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Abstract. Based on the volume averaging of the microscopic temperature and displacement fields over
a local representative volume element (RVE), in this work we present a general variational formulation
for multi-scale constitutive models in the thermomechanical setting. In order to describe the RVE ma-
terial behavior, we use local continuum constitutive theories. This formulation provides an axiomatic
framework within which each class of models is completely defined by a specific choice of kinematical
constraints over the RVE. As consequences of the Hill-Mandel Principle of Macro-Homogeneity, we
obtain the equilibrium problems at the RVE level and the homogenization expressions for the heat flux
and the effective stress. This approach allows us consider the microscopic temperature fluctuation field
in the determination of: effective heat flux, effective stress and the corresponding tangent operators. As
a result, the homogenized stress depends explicitly and implicitly on the macroscopic temperature gra-
dient. Finally, we present a discussion about the thermodynamics implication of this class of multiscale
model.
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1 INTRODUCTION

The constitutive modeling of solids based on multiscale theories has become the subject of
intensive research in applied and computational mechanics. The growing interest in constitu-
tive modeling by multiscale techniques has two important motivations, the first is the current
need for more accurate constitutive models, and the second is related to the limit of the de-
scriptive/predictive capability of conventional phenomenological continuum models. One im-
portant example of these facts is the mathematical modeling of biological tissue. The typical
microstructure of biological material can be extremely elaborated, resulting in a macroscopic
constitutive response of difficult representation by means of conventional phenomenological
constitutive models Chen et al. (2011); Speirs et al. (2008). Often, the modeling of such phe-
nomena through a single -macroscopic- scale approach results in important discrepancies be-
tween the predicted and observed constitutive responses.

Classical multiscale models have been derived from the analysis of partial differential equa-
tions Bensoussan et al. (1978); Sanchez-Palencia (1980). These models are based on the con-
struction of the solution of the system of PDEs by means of an asymptotic expansion in terms of
a small parameter ε, which is the ratio between the characteristic lengths of both scales. Then,
the problems associated to each power of ε of this expansion are derived. Each one of these
problems are referred to a scale of the multiscale formulation. The key of the method relies in
the proof of the convergence of the asymptotic expansion when the system of PDEs at the differ-
ent scales is identified. Particularly, the thermomechanical multiscale problem has been studied
using this classical approach in Ene (1983); Francfort (1983); Francfort and Suquet (1986);
Sanchez-Palencia (1983). In these works it is shown that the mechanical problem at the micro-
scopic scale depends exclusively on the macroscopic strain and on the macroscopic temperature
field. This means that the fluctuations of the microscopic temperature field, which are obtained
after solving the thermal problem at the RVE level, do not have effect neither in the problem for
the microscopic mechanical problem nor in the obtained effective stress. This is a consequence
of the specific technique -asymptotic analysis- used in the derivation of this class of multiscale
models. This result, understood as a scales-separation concept, has been employed as an ar-
gument in the derivation of variational multiscale techniques that proposed thermomechanical
constitutive models in order to disregard the effect of the microscopic temperature fluctuations
in the micro-mechanical problem. For instance, in Ene (1983); Temizer and P.Wriggers (2011);
Terada et al. (2010), the homogenized thermal expansion tensor depends on the solution of a
micro-mechanical problem which is, in turn, related to the macroscopic strain and just to the
macroscopic temperature.

On the other hand, in thermomechanical problems, materials with inner structure pose the
difficulty of accommodating the complex interplay between mechanical and thermal microstruc-
tural phenomena within the same framework. To address this problem, several approaches have
been proposed: from micromorphic materials with thermal effects Boutin (1995); Grot (1969);
Neff and Forest (2007); Riha (1976); Iesan (2002); Iesan and Nappa (2005); Iesan and Quintanilla
(2009) to second-grade continua Cardona et al. (1999); Forest and Aifantis (2010); Forest and Amestoy
(2008); Forest et al. (2000) and models based on extended thermodynamics Ireman and Nguyen
(2004); Nguyen (2010); Nguyen and Andrieux (2005) as well as other alternatives accounting
for microstructure features at the macroscale Iesan (2011). In all these approaches, constitutive
models are able to account for the effects of temperature gradients in the stress state. This is pos-
sible since the thermodynamics is somehow consistently generalized to take into account this
dependence. Using a different approach, the effect of microtemperatures in the two-dimensional
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plane thermoelasticity problem has been recently addressed in Bitsadze and Jaiani (2012).
In the context of constitutive multiscale analysis, as stated in Temizer and P.Wriggers (2011),

the fact of sticking to the classical thermodynamics at the macroscale has strong consequences
in the way in which thermal effects can be accounted for in a micro-mechanical equilibrium
problem. As an example of this fact, we refer to the problem of the microscopic thermal fluc-
tuation in a multiscale thermal analysis. According to Temizer and P.Wriggers (2011) (see also
Özdemir et al. (2008); Özdemir et al. (2008)), the thermomechanical problem at the microscale
cannot incorporate the thermal fluctuations obtained from a multiscale thermal analysis. There-
fore, the mean value of the macroscopic temperature is exclusively responsible for introducing
the thermal contribution in the microscopic mechanical problem. Hence, the classical thermo-
dynamics still holds at the macroscopic problem and all the classical constitutive dependencies
of free energy, heat flux and stress state upon temperature, temperature gradient and strain are
valid.

