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Abstract. In this paper an extension of a large strain elastoplastiostdutive model based on
hyperelasticity and multiplicative decomposition of defation gradient tensor due to Gdec
Garino is extended to viscous case following a previous wbRonthot based on Perzyna type
model. The integration of constitutive model is based onerigal scheme originally designed
for the elastoplastic problem that naturally includes tlater dependent case. Consequently
the algorithm proposed by Ponthot for viscoplasticity isiBataken into account in the frame-
work of hyperelasticity and irreversible thermodynamié¢salids. For the case of metals, a
unified stress update algorithms for elastoplastic andtelasscoplastic constitutive equations
submitted to large deformations is obtained. The plastizemtor step is, in case of J2 flow
theory material behavior, an extension to the viscoplastimye of the classical radial return
algorithm for plasticity. The resulting unified implicitgdrithm is both efficient and very in-
expensive. Moreover, if there is no viscosity effect (rateependent material) the presented
algorithm degenerates exactly into the classical radialira algorithm for plasticity.
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1 INTRODUCTION

This paper presents preliminary results of a large stracoplastic model based on hyperelas-
ticity. The large strain model structure is taken from poess work of Garcia Garinb;2 derived

in the context of the ideas of Simo and OttfAor the rate independent case. Viscoplastic case,
based on Perzyna type model, comes from a work of Pohthlaére a unified algorithm for
elasto/viscoplastic problems has been proposed.

The kinematics of the resultant constitutive model is basethe multiplicative decomposi-
tion of deformation gradient tens®iStresses can be derived from a hyperelastic potential and
the model is written in the framework of internal variablbedry and thermodynamics of irre-
versible solid$. The stress update algorithm proposed by Ponthot treatdabmaviscoplastic
problem in a unified way. For a J2-flow material model, it is@m@e generalization to rate-
dependent problems of the radial return algorithm for natlependent plasticity, including a
generalized consistency condition.

The classicatlasticpredictor -plasticcorrector split problem is used in order to derive nu-
merical scheme of the model. In this way a fully implicit alglom is designed. The resultant
update algorithm is written in terms of kinematics quaesiinstead of the usual one defined for
the stress tensor. In the work it is shown that the unified@hascoplastic stress update pro-
posed by Ponthéis naturally included in the (previous) numerical struetaf rate independent
case, as regards the update be rewritten in terms of kinenatables.

A complete review of the state of the art is not included ih®goals of this prelimary work.
A comprehensive account of the problem can be found in thbaeks of Lublinef® for the
fundamentals, and Ottosen and Ristinfidmth for theory and numerical discussion.

In order to integrate in time the ODE resulting from this kimfdoroblems many algorithms
can be developed. The attributes that one strives for argaxy; reliability, efficiency and ease
of computer implementation. The radial return algoritheganted by Wilkins and Maenchen
and Sack satisfies all of these attributes. Subsequently develojgeditims have been shown
to fall short of Wilkins’ method with respect to both simpticand accuracy, see e.g. Krieg and
Krieg,'® Yoder and Whirley* and Ortiz and Popdv in a small strain framework.

Consequently, radial return is now extensively used in #hgiment codes for large-scale
computations of elastoplastic behavior, see e.g. ¥&{Hallquist®*?' Hughes?? Simo, Ortiz
and Taylof*-?’among many others.

This integration scheme is both inexpensive and accurateaddlition, it allows to write
down a closed-form expression for the so-called consigtiastoplastic tangent modulus. Use
of this consistent modulus (and not the continuum modulusie establishment of the global
tangent stiffness matrix is essential in preserving thelratac rate of convergence in Newton’s
procedure required by implicit algorithms.

However, regarding elastic-viscoplastic modeling of maté&ehaviour, the situation is com-
pletely different. Atthe presenttime, many different aifums have been developed in order to
integrate elastic-viscoplastic equations, see e.g. Haughe Taylof® , Suliciu?® Pan° Rubin??
Bruhns and Rot#? or Golinvaf® for a valuable discussion. However, none of them actuaHy ex
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hibits the same level of performance as the radial returoréilgn for plasticity. Moreover,
none of the schemes described in Golid¥& amenable to consistent linearization. This fact
is highly penalizing and precludes an efficient treatmenisdoplastic problems in large-scale
finite element or finite difference codes.

In recent works Carosio and coauthidr® have discussed the problem in the context of con-
tiuum and consistent viscoplasticity and Alfano et®apresented general solucion procdedures
in elasto/viscoplasticity.

In some works rate dependent Perzyna models are discusthedframework of large strain
models: Wang and Sluyshave proposed an incremental model for the elastic probtehitee
integration of the problem is carried out using a midpoiréruiPonthot has proposed model
based on hypoelasticty for the elastic problem and visabipl&ffects are integrated with a
unified (plastic/viscoplastic) stress update proceduimo® has discussed the problem for a
Duvaut-Lyons model type.

