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Abstract. The present paper deals with the free transverse vibration of a tapered anisotropic plate 

with several arbitrarily located internal line hinges and non-smooth boundary, elastically restrained 

against rotation and translation. 

The equations of motion and its associated boundary and transition conditions are rigorously derived 

using Hamilton’s principle. The governing eigenvalue problem is solved employing a combination of 

the Ritz method and the Lagrange multipliers method.  

The deflections of the plate and the Lagrange multipliers are approximated by polynomials as 

coordinate functions. The developed algorithm allows obtaining approximate solutions for plates with 

different geometries and boundary conditions, including edges and line hinges elastically restrained. 

In order to obtain an indication of the accuracy of the developed mathematical model, some cases 

available in the literature are considered. New results are presented for different boundary conditions 

and restraint conditions in the internal line hinges. 
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1 INTRODUCTION 

Substantial literature has been devoted to the formulation, by means of the calculus of 

variations of boundary value problems of mathematical physics (Courant and Hilbert, 1953; 

Guelfand and Fomin, 1963; Kantorovich and Krylov, 1964; Mikhlin, 1964; Sagan, 1969; 

Bliss, 1971; Weinstock, 1974; Ewing, 1985; Leitmann, 1986; Brechtken-Manderscheid, 1991; 

Blanchard and Brüning, 1992; Giaquinta and Hildebrandt, 1996; Troutman, 1996). Several 

books treated the study of isotropic and anisotropic plates including the determination of 

static, buckling and vibrations characteristics (Dym and Shames, 1973; Szilard, 1974; 

Timoshenko and Krieger, 1959; Lekhnitskii, 1968; Whitney, 1987; Reddy, 1997; Jones, 1999; 

Grossi, 2010). It is not the intention to review the literature consequently; only some of the 

published papers related to the present work will be cited. A great number of articles treated 

the dynamical behavior of plates with complicating effects such as: elastically restrained 

boundaries, presence of elastically or rigidly connected masses, variable thickness, anisotropic 

material, points and lines supports, presence of holes, etc. A review of the literature has shown 

that there is only a limited amount of information for the vibration of plates with line hinges. 

A line hinge in a plate can be used to facilitate folding of gates and to simulate a through 

crack along the interior of the plate, among other applications. Wang et al. (2001) studied the 

vibration of plates with an internal line hinge by using the Ritz method. Gupta and Reddy 

(2002) presented the exact buckling loads and vibration frequencies of orthotropic rectangular 

plates with an internal line hinge by employing an analytical method which applies the Levy 

solution and the domain decomposition technique. Xiang and Reddy (2003) provided the first-

known solutions based on the first order shear deformation theory for vibration of rectangular 

plates with an internal line hinge. The Lévy method and the state-space technique were 

employed to solve the vibration problem. Huang et al. (2009) developed a discrete method for 

analyzing the free vibration problem of thin and moderately thick rectangular plates with a 

line hinge and various classical boundary conditions. Quintana and Grossi (2012) dealt with 

the study of free transverse vibrations of rectangular plates with an internal line hinge and 

elastically restrained boundaries. The governing eigenvalue equation was solved employing a 

combination of the Ritz method and the Lagrange multiplier method. All of these studies have 

considered rectangular plates with only one free internal line hinge. However, there is no 

previous study for the vibration of anisotropic plates with generally restrained piecewise-

smooth boundaries and with several internal lines hinges elastically restrained against rotation 

and translation. 

Engineers and applied mathematicians increasingly used the techniques of calculus of 

variations to solve a large number of problems and in this discipline the “operator”   has been 

assigned special properties and handled using heuristic procedures. Commonly the domain of 

definition of a functional and the space of admissible directions of the variation of this 

functional are not clearly stated, thus most of the analytical manipulations are confusing and 

not mathematically precise. Grossi (2012) formulated an analytical model for the dynamic 

behaviour of anisotropic plates, with an arbitrarily located internal line hinge with elastics 

supports and piecewise-smooth boundaries elastically restrained against rotation and 

translation among other complicating effects. By introducing an adequate change of variables, 

the energies which correspond to the different elastic restraints, are handled in a rigorous 

framework. In the same manner in the present paper the application of the Hamilton’s 

principle is used for the derivation of equations of motion and its associated boundary and 
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transition conditions for anisotropic plates with several arbitrarily located internal lines hinges 

with elastics supports and piecewise smooth boundaries elastically restrained against rotation 

and translation. Also a methodology based on a combination of the Ritz method and the 

Lagrange multipliers method with polynomials as coordinate functions is used to investigate 

the natural frequencies and mode shapes.  To demonstrate the validity and efficiency of the 

proposed algorithm, results of a convergence study are included, several numerical examples 

not previously treated are presented and some particular cases are compared with results 

presented by other authors. Tables and figures are given for frequencies, and two-dimensional 

plots for mode shapes are included.  