The contribution of this work is the development of a multiscale variational framework that
permits to incorporate the microscopic thermal fluctuations in the micro-mechanical analysis.
As a consequence, this yields a dependence of the macroscopic stress state upon the macro-
scopic temperature gradient. We assume that the classical thermodynamics holds at the mi-
croscale (classical Clausius-Duhem inequality), from which classical thermomechanical con-
stitutive models are proposed at the RVE level. The present model is then formulated using
just two basic concepts: (i) homogenization (volume averaging) of microscopic temperature,
microscopic temperature gradient and microscopic strain; and (ii) the Hill-Mandel Principle
of Macro-homogeneity (multiscale virtual power balance). Then, the thermomechanical cou-
pling between the micro-strain and micro-temperature fields naturally leads to a dependence
of the macroscopic stress upon the three macroscopic quantities: strain, temperature and tem-
perature gradient. Since this functional dependence with respect to the temperature gradient is
not allowed in the classical thermodynamics setting, an extended macroscopic thermodynamics
is mandatory to accommodate this more complex material behavior (non-classical Clausius-
Duhem inequality). Therefore, definitions of the macroscopic internal energy, entropy and en-
tropy vector are introduced, following Nguyen (2010). Notice that material modeling consid-
ered this way leads to a sort of second grade continua which accounts for temperature gradient
effects on the macroscopic stress state. In the present model the temperature fluctuations con-
sidered in the micro-thermal problem are the same temperature fluctuations considered in the
micro-mechanical problem. In this sense, the microscopic temperature field is unique within
the entire analysis. This is different from Temizer and P.Wriggers (2011), where the authors
resort to the argument of scales separation in order to neglect the temperature fluctuations in the
micro-mechanical problem.

The paper is organized as follows: in Section 2 we introduce some preliminary concepts in
the multiscale analysis. Section 3 recalls the formulation of the macroscopic thermomechanical
problem. The multiscale thermal analysis is introduced in Section 4. The constitutive mul-
tiscale framework for the thermomechanical analysis is presented in Section 5. In Section 6
we present the extended macroscopic thermodynamics derived from the developed multiscale
model. Finally, some concluding remarks are outlined in Section 7.

2 PRELIMINARIES IN THE MULTISCALE ANALYSIS

As stated in the Introduction Section we follow a purely variational approach to derive the
thermomechanical constitutive multiscale model. The Hill-Mandel Macro-homogeneity prin-
ciple is the underlying variational principle that provides the multiscale virtual power bal-
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ance. This variational problem is closed by providing kinematical restrictions which are de-
rived from the concept of volume averaging in the Representative Volume Element (RVE)
Khisaeva and Ostoja-Starzewski (2006). See Section 4 for the constitutive thermal analysis and
Section 5 for the constitutive mechanical analysis. This constitutive modeling approach fol-
lows closely the strategy presented in Germain et al. (1983); Michel et al. (1999); Miehe et al.
(1999), whose variational structure is described in detail in de Souza Neto and Feijóo (2011);
Peric et al. (2011). In this context, the main concept is the assumption that any point x of the
macroscopic continuum (refer to Figure 1) is associated to a local RVE, with domain Ωµ and
boundary ∂Ωµ, which has a characteristic length Lµ, much smaller than the characteristic length
L of the macro-continuum domain, Ω ⊂ Rn for n = 2 or 3. For simplicity, we consider that the
RVE domain consists of a matrix Ωm

µ , containing inclusions of different materials occupying
a domain Ωi

µ (see Figure 1), but the formulation is completely analogous to the one presented
here if the RVE contains voids instead. Hereafter, symbols (·)µ denote quantities associated to
the microscale.

Figure 1: Macroscopic continuum with a locally attached microstructure featuring thermal and mechanical effects.

In order to not obscure the underlying concepts, in the next two sections we work with the
mechanical multiscale model under the hypothesis of infinitesimal strains. Also, the classical
thermomechanical analysis is considered, recalling that this entails a one-way coupling, i.e., the
temperature has an effect on the stress state, but strain rates do not affect the thermal state of
the body.

As in any thermomechanical problem, the primal variables that define the thermodynami-
cal state of the body at the macroscopic scale are the temperature θ, the temperature gradient
g = ∇θ, and the strain tensor ε. Therefore, proper homogenization formulas for these three
quantities are mandatory for the well-posedness of the problem. The idea of the variational
formulation presented in the following sections lies on top of this fundamental concept. As an
outcome, the dual thermodynamical variables will be the heat flux q and the stress tensor σ, as
shown in the corresponding sections.

Since it will be clear from the context, in what follows we will not differentiate between the
gradient with respect to macroscopic coordinates x and the gradient with respect to microscopic
coordinates y. Both will be simply denoted by the symbol ∇.

3 MACROSCOPIC THERMOMECHANICAL PROBLEM

At the macroscale, we consider the thermomechanical analysis in the steady state setting.
Therefore, the problem entails obtaining the temperature and displacement fields over Ω. The
thermomechanical equilibrium problem is formulated in a variational context. The first step
consists of introducing the affine spaces of kinematically admissible temperature and displace-
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ment fields at the macroscale. These sets are, respectively,

Θ := {θ ∈ H1(Ω) : + essential thermal b.c.},
U := {u ∈ H1(Ω) : + essential mechanical b.c.}.

(1)

Therefore, the spaces of admissible temperature and displacement variations are defined, re-
spectively, as

Θ̂ := {θ ∈ H1(Ω) : + homogeneous essential thermal b.c.},
Û := {u ∈ H1(Ω) : + homogeneous essential mechanical b.c.}.