The discussed integration scheme proposed in this workiisibexpensive and accurate. In
addition, it allows to write down a closed-form expressionthe so-called consistent elasto-
plastic tangent modulus. Use of this consistent modulud (et the continuum modulus) for
the establishment of the global tangent stiffness matresgential in preserving the quadratic
rate of convergence in Newton’s procedure required by ioit@lgorithms3®

Therefore, it exhibits all its (good) properties, inclugliaccuracy, stability and existence of
a consistent tangent operator. The fact that the integratiocedure is based on a fully implicit
backward Euler algorithms also avoids the need to definestantaneous relaxation time, as is
the case in the procedure proposed by Simo and &ffiMoreover the algorithm is unified in
the sense that the same routines are able to integrate last-glastic and elasto-viscoplastic
models. The former case is simply obtained by setting theogisy parameter to zero.

2 LARGE STRAIN ELASTOPLASTIC MODEL

In this point the proposed constitutive model is briefly preed. The elastoplastic constitutive
model3 can be written in the three different configurations. Howewe the purpose of this
work it is enough to present the results for the current conéigion. First main results of kine-
matics problem are given followed by a summary of constiuéiquations. Finally a particular
case of metals is discussed.

2.1 Kinematics

The kinematics of the problem is based on the very well knowttiplicative decompaosition
of deformation gradient tensd in its elastic and plastic componefitas is it shown in equa-
tion 1. In figure 1 original and deformed configuratitia and®(), respectively as well as the
intermediate configuratioif¢ can be seen.

F = F°F? Q)

Almansi strain tensar and its elastic and plastic componemtsande?, respectively, are the
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Figure 1: Kinematics of large strain elastoplastic soliohfigurations

variables used in the constitutive model. The Almansi stimidefined in equation 2 terms of
spatial metric tensay and Fingertensdr ' = F~7 F~!

e=1lg — b7 @

The elastic component of Almansi strain tensor is definedjuagon 3 in terms of of spatial
metric tensoy and elastic component of Finger tengor' = F¢~ 7 Fe*

1

e’ = 5(9 — b7 (3

The rate of deformation tensdris obtained computing the Lie derivative*! of Almansi
strain tensor, and admits an additive decomposition itlastie and plastic compenentds=
d° +d.

2.2 Constitutive Model

In this section the equations that define the model in theeaticonfiguration are presented.

e=e°+é€ 4)
d=d°+d" (5)
Ope(es, b
o= 9ec (6)
>0 f<0 7 f= (7)
o (‘)g
P _~
&= do (®)
D’ =1:d" +p: a>0 (9)

444



Jean-Philippe Ponthot], Carlos Garc’ia Garinof and Anibal Mirasso

whereo denotes Cauchy stress tensgt(ec, b ') is the elastic free energy, andg accounts

for yield criteria and plastic potential, respectivelydanis the plastic multiplier. Plastic dissi-
pation is denoted b? anda andp are a proper set of internal variables and their conjugate
thermodynamical forces.

2.3 Constitutive Model for Metals

For the case of metals under large strains, the elastiosteae negligible. In this case the
tensorF* approches to the Identity. Consequently te$of tends to the spatial metric tensor
g. In this case the distinction between intermediate anceaticonfigurations have no meaning
and elastic strains are small. Then it is possible to wrigestlastic componenent of free energy
function as a quadratic function of elastic component of &hsi strain tensas® and material
constants\ andy as it is shown in equation 10.

v = %)\tr(ee)Q bop(e e (10)

From equation (6) the Cauchy stress tensor results:

o=Atr(e)1 + 2 e’ (1)
This model has been used previously by the authdes an alternative to the neohookean
models proposed by another authtfs.
Plasticity is taken into account by means of an associativerflile f = g. The yield function
is the very well known Von Mises or J2 model given in equati@n 1

flo,0y) =6 —0,=0 (12)

wheres = /25 : s denotes equivalent stressjs the deviatoric stress tensor anglis the
current yield stress.
Flow rule can be written now in terms of yield criterfa
p S _ _ Sij
d’=7 n where n;;j N (13)
where(n : n = 1) is the unit outward normal to the yield surface and plastidtiplier v can
be computed from the Kuhn Tucker conditions given in equefi).

The hardening law relates yield stregsand the rate of the effective plastic strairdefined

aser — \/ 2 d” : d” as shown in equation (14).
° o 2 °
oyzhgpz\@hv (14)

andh is a material parameter that corresponds to the slope offfibetiee stress vs. effective
plastic strain curve under uniaxial loading conditionspatnown as hardening module in the
case linear hardening.
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3 LARGE STRAIN VISCOPLASTIC MODEL

In this section viscoplastic problem is presented and ttexal details are derived with empha-
sis in flow rule and consistency condition. Main results as&bplastic kinematics are still valid
taking into account that inelastic variables in this casedbe the rate dependent case.

e=e"+e”? (15)
d=d +d”’ (16)
17)

wheree’” andd" are viscous counterpart of plastic components of Aimanairstensoe? and
rate of deformation tensa¥ respectively.

