (1988b) has proposed to integrate
the flow rule in the original configuration. The pull-back operation of the right Cauchy Green
tensorCCCp is shown below in equation (22),

ĊCC
p

= 2φ∗dddp = 2λ̇pφ∗nnn = 2λ̇pNNN (22)

where φ∗ denotes the pull-back operator (Marsden and Hughes (1983)) which when applied to
the unit outward normalnnn to the yield surface in the Cauchy stress space gives the normal tensor
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NNN to the yield surface in the second Piola-Kirchhoff stress space. Equation (22) is integrated
using a Backward-Euler scheme,

t+∆tCCCp − tCCCp = 2λp t+∆tNNN, (23)

Pushing equation (22) towards the spatial configuration, the updated Finger tensor is found:

t+∆tbbbe−1 = t+∆tbbbe−1TR + 2λp t+∆tnnn (24)

The factor 2λp t+∆tnnn is computed by mean of the radial return algorithm.

3.3 Viscoplastic Problem

Viscoplastic counterpart of rate independent problem presented in previous section can be
written in terms of viscoplastic component of right Cauchy Green tensor ĊCC

vp
. Numerical plastic

multiplier has been denoted λvp for this problem.

ĊCC
vp

= 2φ∗dddvp = 2λ̇vpφ∗nnn = 2 λ̇vpNNN (25)

Following the same steps of plastic corrector the updated figer tensor is computed as:

t+∆tbbbe−1 = t+∆tbbbe−1TR + 2λvp t+∆tnnn (26)

From equations (24) and (26) follows that both updates are identical with the exception of
plastic multiplier λp and viscoplastic multiplier λvp. Consequently the structure of the numerical
problem is preserved and rate dependent case is naturally encompassed as a particular case of
corrector step.

From equation (4) the elastic component of Almansi strain tensor results in terms of the
viscoplastic update of elastic Finger tensor given in equation (26):

t+∆teeee =
1

2
(g − t+∆tbbbe−1) =

=
1

2
(g − t+∆tbbbe−1TR − 2λvp t+∆tnnn) =

= t+∆teeeeTR − λvp t+∆tnnn (27)

Taking into account equation (9), the viscoplastic correction of the elastics component of
Almansi strain tensor given in equation (27) is written in terms of Cauchy stress tensor as:

t+∆tσσσ = t+∆tσσσTR − 2λvpµt+∆tnnn (28)

that is the result shown in equation (51), section 6.3 in the work of Ponthot (2002), after inte-
gration over the time interval [t, t+ ∆t], with initial conditions given by tσσσ, tε̄vp and tσy.

3.4 Discrete consistency equation

Considering the generalized yield criterion f̄ = 0 given in equation (17) at time t+ ∆t,

f̄ = t+∆tσ̄ − t+∆tσy − η(t+∆tε̄vp)1/n(t+∆t ˙̄ε
vp

)1/m = 0 . (29)

it ensures the compliance of the generalized consistency condition (Ponthot (2002)) at that time.
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The effective viscoplastic strain can be expressed in an incremental way as t+∆tε̄vp = tε̄vp +

∆ε̄vp and in the same way equation (15) leads to ∆ε̄vp =
√

2
3
λvp. Combining this last two

expressions, the effective viscoplastic strain results

t+∆tε̄vp = tε̄vp +

√
2

3
λvp. (30)

where the (unknown) scalar parameter λvp stands for

λvp =

∫ t+∆t

t

λ̇vp dt (31)

A replacement of equation (30) into the expression of the current yield stress given in equa-
tion (10) leads to

t+∆tσy = tσy + h

√
2

3
λvp . (32)

The predictor/corrector method is used with the radial return mode, it is,

t+∆tsss = t+∆tsssTR − 2µ t+∆tλvp t+∆tnnn , (33)

where t+∆tnnn is computed as a function of deviatoric components of the predictor stress tensor
as

t+∆tnnn =
t+∆tsssTR√

t+∆tsssTR : t+∆tsssTR
. (34)

Finally, considering obtained equations (30), (32) and (33) the equation (29) can be rewritten
as

f̄(λvp) =

√
3

2

[
t+∆tsssTR − 2µλvp t+∆tnnn

]
:
[
t+∆tsssTR − 2µλvp t+∆tnnn

]
+

− tσy + h

√
2

3
λvp − η

(
tε̄vp +

√
2

3
λvp

) 1
n
(√

2

3

λvp

∆t

) 1
m

= 0, (35)

that is the the generalized yield criterion on its discrete version, whose only unknown is λvp.