(2)

Hence, the macroscopic thermal variational problem reads: given the thermal source f and
proper natural thermal boundary conditions, find θ ∈ Θ such that the heat flux q is such that∫

Ω

q(θ) · ∇θ̂ dV =

∫
Ω

f θ̂ dV + natural thermal b.c. ∀θ̂ ∈ Θ̂. (3)

In the same manner, the macroscopic mechanical variational problem is: given the temperature
field θ satisfying (3), the loading f and proper natural mechanical boundary conditions, find
u ∈ U such that the stress state σ is such that∫

Ω

σ(u, θ) · ∇sû dV =

∫
Ω

f · û dV + natural mechanical b.c. ∀û ∈ Û . (4)

Variational problems (3) and (4) are closed once the functional dependencies of the heat flux q
and the stress state σ are given in terms of the macroscopic temperature field θ, macroscopic
temperature gradient g, and of the macroscopic strain field ε. These functional dependencies
will be obtained exploiting the multiscale analysis in the following sections. Specifically, an
effective heat flux will be obtained from the thermal multiscale analysis (see Section 4) and an
effective stress will be computed from the mechanical multiscale analysis with thermal effects
(see Section 5).

4 MULTISCALE THERMAL ANALYSIS

In order to make the work self-contained, and to work with a unified notation, in this section
we present the basic ideas behind the multiscale thermal problem.

4.1 Kinematical admissibility

In the context of the previous section we consider that at any arbitrary point x ∈ Ω, the
macroscopic temperature gradient g is the volume average of the microscopic temperature gra-
dient ∇θµ:

g =
1

Vµ

∫
Ωµ

∇θµdV, (5)

where θµ denotes the microscopic absolute temperature field and Vµ is the total volume of
the RVE. As stated before, we also consider the following homogenization formula for the
temperature

θ =
1

Vµ

∫
Ωµ

θµdV. (6)
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By making use of Green’s theorem, we can promptly establish that the averaging relation (5) is
equivalent to the following constraint on the temperature field of the RVE:∫

∂Ωµ

θµ n dS = Vµ g, (7)

where n is the unit outward vector to ∂Ωµ.
Now, without loss of generality, the microscopic temperature field θµ can be split into a

sum of the macroscopic temperature field θ, the contribution of the macroscopic temperature
gradient field g, and a microscopic temperature fluctuation field, θ̃µ(y)

θµ(y) = θ + g · (y − yo) + θ̃µ(y), (8)

where, yo is

yo =
1

Vµ

∫
Ωµ

y dV . (9)

Introducing the above splitting in (6) we obtain the following constraint for the microscopic
temperature fluctuation field: ∫

Ωµ

θ̃µdV = 0. (10)

In view of the splitting (8), and taking into account constraints (5) and (6) we define the
minimally constrained space of admissible microscopic temperature fluctuation fields at the
RVE

Θµ :=

{
θµ ∈ H1(Ωµ) :

∫
Ωµ

θµ dV = 0,

∫
∂Ωµ

θµ n dS = 0

}
. (11)

Therefore, the resulting space of admissible variations of the microscopic temperature field
at the RVE is also Θµ.

Remark 1 Note that other multiscale models could be obtained by considering any other space
of admissible functions, say ΘX

µ . It is just necessary that ΘX
µ ⊂ Θµ. An instance of an alterna-

tive is the classical model with periodic boundary conditions. For a more detailed description
on this topic, we refer the reader to de Souza Neto and Feijóo (2011); Peric et al. (2011).

Taking the gradient with respect to the microscopic coordinates y in (8), yields the micro-
scopic temperature gradient

∇θµ = g +∇θ̃µ, (12)

which is the sum of a homogeneous gradient (uniform over the RVE) coinciding with the macro-
scopic temperature gradient and the field ∇θ̃µ corresponding to a fluctuation of the microscopic
temperature gradient around the homogenized value.

4.2 The Hill-Mandel principle and its variational consequences

Another fundamental concept underlying multiscale models of the present type is the Hill-
Mandel Principle of Macro-homogeneity. Here, we shall assume the analogous relation for the
thermal case Giusti et al. (2009)

q · ĝ =
1

Vµ

∫
Ωµ

qµ(θµ) · ∇θ̂µ dV ∀(θ̂µ, ĝ) kinematically admissible, (13)
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where qµ(θµ) denotes the microscopic heat flux associated to the microscopic temperature θµ.
Exploiting relation (8) in (13), leads to the following variational problem: given the macro-
scopic temperature θ and the macroscopic temperature gradient g, find q and θ̃µ ∈ Θµ such that

q · ĝ =
1

Vµ

∫
Ωµ

qµ(θ + g · (y − yo) + θ̃µ) · (ĝ +∇ ˆ̃θµ) dV ∀ ˆ̃θµ ∈ Θµ and ∀ĝ. (14)

Equation (13) plays a crucial role in the formulation of heat conduction constitutive models
within the present framework since it provides the variational principle that governs the scale
bridging for the thermal problem.

Now we derive the consequences using standard variational arguments. Basically they stand
for the homogenization formula for the heat flux and the microscopic thermal equilibrium prob-
lem.