Given the uncoupled format chosen for free energy functi®elastic component remains
unchanged in this case. Then Cauchy stress are compute@fuaations 6 and 10.

Contrary to the case of rate independent plasticity, theceffe stress is no longer con-
strained to remain less or equal to the yield stress but onéhaaec > o, . Therefore we
define theoverstressl as

d={0—0y) (18)

where(z) denotes the Mac Auley brackets defined(by = 1/2(z + |z|). Clearly, an inelastic
process can only take place if, and only if, the overstidasgositive, consequently > 0.

For example, classical viscoplastic models of the Perzype't*® may be considered as
penalty regularization of rate-independent plasticityeventhe consistency parameter has been

o replaced by an increasing function of the overstress e.g.

o VP 3/ 0—o, "
T= \@<n(€”p)1/"> (9)

wherey"? accounts foriscoplastic multipliern is a hardening exponent; is a rate sensitivity
parametere’? is the equivalent viscoplastic flow amds a viscosity parameter.
In that case, the evolution equations are still of the form

d? = 7 n (20)
2

€ = /31 or d=her (21)

which are quite similar to the rate-independent case gneaguations 13 and 14.
Combining equations (19), (20) and (21) gives:

/2 47 A7 = \[ 3 <Jw_p?/’n> (22)

so that, in the viscoplastic range, a new constraint is define
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f=0-0,—n@E)" e =0 (23)

This criterion is ayeneralization of the classical von-Mises criteripia- 0 for rate-dependent
materials The latter can simply be recovered by imposing: 0 (no viscosity effect), result
that has been pointed out in the literature by another asitAgf 3’

REMARKS

1. The key point feature of the stress update algorithm dé®mthof is the viscoplastic
generalization of the classical Von Mises criterion giverdq. (23), that follows from
the introduction of the viscoplastic parameter given in(@§).

2. Thisviscoplastiaconstraint is sometimes callelgnamic yield surfacé 42

3. Sima® pointed out that viscosity plays the role of penalty multiplierin eq. (23), then
viscoplasticy can be considered as a regularization ofagéesticity. Consequently
rate independent casg £ 0) and (nonlinear) elastic casg € ~o) are recovered as
limite cases.

In the elastic regime, botfiand f are equivalent since, in that case

& =0 and o <o, (24)

so that one has, similarly to plasticity B
f<0 (25)

Moreover, from relation (19), it can be noted, that as viggosgoes to zero (rate-independent
case), the consistency paramet&t remains finite and positive (though indeterminate) since
o — o, also goes to zero. The extended criterion (23) will play aieduole in the integration
algorithm described hereatfter. It also allows a generatinaf the Kuhn-Tucker which, in the
visco-plastic case, can be extended to the following form:

o Up o Up

7 f=0, 7 >0, f<0 (26)
4 NUMERICAL SCHEME

In this section the numerical scheme necessary to impletherdiscussed theoretical model
in a finite element code is derived. This scheme is based omrdigbor, elastic corrector
easto/viscoplastiapproach. First the elastic problem and plastic (rate ieddent) problems,
derived in previous works of Garcia Garihdare presented in sections 4.1 and 4.2 respectively.
Then numerical algorithm due to Pothot for viscoplasti@tgiscussed and recasted in terms of
kinematics variables in section 4.3 in order to discussélsaltant integration scheme.
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4.1 Elastic Problem

In this problem the plastic quantities remain frozéht2'FP™" — tFP). The trial glastiQ
component of the deformation gradient tensor results:

t+AtFeTR _ t+AtF (t+AtFpTR)71 — f tF (tFp)fl — f tFe (27)

wheref is the incremental deformation gradient tensor. The ptedi@lue of the elastic Finger
tensor 2t s

t+Atbe—1TR _ (t+AtFe—T t+AL pe—1 )TR _ ffT the—1 ffl (28)

Finally, the trial stresses’” are computed from egn 28 in terms of the predictor value of
elastic Aimansi straifi"2e*# = 1(**5g — et Ty
It is important to note that the elastic problem is reduceth® computation of a closed

expression. In this way numerical integration of rate eiquat typical of hypoelastic models
and usually very expensives, is completely avoided.
4.2 Plastic Problem

In this problem the current configuration remains fixed amdmiternal variables are updated in
order to satisfy the constitutive law. For this problem Sirhas proposed to integrate the flow
rule in the original configuration:

P

C =2 ¢d=2)\é¢n=2\N (29)
whereC? is the plastic component of right Cauchy Green tensorg@ndienotes the pull-back
operatort?