3.5 Numerical solution of discrete generalized yield criterion

The expression (35) is a non-linear equation in λvp, and it can be solved with a Newton-
Raphson scheme, as was pointed out by Andia Fages (2010); Andia Fages et al. (2009) for a
local problem, by Castelló and Flores (2010) in a Finite Element context as well as Ribero Vairo
et al. (2011) who appealed to the False Position method to overcome the non-convergence
obstacles. This latter scheme is used in this work, with a relative error tolerance of 1e(−3).
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3.6 Particular cases

Considering the equation given in (29), special cases can be obtained depending on values
of parameters m, n and η. More details about special cases can be seen in works of Ponthot
(2002) and Andia Fages (2010); Andia Fages et al. (2009). Some of them are detailed below
and discussed their numerical results latter in section 4 of numerical examples.

1. Non-viscous effects

(a) Elastoplastic case, η = 0

The classic elastoplastic case is recovered by setting η = 0. The generelized yield
criterion given in equation (29) leads to

f̄ = t+∆tσ̄ − t+∆tσy = 0. (36)

If considering the fully discretized expression for f̄ in terms of the unknown λvp

given in equation (35), a closed form solution identical to the plastic multiplier λp

can be found (Ponthot (2002)),

λvp = λp =
1

2µ

|sssTR| −
√

2
3
tσy(

1 + h
3µ

) . (37)

(b) Elastic problem, η →∞
When the viscosity parameter tends to infinity, the viscous effect increases as well.
Then, the effective stress can take any value without bounding yield surface and the
behaviour tends to the elastic case.

2. Elasto viscoplastic problems

To understand the effect of parameters m and n two cases of non-linear viscoplasticity
can be studied:

(a) Non-multiplicative hardening, n → ∞: in this case the viscoplastic behaviour is
controlled exclusively by the viscoplastic strain rate. Considering equation (29) as
a function and taking the limit for n→∞, the generalized yield criterion turns to

f̄ = t+∆tσ̄ − t+∆tσy − η(t+∆t ˙̄ε
vp

)1/m, (38)

where the last term represents the viscous effect. For a fixed value of t+∆t ˙̄εvp ≤ 1,
the viscous term is an increasing function of the sensitivity parameterm. Its extreme
values can be identified by taking the proper limits,

lim
m→+∞

η(t+∆t ˙̄ε
vp

)1/m = η , (39)

lim
m→1

η(t+∆t ˙̄ε
vp

)1/m = η t+∆t ˙̄εvp. (40)

It means that the viscous effect is restricted in the upper limit to the value of η and
in the lower as a fraction of η given for ˙̄εvp. Then, the parameter m regularize the
effect of η.
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(b) Unitary rate sensitivity parameter m = 1: in this case minimum effect of viscoplas-
tic strain rate is achieved. Equation (29) turns to:

f̄ = t+∆tσ̄ − t+∆tσy − η(t+∆tε̄vp)1/n t+∆t ˙̄ε
vp

= 0 (41)

Again, the viscous term η(t+∆tε̄vp)1/n t+∆t ˙̄ε
vp behaves as an increasing function

of the hardening exponent n, if and only if t+∆tε̄vp ≤ 1. The extreme values are
founded by taking the limits

lim
n→+∞

η(t+∆t ˙̄εvp)(t+∆tε̄vp)1/n = η t+∆t ˙̄εvp, (42)

lim
n→1

η(t+∆t ˙̄εvp)(t+∆tε̄vp)1/n = η t+∆t ˙̄εvp t+∆tε̄vp. (43)

Then, the viscous term will vary between the viscosity parameter η value and a
fraction of it, given by the product t+∆t ˙̄εvp t+∆tε̄vp.

4 NUMERICAL EXAMPLES

In order to validate the implementation of the viscoplastic model on the SOGDE3D code
using H1/P0 elements, the problem of a 3D plate with a hole subjected to plane strain state was
solved, comparing the results with previous ones obtained with SOGDE2D by Ribero Vairo et al.
(2011).

New results are shown for other plane strain state problem, the GRECO project cantilever
beam considering different values of the viscoplastic parameters.