Micro-thermal equilibrium problem Considering ĝ = 0 in (14) leads to the microscopic
thermal equilibrium problem: given the macroscopic temperature θ and the macroscopic
temperature gradient g, find the temperature fluctuation field θ̃µ ∈ Θµ such that∫

Ωµ

qµ(θ + g · (y − yo) + θ̃µ) · ∇ ˆ̃θµ dV = 0 ∀ ˆ̃θµ ∈ Θµ. (15)

Characterization of the macroscopic heat flux Considering now ˆ̃θµ = 0 in (14) results the
characterization of the macroscopic heat flux vector q: given the macroscopic temperature
θ, its gradient g, and θ̃µ -the solution of problem (15)-, compute q as

q =
1

Vµ

∫
Ωµ

qµ(θ + g · (y − yo) + θ̃µ) dV. (16)

In the present analysis, we shall assume that the materials of the RVE matrix and inclusions
satisfy the classical Fourier constitutive law:

qµ(ξ) = −Kµ∇ξ, (17)

where Kµ is the second order thermal conductivity tensor of the RVE. The above linear relation
together with the additive decomposition (8) allows the microscopic thermal flux field to be
split as

qµ(θµ) = −Kµg −Kµ∇θ̃µ. (18)

By introducing decomposition (18) into the thermal equilibrium equation (15), we obtain the
closed form of the microscopic thermal equilibrium problem: given g, find θ̃µ ∈ Θµ such that∫

Ωµ

Kµ∇θ̃µ · ∇ ˆ̃θµ dV = −
∫
Ωµ

Kµg · ∇ ˆ̃θµ dV ∀ ˆ̃θµ ∈ Θµ, (19)

and the homogenization formula for the macroscopic heat flux results

q = −
(

1

Vµ

∫
Ωµ

Kµ dV

)
g − 1

Vµ

∫
Ωµ

Kµ∇θ̃µ dV. (20)
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4.3 The homogenized thermal conductivity tensor

Crucial to the developments of the multiscale model for the macroscopic thermal problem
is the derivation of formulae for the macroscopic heat conductivity tensor. This is addressed in
the following.

To obtain the tangent operator from (20) we derive (19) with respect to g. Calling dg := ∂θ̃µ
∂g

(a vector field), and denoting [dg]i = dg · ei (a scalar field) -being ei the unit Cartesian vectors-
the variational equation for the tangent field is written as: find [dg]i ∈ Θµ, such that∫

Ωµ

Kµ∇[dg]i · ∇ ˆ̃θµ dV = −
∫
Ωµ

Kµei · ∇ ˆ̃θµ dV ∀ ˆ̃θµ ∈ Θµ, (21)

for i = 1, . . . , n.
Now, from the additive splitting of the microscopic temperature field (8), the homogenization

procedure for the heat flux (16) and by using the solution of (21), we have that the macroscopic
conductivity tensor can be obtained as the sum

−∂q
∂g

:= K = K+ K̃, (22)

of a homogenized (volume average) macroscopic conductivity tensor K, given by,

K =
1

Vµ

∫
Ωµ

Kµ dV, (23)

and a contribution K̃ associated to the microscopic temperature fluctuation field defined, from
(21), as

K̃ =

[
1

Vµ

∫
Ωµ

(Kµ∇[dg]j)i dV

]
(ei ⊗ ej). (24)

For a more detailed description on the derivation of the above expressions, we refer the reader
to Giusti et al. (2009); Michel et al. (1999).

Although it is not needed in the thermal analysis, we are interested in checking that the
tangent operator with respect to the macroscopic temperature is zero. That is, by deriving (19)
with respect to θ and calling dθ := ∂θ̃µ

∂θ
(a scalar field), we obtain the variational equation for

this tangent field as: find dθ ∈ Θµ such that∫
Ωµ

Kµ∇dθ · ∇ ˆ̃θµ dV = 0 ∀ ˆ̃θµ ∈ Θµ. (25)

clearly, this implies that
dθ = 0, (26)

which is expected from the microscopic thermal analysis. From this, we obtain that θ̃µ solely
depends on the macroscopic datum g. That is, the macroscopic heat flux q is expressed in terms
of the homogenized temperature gradient as

q = −Kg. (27)
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5 MULTISCALE MECHANICAL ANALYSIS WITH THERMAL EFFECTS

5.1 Kinematical admissibility

As in the previous section, we define in this case the macroscopic mechanical strain tensor
ε at the point x of the macroscopic continuum, and link this strain to its microscopic counter-
part εµ defined over the domain of the RVE. The microscopic strain field εµ is given by the
symmetric part of the gradient of the microscopic displacement field uµ. Then, the kinematical
homogenization principle reads:

ε :=
1

Vµ

∫
Ωµ

∇suµ dV. (28)

Taking into account the Green’s formula in (28) we obtain the following equivalent expres-
sion for the homogenized (macroscopic) strain tensor ε

ε =
1

Vµ

∫
∂Ωµ

uµ ⊗s n dS , (29)

where, as before, n is the outward unit normal to the boundary ∂Ωµ and ⊗s denotes the symmet-
ric tensor product of vectors. Note that, the above expression imposes a kinematical constraint
over the admissible displacement fields over the RVE such that the kinematical homogenization
principle (28) is satisfied. Now, without loss of generality, as done in the thermal case, it is
possible split uµ into a sum of the macroscopic displacement field u, the contribution provided
by the macroscopic strain ε and a fluctuation displacement field ũµ(y) (see Figure 2)

uµ(y) = u+ ε(y − yo) + ũµ(y) . (30)

Homogeneously

Deformed RVE

Figure 2: Additive splitting of the microscopic displacement field.