Equation 29 is integrated using a Backward-Euler scheme:

AP —CP = 2 NN (30)
where) accounts for the numerical counterpart of plastic muMpﬁ. Pushing eq (6) forward
the spatial configuration, the updated Finger tensor isdoun

t+Atpe—1 _ t+AtbeflTR 49 ) tHA, (31)

The factor2 \ +2'n is computed by mean of the radial return algorithm.

4.3 Viscoplastic Problem

Viscoplastic counterpart of rate independent problemepresl in previous section can be writ-

o Up

ten in terms of viscoplastic component of right Cauchy GresorC' . Numerical plastic
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multiplier has been denoted? for this problem.

o UP

C —2¢d=2 % dn=2 N (32)
Following the same steps of plastic corrector the updated fensor is computed:
t+Atbefl _ t+AtbeflTR +2 AP t+Atn (33)

From equations (31) and (33) follows that both updates @netidal with exception of plastic
multipliers A and viscoplastic multipliers”?. Consequently the structure of numerical problem
is preserved and rate dependent case is naturally encostpass particular case of corrector
step.

From equation (3 the elastic component of Almansi strairsaemesults in terms of the
viscoplastic update of elastic Finger tensor given in equdingervp:

1 1
t+At e _ I _
e =5y 5 (9

t+Atbe—1TR — 9\ t+At,\ _ t+At TR AP t+At

n
(34)
Taking into account equation (11), the viscoplastic cdroacof elastic component of Al-
mansi strain tensor given in equation (34) is written in teohCauchy stress tensor as:

t+Atbe —1) n) e

t+At0. — t+Ata.TR — 9\ m t+Atn (35)

that is the result shown in equation (51), section 6.3 in tbekvof Ponthot, after integration
over the time intervalt, ¢ + At], with initial conditions given bye, ‘é’? and‘s,.

In order to compute the viscoplastic multipli#t? an integration procedure very similar
to the radial return method of plasticity, proposed by Potitis used. The tensdrn is
approximated by:

t+AtsTR
A = (36)
\/t+AtgTR .« t+AtgTR
so that the final values are given by
t+At v _ t=w 2 v
P = 'eP 4 gAp (37)
. t+At€Up _ tgup
Zup - = 38
€ A7 (38)
where the (unknown) scalar parameiér stands for
t+At .
AP = / A\ dt (39)
t
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REMARK: It is important to point out that the first order apgrmation introduced in eq.
(38) is fully consistent with the approximation introdudackq. (30).

The \"? parameter is simply determined by the enforcement ofjghveeralized consistency
condition f = 0, attimet =t + At, i.e.

For) = ¢ (87— 2u \rm : ST~ 2u \wm] — 3, ()

2 1 2P .
— eop AP - m =
n (& +\/;A ) (\/;At) 0 (40)

where!*2tg, is a given function of*? and consequently a given function o .
The scalar equation (40) is a nonlinear expression wherertlyeunknown parameter is’?.
It can be easily solved by a local Newton-Raphson iterafiothe particular case where= oo
(no multiplicative hardening);» = 1 (linear dependence between overstress and viscoplastic
rate of deformation), ankl = constant (linear hardening) a closed form solution of thisegion
is given by

1 \/sTR . gTR _ \/gtay
vp _
2u 145 (h+ )
so that it is now obvious that the present algorithm is a gdization to the rate-dependent
case of the classical radial return algorithm. This one &c#y recovered (with no numerical
difficulty) by settingn = 0 (no viscosity effect). In the viscous case, one can see leatate-

dependent solution (41) is equivalent to rate-independelution with a fictitious hardening
given byh* = h + n/At.

(41)

5 CONCLUSIONS

Preliminary results of a large strain viscoplastic modelehbeen presented. Both theoretical
constitutive model and numerical implementation have leherussed.

The structure of elastoplastic model based on hypereitystied internal variables theory is
mantained and viscoplastic problem is easily taken intoactdue the uncoupled structure of
free energy function.

Consequently the structure of the numerical scheme is@sahe elastic problem remains
with no changes and viscoplastic corrector step ecompas®istructure of plastic corrector
when stress update algorithm is recasted in terms of kinesnaériables. In this way the
numerical format of the problem naturally includes visaspicity.

The stress update procedure is easily solved after a localimear iterations at integration
point level for the general case and various closed formsesigns are derived for different
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particular cases. The discussed procedure recover thiésresuadial return algorithm for the
inviscid case.

Consequently all the advantages that can be obtained frdiad raturn method like simplic-
ity, robustness and computational efficiency are mantained

The numerical scheme admits a consistent tangent opehatowill be presented in next
works together with numerical applications.
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