4.1 Plate with a hole

The problem consists of a plain strain state rectangular plate of 20m x 36m with a 5m radius
hole in its centre. Only a quarter of the sample is modelled due to symmetry of loads and
geometry, using appropriate boundary conditions. The finite element mesh is shown in figure
1. While one element is used in the plate thickness, N elements are used at the top and lateral
boundaries and 2N in the circumference sector. Three different meshes have been considered
with N equal to 6, 12 and 24 elements. In figure 1 the N = 12 mesh is shown.

The plate is loaded by prescribed displacements in 400 steps of 0.005m at intervals of 1s, on
its upper face, leading a large strain case, which is the same case tested by García Garino et al.
(2006) for linear viscoplasticity (m = 1, n → ∞) and Ribero Vairo et al. (2011) for other m
and n values with SOGDE2D. The latter work is the source of reference results for this work.
The analysed viscous case has a unitary rate sensitivity parameter and a hardening exponent
equal three (m = 1, n = 3). The material properties are detailed in table 1.

Load-displacement curves are shown in figure 2a for limiting elastic cases, and in 2b for lim-
iting elastoplastic cases. The abscissa axis contains the prescribed displacement, and in ordinate
axis the sum of vertical reactions obtained on each step. Lines were used for SOGDE3D and
points for SOGDE2D. For a better comparison only one every 10 point is plotted for SOGDE2D
results.

On the one hand, from figure 2a a small difference between 2D and 3D curves is noted for
high values of η, but an exact matching for elastic response. That difference is appreciated in
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E = 2.1e5MPa
ν = 0.30
σy0 = 240MPa
h = 0

Table 1: Plate with a hole.
Material properties.
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Figure 1: Plate with a hole. Geometry and finite element model.

large strain stage. On the other hand, 3D results presented in figure 2b are consistent with those
obtained by 2D version of SOGDE code.

The expected behaviour was correctly simulated: limiting elastic and elastoplastic responses
are recovered for large (higher than 1e9MPa·s) and small (lower than 1e4MPa·s) values of the
viscoplastic parameter, respectively. A spectrum of responses can be obtained with intermediate
values of η getting a softening response for small values of η.

In figures 3a and 3b deformed shapes for those extreme values of the viscous parameter are
shown (η = 1e4MPa·s and η = 1e9MPa·s respectively). The influence of the viscoplastic
parameter is also advised through the geometric effects presented after the deformation. The
limiting elastoplastic response presents a remarkable necking effect, given by the pronounced
slope of sides, in the narrow section of the plate. That non-linear geometric effect causes the
softening response seen in figure 2b. The change of shape is copied by the elements which
lose strongly their original aspect ratio. This leads convergence problem in larger prescribed
displacements. In the other hand the behaviour of the plate for η = 1e9MPa·s dos not present
strong changes of shape. Contrary to the elastoplastic limiting case no necking is noted, but a
flattening of the hole sector is developed. In no case displacements were found perpendicular
to the plate plane, given the plane strain state.

As a way to detect the mesh sensitivity over the response of the plate when a viscoplastic
material is considered, three 3D mesh densities are studied given by N = 6, 12 and 24 giving
a total of 64, 288 and 1152 elements respectively. Many values of the viscoplastic parameter
η are considered taking the same values as in figures 2a and 2b. The results are presented in
figures 4a for limiting elastic cases and in 4b for limiting elastoplastic cases. Each set of curves
presents slight differences among them with a tendency of a greater dispersion when η decrease,
where the non-linear geometric effects become significant. The number of iterations employed
by each mesh density, in general, increases as η decreases, meaning that the approach to the
elastoplastic response and the consequent development of viscoplastic deformations makes the
implicit solver scheme more difficult to get convergence. Although the denser mesh requires
more iterations to find the global convergence, it provides the best performance in terms of
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(a) Limiting elastic cases
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Figure 2: Plate with a hole. Obtained responses with SOGDE2D and 3D for different values of
η[MPa·s] when m = 1 and n = 3.

smoothness of the response curves. Response curves for the less dense mesh shows some no-
ticeable numerical instabilities but no difficulties in the rate of convergence were found for any
value of η. Finally, in relative terms of number of iterations and accuracy of solution it can be
confirmed that the 288 elements mesh presents an acceptable behaviour.