With the above splitting, the microscopic strain field can be written as a sum

∇suµ = ε+∇sũµ, (31)

of a homogeneous strain (uniform over the RVE) coinciding with the macroscopic strain and a
field ∇sũµ corresponding to the contribution of the fluctuation of the microscopic strain around
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the homogenized (average) value. In order to remove rigid modes, we also assume the following
constraint on the microscopic displacement field uµ

u =
1

Vµ

∫
Ωµ

uµ dV . (32)

By introducing the additive splitting for the microscopic displacement field uµ into the above
constraint, we obtain the following expression for the microscopic displacement fluctuation field∫

Ωµ

ũµ dV = 0 . (33)

In this sense, the kinematical homogenization procedure introduced in (28) induces the min-
imally constrained space of admissible microscopic displacement fluctuation fields at the RVE

Uµ :=

{
u ∈ H1(Ωµ) :

∫
Ωµ

u dV = 0,

∫
∂Ωµ

u⊗s n dS = 0

}
. (34)

Hence, the space of kinematically admissible variations of the microscopic displacement field
at the RVE is Uµ as well.

Remark 2 As in Remark 1, other multiscale models could be obtained by considering any
other space of admissible functions, say UX

µ . It is just necessary that UX
µ ⊂ Uµ. Examples

of alternatives are the classical model with null boundary conditions or the one with periodic
boundary conditions de Souza Neto and Feijóo (2011); Peric et al. (2011).

5.2 The Hill-Mandel principle and its variational consequences

As in the thermal case, the physical bridging between macro and micro scales is provided by
the Hill-Mandel Principle of Macro-homogeneity Hill (1965); Mandel (1971), which is

σ · ε̂ =
1

Vµ

∫
Ωµ

σµ(uµ, θµ) · ∇sûµ dV ∀(ûµ, ε̂) kinematically admissible. (35)

Introducing the decomposition (30) into (35), and recalling (8), leads to the following varia-
tional problem: given the macroscopic temperature θ, the macroscopic temperature gradient g,
the microscopic temperature fluctuation field θ̃µ (solution of (15)) and the macroscopic strain ε,
find σ and ũµ ∈ Uµ such that

σ · ε̂ =
1

Vµ

∫
Ωµ

σµ(u+ ε(y − yo) + ũµ, θ + g · (y − yo) + θ̃µ) · (ε̂+∇s ˆ̃uµ) dV

∀ˆ̃uµ ∈ Uµ and ∀ε̂. (36)

As before, using standard variational arguments, the Hill-Mandel principle provides two con-
sequences: the microscopic mechanical equilibrium problem and the homogenization formula
for the Cauchy stress.

Micro-mechanical equilibrium problem Considering ε̂ = 0 in (36) yields the microscopic
mechanical equilibrium problem: given the macroscopic temperature θ, the macroscopic
temperature gradient g, the microscopic temperature fluctuation field θ̃µ (solution of (15))
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and the macroscopic strain ε, find the microscopic displacement fluctuation field ũµ ∈ Uµ

such that∫
Ωµ

σµ(u+ ε(y−yo)+ ũµ, θ+g · (y−yo)+ θ̃µ) ·∇s ˆ̃uµ dV = 0 ∀ˆ̃uµ ∈ Uµ. (37)

Characterization of the macroscopic stress Considering ˆ̃uµ = 0 in (36) results the charac-
terization of the macroscopic stress state σ: given the macroscopic temperature θ, its
gradient g, the field θ̃µ solution of problem (15), the macroscopic strain ε, and ũµ -the
solution of problem (37)-, compute σ as

σ =
1

Vµ

∫
Ωµ

σµ(u+ ε(y − yo) + ũµ, θ + g · (y − yo) + θ̃µ) dV. (38)

Notice that since the microscopic temperature field is being considered in the microscopic
stress state, naturally, the formulation provides a macroscopic stress state which, in addition, de-
pends upon the temperature gradient, which is an intrinsic feature of materials with microstruc-
ture. In Section 6 we will provide an account of the elements that are necessary to accommodate
this material behavior in a thermodynamically consistent framework.

In this work, materials at the microscale follow the simplest constitutive thermoelastic model,
which is

σµ(v, ξ) = Cµ(∇sv)−Bµξ, (39)

being Cµ the fourth order elasticity tensor and Bµ the second order thermomechanical expan-
sion tensor. Assuming that the microstructural behavior of the materials is isotropic and homo-
geneous, we have

Cµ =
Eµ

1− ν2µ
[(1− νµ) I+ νµ (I⊗ I)] , and Bµ =

αµEµ

1− ν2µ
(1 + νµ(trI− 1))I, (40)

with Eµ, νµ and αµ denoting, respectively, the Young’s modulus, the Poisson’s ratio and the
thermal expansion coefficient at the RVE. In (40) we use I and I to denote the second and fourth
order identity tensors, respectively, while tr(·) is used to denote the trace operator applied to
tensor (·).

Remark 3 Observe that the microscopic stress σµ given in (39) is derived from a microscopic
free energy function which is quadratic in the variables (∇sv, ξ), that is

ψµ(∇sv, ξ) =
1

2
Cµ(∇sv) · (∇sv)−Bµ · (∇sv)ξ − 1

2
aξ2, (41)

from which

σµ =
∂ψµ

∂(∇sv)
= Cµ(∇sv)−Bµξ, (42)

while the microscopic entropy is given by

sµ = −∂ψµ

∂ξ
= aξ +Bµ · (∇sv). (43)

In Section 6 we will expand the discussion about the bridging between the microscopic and the
macroscopic thermodynamic settings.
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Now we split the microscopic stress state using (8) and (30) as follows

σµ(uµ, θµ) = Cµε+ Cµ(∇sũµ)−Bµθ −Bµ(g · (y − yo))−Bµθ̃µ, (44)

and then, the closed form of the microscopic mechanical equilibrium problem reads: given ε,
θ, g and θ̃µ, find ũµ ∈ Uµ such that∫