  The complicating effects such as: elastically restrained piecewise smooth boundary, 

variable thickness, anisotropic material and several internal lines hinges lead to complicated 

analytical expressions and tedious algebraic manipulations. For this reason, in this paper a 

new analytical manipulation based on a condensed notation is used. The compact analytical 

expressions substantially lower the analytical effort and the amount of information. 

2 THE ENERGY FUNCTIONAL 

Let us consider an anisotropic plate that in the equilibrium position covers the two-

dimensional domain ,G  with piecewise smooth boundary G  elastically restrained against 

rotation and translation. The plate has 1N   intermediate lines hinges elastically restrained 

against rotation and translation, as it is shown in Figure 1 In order to analyze the transverse 

displacements of the system under study we suppose that the vertical position of the plate at 

any time ,t  is described by the function ( , ),w w x t  where 
1 2

( , ) ,x x x G G G G     

and that the domain G  is divided by the lines 
( ), 1,2, , 1,kc k N    into N  parts ( )kG  with 

boundaries ( )kG , (see Figure 1). Different rigidities 
 ( )
k

lm
D x  and mass density 

( ) ( ) ( )( ) ( ) ( ) ( )k k kh x x h x   of the anisotropic material correspond to each sub-domain ( ).kG  

The extreme points 
k
a  and 

k
b  of the lines 

( )kc  divide the boundary curve G  such that (see 

Figure 2): 

 (1) (2) ( ). NG      (1) 

and  

 1( ) ( )( ) ( ) , 1,2, ,k kc ck kG k N        (2) 

where  0( ) ,c    
( )Nc    and 

 ( ) ( ,1) ( ,2), 2,3, , 1.k k k k N       (3) 

Let us assume that the boundary curve G  is described by a smooth path   in 2  defined 

in the compact interval 0, ,l     where ( )l l G   is the length of the path .  The image of 0,l     

under   (the graph of  ) is the boundary curve G  and will be denoted by ( ).im    
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Figure 1: Mechanical system under study. 

 

Figure 2: Domains and boundaries. 

We also assume that the curves ( )k  are described respectively by the smooth paths: 
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      
      

( ,1) ( ,1) ( ,1) ( ,1)

1 2( ) ( ) 2

( ,2) ( ,2) ( ,2) ( ,2)

1 2

, , 0, ,
: 0, ;

, , 0, ,

k k k k

k k

k k k k

s s s s l
l

s s s s l

  


  

                    

  (4) 

where: 1,2, , ,k N   (1,2) ( ,2)( ) 0, ( ) 0.Ns s    From Eq. (3) and Eq. (4) it follows that 
( , )k i  describes the arc ( , ).k i  In Eq. (4) s  denotes the arc length measured from the point 

1 1
( , )
k k
c a

 
 of the curve ( ,1)k  and from the point ( , )

k k
c b  of the curve ( ,2),k  ( , ) ( , )( )k i k il l   is 

the length of the path ( , )k i  and ( 1,1) ( 1,1) ( ,2)

1 2 2
( ), (0).k k k

k k
a l b  


   

The path which describes the boundary G  can be expressed as: 

  

 
 

 
 
 

 

(1,1) (1,1)

(2,1) (1,1) (1,1) (1,1) (2,1)

( 1,1)

2 2 1
( ,1)

1 1
( 1,2)

1

(2,2)

3

 if 0, ,

 if , ,

 if , ,

 if , ,

 if , ,

 if 

N

N N N
N

N N N
N

N N N

N N

s s l

s l s l l l

s A s A A
s

s A s A A

s A s A A B

s A B















  

 




    
     

     
     
     

 





3 2
, ,

N N N N
s A B A B

 

        

 (5) 

where s  denotes the arc length measured from the point 
1 1

( , )c b  of the curve G  and 

  ( ,1) ( ,2) ( ,1) ( ,2) (1,2) ( ,2)