4.2 GRECO beam bending

The GRECO beam problem was introduced as a benchmark by the GRECO project dedicated
to finite strain and damage. It consists of a cantilever beam of 3mm length, 1mm height and
0.25mm thickness as shown in figure 5. It is subjected to a plain strain state with downwards
displacements applied in 80 steps of 0.0125mm every 1s on its upper right corner. The finite
element model consists of 48 H1/P0 elements placed in a single layer. The material properties
are detailed in table 2. Also a sketch of geometry and mesh are showed in figure 5.

As was pointed out in section 3.6, null value of η allows to recover elastoplastic behaviour.
Then, as an extra validation of the implementation, stress tensor components (σx, σy, σz and |σxy|)
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(a) η = 1e4Mpa·s (b) η = 1e9Mpa·s

Figure 3: Final deformed shape for viscous cases with m = 1, n = 3 and extreme values of η.
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Figure 4: Sensitivity of response for different mesh densities
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E = 2.0e5MPa
ν = 0.30
σy0 = 400MPa
h = 1000MPa

Table 2: GRECO beam.
Material properties.

1 2

3

4

5

0.25mm

3.00
mm

1.00mm

Figure 5: GRECO beam. Geometry and finite element model.

and effective plastic strain (ε̄p) for the non-viscous case are contrasted at gauss point level, with
results obtained in other previous work (see table 3). Results from Cao (1990) and Ponthot
(1995) were extracted from a compilation made by El Mouatassim (1989). The five gauss
points chosen are identified in figure 5 and, as was pointed out by García Garino (1993), the
kinematic conditions on each gauss point are different: large strain and small rotation for point
1, points 2 and 3 present large strain and moderate rotation, point 4 large rotation and small
strain and point 5 large displacement and rotation. Obtained results by this work presents a
good accordance with the reference ones, with an excellent match with the work of Careglio
et al. (2005).

Different viscoplastic responses of GRECO beam were reached using different combination
of viscoplastic parameters. The obtained results are shown in figure 6 for non-multiplicative
hardening (n = 1e40 to represent an infinit value) and in figure 7 for unitary rate sensitivity
parameter (m = 1).

As shown in section 3.6, as the viscosity coefficient η increases, the response gets closer to
the supposed elastic behaviour for the beam when σy → ∞. From the plotted elastic response
of the GRECO beam, a convexity can be detected for the finals displacements despite there is
no development of viscoplastic strain in any point of the solid. That is due to the non-linear
geometry effects considered by the large strain model. On the other hand, as η decreases, the
response tends to an elastoplastic behaviour, where the softening effect is developed.

As m and n increase, the responses become stiffer, not only in cases of non-multiplicative
hardening but also in unitary rate parameter. For example, observing curves of figures in 7a, 7b,
7c and 6a where m = 1 in all of them and n gets values of 1, 2, 3 in the first three and∞ in the
last one. It can be seen the regulatory character of the n parameter over the viscous effect. The
response of the beam varies between two limiting curves corresponding to n = 1 and n → ∞.
When η = 1e6MPa·s the spectrum of curves goes from the response curve with 190MPa· mm
of final reaction to a stiffer one with 850MPa· mm without reaching the elastic case.

But the effect of the m and n parameters is uneven for every value of η. In the non-
multiplicative hardening case with η = 1e3MPa·s, the final reaction amounts to 64MPa·mm for
m = 1 and to 196MPa·mm for m = 3. On the other hand when η = 1e5MPa·s a 216MPa·mm
final reaction is reached for m = 1 and 1360MPa·mm for m = 3. This means an increase of
206% when η = 1e3MPa·s, against 530% when η = 1e5MPa·s in the final reaction. The same
uneven effectiveness is appreciated for the n parameter, as can be seen in the unitary rate sen-
sitivity parameter case, displayed in figure 7. The model responses obtained for η ≤ 1e4MPa·s
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Gauss PointGauss PointGauss Point CodeCodeCode σxσxσx σyσyσy σzσzσz |σxy||σxy||σxy| ε̄p̄εpε̄p

1

This work 68.58 -3.73 32.61 5.80 0.2342
Careglio et al. (2005) 68.58 -3.71 32.61 5.81 0.2341
García Garino (1993) 68.58 -3.66 32.66 5.80 0.2337
Ponthot (1995) 68.93 -3.72 32.66 5.78 0.2372
Cao (1990) 66.19 -3.69 31.42 5.70 0.2559