Ωµ

Cµ(∇sũµ) · ∇s ˆ̃uµ dV = −
∫
Ωµ

(
Cµε−Bµθ −Bµ(g · (y − yo))−Bµθ̃µ

)
· ∇s ˆ̃uµ dV

∀ˆ̃uµ ∈ Uµ. (45)

and the corresponding homogenization formula for the macroscopic stress is

σ =

(
1

Vµ

∫
Ωµ

Cµ dV

)
ε−

(
1

Vµ

∫
Ωµ

Bµ dV

)
θ −

(
1

Vµ

∫
Ωµ

Bµ ⊗ (y − yo) dV

)
g

+
1

Vµ

∫
Ωµ

Cµ(∇sũµ) dV − 1

Vµ

∫
Ωµ

Bµθ̃µ dV. (46)

5.3 The homogenized elastic and thermal expansion tensors

In the constitutive multiscale model recently introduced, it has been presented how to use
the macroscopic information (mechanical strain tensor ε, temperature θ and temperature gra-
dient g) to obtain the microscopic temperature and displacement fields fully defined through
the microscopic fluctuations of temperature and displacement, that is θ̃µ and ũµ, respectively.
The basic idea now is to retrieve a closed form of the tangent macroscopic constitutive response
from (46) in terms of the triple (ε, θ,g). In the first place we compute the tangent problem from
(45) with respect to the strain ε. Proceeding analogously to the thermal case, we derive (45)
with respect to ε and put Dε := ∂ũµ

∂ε
(a third order tensor field), noting that [Dε]ij = ∂ũµ

∂[ε]ij
(a

vector field). This procedure leads us to the problem of finding [Dε]ij ∈ Uµ such that∫
Ωµ

Cµ(∇s[Dε]ij) · ∇s ˆ̃uµ dV = −
∫
Ωµ

Cµ(ei ⊗s ej) · ∇s ˆ̃uµ dV ∀ˆ̃uµ ∈ Uµ, (47)

for i, j = 1, . . . , n.
Thus, the macroscopic mechanical tangent operator is given by

∂σ

∂ε
:= C = C+ C̃, (48)

where
C =

1

Vµ

∫
Ωµ

Cµ dV, (49)

and

C̃ =

[
1

Vµ

∫
Ωµ

(Cµ(∇s[Dε]kl))ij dV

]
(ei ⊗ ej ⊗ ek ⊗ el). (50)

In the second place we compute the tangent problem from (45) with respect to the temper-
ature θ. Using the same procedure, we derive (45) with respect to θ, call dθ := ∂ũµ

∂θ
(a vector

field) and recall that the microscopic temperature fluctuation field θ̃µ does not depend on the
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macroscopic temperature, according to (26). Therefore, we obtain the following problem: find
dθ ∈ Uµ such that∫

Ωµ

Cµ(∇sdθ) · ∇s ˆ̃uµ dV =

∫
Ωµ

Bµ · ∇s ˆ̃uµ dV ∀ˆ̃uµ ∈ Uµ. (51)

In this manner, the first-order thermal contribution to the macroscopic stress is governed by the
following tensor

−∂σ
∂θ

:= B = B+ B̃, (52)

where
B =

1

Vµ

∫
Ωµ

Bµ dV, (53)

and
B̃ = − 1

Vµ

∫
Ωµ

Cµ(∇sdθ) dV. (54)

In an analogous way, we obtain the tangent problem of (45) with respect to the temperature
gradient g. By deriving (45) with respect to g and calling Dg := ∂ũµ

∂g
(a second order tensor

field), which means [Dg]i =
∂ũµ

∂[g]i
(a vector field), yields the variational problem for this tangent

field: find [Dg]i ∈ Uµ such that∫
Ωµ

Cµ(∇s[Dg]i) · ∇s ˆ̃uµ dV =

∫
Ωµ

Bµ([y − yo]i + [dg]i) · ∇s ˆ̃uµ dV ∀ˆ̃uµ ∈ Uµ, (55)

for i = 1, . . . , n. Above, recall that dg expresses the sensitivity of the microscopic temperature
fluctuation field θ̃µ with respect to the macroscopic temperature gradient g, which is obtained
by solving (21).

Hence, a second-order thermal contribution to the macroscopic stress state is given through
the following tensor

−∂σ
∂g

:= G = G+ G̃, (56)

where
G =

1

Vµ

∫
Ωµ

Bµ ⊗ (y − yo) dV, (57)

and

G̃ = −
[
1

Vµ

∫
Ωµ

(Cµ(∇s[Dg]k))ij dV − 1

Vµ

∫
Ωµ

(Bµ)ij[dg]k dV

]
(ei ⊗ ej ⊗ ek). (58)

Finally, the macroscopic stress σ can be written in terms of the above homogenized quanti-
ties as

σ = Cε−Bθ − Gg. (59)
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6 MULTISCALE THERMODYNAMIC SETTING

As commented in Remark 3, the microscopic thermodynamics is the classical one, in the
sense of the relation between internal energy and entropy, which leads to the classical Clausius-
Duhem inequality. Being eµ, sµ and ψµ the microscopic internal energy, microscopic entropy
and microscopic free energy function, respectively, this implies that these quantities are related
through

eµ = sµθµ + ψµ(θµ, εµ), (60)

with sµ and θµ being dual variables in the sense of the Legendre transform. Then we have

sµ = −∂ψµ

∂θµ
and θµ =

∂eµ
∂sµ

. (61)

Nevertheless, the existence of a macroscopic temperature gradient g poses the problem of
considering microscopic temperature fields θµ which make the macroscopic stress state σ sen-
sitive to this temperature gradient g. In a classical thermodynamic setting it is well known that
σ cannot depend on g. Hence, the aim of this section is to provide the extended macroscopic
thermodynamic context in which the multiscale constitutive model developed in Section 4 and
Section 5 has to be considered.

The theoretical foundations employed here are based on the developments presented in
Nguyen (2010); Nguyen and Andrieux (2005). For a thorough discussion of the underlying
elements in this framework the reader is referred to Nguyen and Andrieux (2005). The basic
modification to the classical thermodynamics foundations is introduced by writing the macro-
scopic internal energy as follows

e = sθ + r · g + ψ(θ,g, ε), (62)

where, now, (s, r) and (θ,g) are dual pairs in the sense of the Legendre transform. Analogously,
it is possible to obtain the following relations

s = −∂ψ
∂θ
, r = −∂ψ

∂g
, θ =

∂e

∂s
and g =

∂e

∂r
. (63)

With these considerations, the functional form ψ(θ,g, ε) is allowed.
Indeed, in the multiscale context consider that

ψ =
1

Vµ

∫
Ωµ

ψµ dV. (64)

The macroscopic entropy is given by deriving with respect to θ, that is

s = −∂ψ
∂θ

= − 1

Vµ

∫
Ωµ

∂ψµ

∂θ
dV = − 1

Vµ

∫
Ωµ

∂ψµ

∂θµ
dV =

1

Vµ

∫
Ωµ

sµ dV, (65)

where we have used the fact that ∂θµ
∂θ

= 1 in view of (26). In turn, we have

r = −∂ψ
∂g

= − 1

Vµ

∫
Ωµ

∂ψµ

∂g
dV = − 1

Vµ

∫
Ωµ

∂ψµ

∂θµ
(y − yo + dg) dV

=
1

Vµ

∫
Ωµ

sµ(y − yo + dg) dV, (66)
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for which we have taken into account that ∂θµ
∂g

= y − yo + dg, which stems from θµ = θ + g ·
(y − yo) + g · dg. Then, we observe that

1

Vµ

∫
Ωµ

eµ dV =
1

Vµ

∫
Ωµ

(sµθµ + ψµ) dV

=
1

Vµ

∫
Ωµ

(sµ(θ + g · (y − yo) + θ̃µ) + ψµ) dV

=
1

Vµ

∫
Ωµ

sµθ dV +
1

Vµ

∫
Ωµ

sµ(g · (y − yo) + g · dg) dV +
1

Vµ

∫
Ωµ

ψµ dV

= sθ + r · g + ψ = e. (67)

With this extended macroscopic thermodynamics it can be shown (see Nguyen and Andrieux
(2005)) that the macroscopic steady state equation for the energy balance remains the classical
one. The impact of the introduction of r, called the entropy vector, and the dependence of ψ with
respect to g is manifested in the transient problem, which in turn gives rise to governing equa-
tions that allow thermal waves to occur Nguyen (2010); Özisik and Tzou (1994). This is consis-
tent with the foundations of the extended thermodynamics as presented in Müller and Ruggeri
(1998).

Making use of this extended thermodynamics at the macroscopic scale is necessary in or-
der to accommodate the natural dependence of the stress state with respect to the temperature
gradient when employing this class of multiscale thermomechanical constitutive modeling. The
multiscale constitutive model constructed this way is consistent in the sense that the temperature
fluctuations that arise at the microscopic problem when performing the multiscale thermal anal-
ysis are equally considered in the multiscale mechanical analysis with thermal effects. Clearly,
this is one of the fundamental objectives of a multiscale theory, that is, to use simple micro-
scopic relations in order to retrieve complex macroscopic material behavior.

7 CONCLUDING REMARKS

In this work a general variational formulation for multiscale constitutive models in the ther-
momechanical setting has been presented. The multiscale analysis was based on the volume
averaging concept over a local representative volume element (RVE) and the Hill-Mandel Prin-
ciple of Macro-homogeneity for the scale transition. The contribution of the present work
has been the consistent formulation of the multiscale constitutive model in the thermome-
chanical setting taking into account the microscopic temperature fluctuations within the micro-
mechanical problem. Even making use of classical thermodynamics and material behavior at
the microscopic level, it has been shown that this approach yields a macroscopic material be-
havior in which the stress state depends upon the temperature gradient. This is possible in
view of having considered an extended thermodynamics ruling at the macroscopic level, whose
ingredients are related to the microscopic scale in a fully closed form.

Almost as a corollary, it has been shown that there are just two basic ingredients in this
class of multiscale models: (i) the homogenization principles (temperature, temperature gradi-
ent and strain in the present problem) and (ii) the Hill-Mandel -variational- Principle of Macro-
homogeneity. From these two pillars, the characterization of dual variables (heat flux and stress
in the present problem), microscopic thermal and mechanical equilibrium problems and tangent
operators arises as a consequence of the virtual power principle bridging the two scales.
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ïż£

REFERENCES

Bensoussan A., Lions J., and Papanicolau G. Asymptotic analysis for periodic microstructures.
North Holland, Amsterdam, 1978.

Bitsadze L. and Jaiani G. Some basic boundary value problems of the plane thermoe-
lasticity with microtemperatures. Mathematical Methods in the Applied Sciences, doi:
10.1002/mma.2652, 2012.

Boutin C. Microstructural influence on heat conduction. International Journal of Heat and
Mass Transfer, 38:3181–3195, 1995.

Cardona J.M., Forest S., and Sievert R. Towards a theory of second grade thermoelasticity.
Extracta Mathematicae, 14:127–140, 1999.