2

This work 60.27 -0.10 30.67 11.59 0.1601
Careglio et al. (2005) 60.26 -0.12 30.67 11.57 0.1601
García Garino (1993) 60.33 -0.06 30.69 11.61 0.1650
Ponthot (1995) 60.49 -0.01 30.74 11.71 0.1619
Cao (1990) 57.92 0.52 29.29 11.75 0.1646

3

This work -66.15 -0.61 -25.84 16.53 0.2402
Careglio et al. (2005) -66.18 -0.58 -25.86 16.47 0.2402
García Garino (1993) -66.28 -0.77 -25.97 16.71 0.2399
Ponthot (1995) -65.92 -1.04 -25.78 16.71 0.2367
Cao (1990) -60.98 -2.24 -27.35 15.72 0.2543

4

This work -4.47 -1.33 -1.03 1.76 0.000
Careglio et al. (2005) -4.48 -1.34 -1.03 1.76 0.000
García Garino (1993) -4.49 -1.33 -1.01 1.75 0.000
Ponthot (1995) -4.42 -1.31 -1.03 1.75 0.000
Cao (1990) -3.71 -1.06 18.55 1.03 0.000

5

This work 28.44 3.86 -2.55 8.98 0.0482
Careglio et al. (2005) 28.07 4.37 -2.56 9.30 0.0481
García Garino (1993) 27.83 4.67 -2.55 9.43 0.0492
Ponthot (1995) 28.78 3.13 -2.72 8.61 0.0482

Table 3: GRECO beam. Gauss points results comparison.
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Figure 6: GRECO beam. Responses for different values of η[MPa·s] for non-multiplicative
hardening, n→∞
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Figure 7: GRECO beam. Responses for different values of η[MPa·s] for unitary rate sensitivity
parameter, m = 1
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are quite insensitive to larger values of n. A similar analysis is derived for responses obtained
with large values of η. The elastic response works as the stiffer possible limit of responses. So,
as close responses to the elastic case can not increase in terms of reaction as m or n increases,
the effectiveness of them decrease for high values of η.

Figure 8 shows the deformed meshes and the distributions of the effective viscoplastic strain
for the non-multiplicative hardening case when η = 1e4 MPa·s and m takes values of 1, 2,
and 3. The images were taken for the last prescribed displacement (u = 1mm). Although
impossible to achieved for any m value when η = 1e4MPa·s, elastoplastic case was plotted in
figure 8a just for reference purposes.

The contours of figures 8 shows that the development of the effective viscoplastic strain takes
smaller values as the parameter m increases. On the contrary, the effective viscoplastic strain
and its gradient appearing in the lower left hand side corner are higher as m decreases, tending
to the elastoplastic configuration of contours shown in figure 8a. Also the deformation geometry
changes as them parameter increases. Form = 1, the deflection slope presents abrupt direction
changes in the critical zones of higher viscoplastic strain values. This effect diminishes as m
increases, reaching an almost smooth deflection for m = 3.

(a) Elastoplastic response (η = 0) (b) m = 1, n→∞, η = 1e4MPa·s

(c) m = 2, n→∞, η = 1e4MPa·s (d) m = 3, n→∞, η = 1e4MPa·s

Figure 8: Viscoplastic effective strain at final deformed shape

5 CONCLUSIONS

A 3D large strain elasto viscoplastic model was presented and tested. The correct implemen-
tation of the model in SOGDE3D code was proved by comparison with previous results obtained
with SOGDE2D in the analysis of the plate with a hole. For elastoplastic recovered case in the
GRECO beam example, a gauss points level verification was performed considering available
results in the literature.
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The analysis of numerical examples with the implementation of the viscoplastic model con-
firmed the expected behaviour of the solid detailed in section 3.6, where the viscoplastic param-
eter η plays a role of a regularization parameter between the elastic and elastoplastic responses.
The exponents n and m, in turn, regulate the effect of effective viscoplastic strain and its rate
respectively, over the rate dependent behaviour of the material, in the same way as the viscosity
parameter but constrained to a range of responses.

Both the plate with a hole and the GRECO beam example allow to interpret the effect of the
m exponent over the deformed geometry. Typical elastoplastic and geometric nonlinearities are
developed when η = 1e4MPa·s and the m parameter increases.

Also the effect of m and n parameters was assessed, concluding that no significant changes
can be obtained when extreme values of the viscosity parameter η is considered.
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