Chen H., Liu Y., Zhao X., Lanir Y., and Kassab G. A micromechanics finite-strain constitutive
model of fibrous tissue. Journal of the Mechanics and Physics of Solids, 59:1823–1837,
2011.

de Souza Neto E. and Feijóo R. Variational Foundations of Large Strain Multiscale Solid Con-
stitutive Models: Kinematical Formulation. Advanced Computational Materials Modeling:
From Classical to Multi-Scale Techniques. Wiley-VCH Verlag GmbH & Co. KGaA, Wein-
heim, Germany, 2011.

Ene H. On linear thermoelasticity of composite materials. International Journal of Engineering
Science, 21(5):443–448, 1983.

Forest S. and Aifantis E. Some links between recent gradient thermo-elasto-plasticity theo-
ries and the thermomechanics of generalized continua. International Journal of Solids and
Structures, 47:3367–3376, 2010.

Forest S. and Amestoy M. Hypertemperature in thermoelastic solids. Comptes Rendus Mé-
canique, 336(4):347–353, 2008.

Forest S., Cardona J.M., and Sievert R. Thermoelasticity of second-grade continua. Continuum
Thermomechanics, The Art and Science of Modelling Material Behaviour, Paul Germain’s
Anniversary Volume. Kluwer Academic Publishers, 2000.

Francfort G. Homogenization and linear thermoelasticity. SIAM Journal on Mathematical
Analysis, 14(4):696–708, 1983.

Francfort G. and Suquet P. Homogenization and mechanical dissipation in thermoviscoelastic-
ity. Archive for Rational Mechanics and Analysis, 96(3):265–293, 1986.

Germain P., Nguyen Q., and Suquet P. Continuum thermodynamics. Journal of Applied Me-
chanics, Transactions of the ASME, 50(4):1010–1020, 1983.

Giusti S., Novotny A., de Souza Neto E., and Feijóo R. Sensitivity of the macroscopic thermal
conductivity tensor to topological microstructural changes. Computer Methods in Applied
Mechanics and Engineering, 198(5-8):727–739, 2009.

Grot R. Thermodynamics of a continuum with microstructure. International Journal of Engi-

S.M. GIUSTI, P.J. BLANCO1854

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



neering Science, 7:801–814, 1969.
Hill R. A self-consistent mechanics of composite materials. Journal of the Mechanics and

Physics of Solids, 13(4):213–222, 1965.
Iesan D.I. On the theory of heat conduction in micromorphic continua. International Journal

of Engineering Science, 40:1859–1878, 2002.
Iesan D.I. On a theory of thermoviscoelastic materials with voids. Journal of Elasticity, 104(1-

2):369–384, 2011.
Iesan D.I. and Nappa L. On the theory of heat for micromorphic bodies. International Journal

of Engineering Science, 43:17–32, 2005.
Iesan D.I. and Quintanilla R. On thermoelastic bodies with inner structure and microtempera-

tures. Journal of Mathematical Analysis and Applications, 354:12–23, 2009.
Ireman P. and Nguyen Q.S. Using the gradients of temperature and internal parameters in

continuum thermodynamics. Comptes Rendus Mécanique, 332(4):249–255, 2004.
Khisaeva Z. and Ostoja-Starzewski M. On the size of RVE in finite elasticity of random com-

posites. Journal of Elasticity, 85(2):153–173, 2006.
Mandel J. Plasticité classique et viscoplasticité. CISM Lecture Notes. Springer-Verlag, Udine,

1971.
Michel J., Moulinec H., and Suquet P. Effective properties of composite materials with periodic

microstructure: a computational approach. Computer Methods in Applied Mechanics and
Engineering, 172(1-4):109–143, 1999.

Miehe C., Schotte J., and Schröder J. Computational micro-macro transitions and overall mod-
uli in the analysis of polycrystals at large strains. Computational Materials Science, 16(1-
4):372–382, 1999.

Müller I. and Ruggeri T. Rational extended thermodynamics. Tracts in Natural Philosophy 37.
Springer-Verlag, Berlin, 1998.

Neff P. and Forest S. A geometrically exact micromorphic model for elastic metallic foams
accounting for affine microstructure. Modelling, existence of minimizers, identification of
moduli and computational results. Journal of Elasticity, 87(2-3):239–276, 2007.

Nguyen Q.S. On standard dissipative gradient models. Annals of Solid and Structural Mechan-
ics, 1:79–86, 2010.

Nguyen Q.S. and Andrieux S. The non-local generalized standard approach: a consistent gra-
dient theory. Comptes Rendus MÃl’canique, 333(2):139–145, 2005.

Özdemir I., Brekelmans W., and Geers M. Computational homogenization for heat conduc-
tion in heterogeneous solids. International Journal for Numerical Methods in Engineering,
73(2):185–204, 2008.

Peric D., de Souza Neto E., Feijóo R., Partovi M., and Molina A.C. On micro-to-macro transi-
tions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis
and finite element implementation. International Journal for Numerical Methods in Engi-
neering, 87:149–170, 2011.

Riha P. On the microcontinuum model of heat conduction in materials with inner structure.
International Journal of Engineering Science, 14:529–535, 1976.

Sanchez-Palencia E. Non-homogeneous media and vibration theory, volume 127 of Lecture
Notes in Physics 127. Springer-Verlag, Berlin, 1980.

Sanchez-Palencia E. Homogenization method for the study of composite media, volume 985 of
Asymptotic Analysis II - Surveys and New Trends, Lecture Notes in Mathematics 985, pages
192–214. Springer-Verlag, Berlin, 1983.
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