1 1 1

, , , 0.
j j N

i N i i i N

j j
i i i

A l B l l l l l l

  

         (6) 

It is well known  that if : ( ) ,f im     is a continuous function defined on the image   

of a piecewise smooth path 2: , ,c d        the curvilinear integral of f  along   is given by: 

    1 2
, ( ) ( ) ,

d

c
f x x ds f r r dr 


    (7) 

where     ( )f r f r   and the norm ( )r   is given by  
1/2

2 2

1 2
( ) ( ) .r r    In the 

case of a real continuous function f  defined on the image of the path   (given by Eq.(5), i.e. 

the boundary curve ,  the definition of Eq.(7) when s  is taken as the parameter ,r  leads to:  

      1 2 0 0
, ( ) ( ) ( ) ,

l l

G
f x x ds f s s ds f s ds  


      (8) 

and  

    
( , )

2

1 2 1 2
1 1

, , .
k i

N

G
i k

f x x ds f x x ds
 

 

   (9) 

The additive property of Eq. (9) will prove be valuable in the definitions of functions and 

functionals over ,  since they can be set up independently in each ( )k  and by using Eq.(4). 

Thus, we assume that the rotational rigidities of the elastic restrains along the boundary are 
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given by the functions:  

 ( , ) ( , ): ( ) ,k i k i

R
r im     1,2, , , 1,2,k N i  ( ) ( ): ( ) ,k kc c

R
r im     (10) 

where 
( )kc  is the path which describes the line 

( ).kc  In the same manner the translational 

rigidities are given by the functions:  

 
( , ) ( , ): ( ) , 1,2, , , 1,2,   k i k i

T
r im k N i  

( ) ( ): ( ) .k kc c

T
r im     (11) 

It is obvious that (1,2) ( ,2) (1,2)0, 0, 0N

R R T
r r r    and ( ,2) 0.N

T
r   

In order to obtain a compact analytical scheme for the derivation of the boundary value 

problem which describes the dynamical behaviour of the mechanical system, we consider the 

following new procedure for the manipulation of derivatives introduced in Grossi (2011). 

Consider the well-known notation 

  
 

1 2 3

1 2 3

,
u x

D u x
x x x





  




  
 (12) 

where : ,u A    ,u C A


  
3A   and  1 2 3

, , .x x x x  The vector  1 2 3
, ,     

is a multi-index whose co-ordinates are non-negative integers and ,  is the sum 

3

1

.
i

i

 


  Now, introduce the following multi-indices:  

 
       
 

(1) (2) (3) (4)

( )

1 2 3

2,0,0 , 0,2,0 , 1,1,0 , 0,0,2 ,

, , , 1,2,3,i

i i i
i

   

  

   

 1
 (13) 

where 
ji
  is the Kronecker delta, 1

ji
   if j i  and 0

ji
   if .j i   

Consider a sufficiently smooth function : ,v A   defined on 0,A G T       for some 

fixed time 0,T   with  1 2 3
, , ,x x x G x t   2.G    The use of Eq.(12) and Eq.(13) 

leads to 

 

       

       

   

( ) ( )

(3) (3)

(4)

2

2

2

1 2
2

2

, , , , , , 1,2,

, , , , , ,

, , .

i i

i i

v v
D v x t x t D v x t x t i

x x

v v
D v x t x t D v x t x t

x x t

v
D v x t x t

t







 
  

 
 

 
  





1

1  (14) 

The multi-indices of Eq. (13) verify the following algebraic rules, (Grossi, 2011): 

  ( ) ( ) ( ) (3 ) ( ) (3) (3) (3) (4), , 1,2 , .i i i i i i         1 1 1 1 1 1  (15) 

Let us consider the following notation:  nC S  denotes the set of all real functions 

:u G    that have continuous partial derivatives of orders n  and  nC S  denotes the set 
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of all  nu C S  for which all partial derivatives of order n  can be extended continuously to 

the closure S  of .S  A essential step to compact analytical expressions, is the derivation of 

formulae needed to transform the terms which involves derivatives of variations. Let us 

suppose that 

 
   

   

( ) ( ) 2

( ) ( )

: , : , 0, , , , , ( ),

: , 1,2 , 1,2, , .

       
   

   

 

k k

i i
k k

i

S A v A A G T S t v t C G

n i k N
 (16) 

Then, the following formulas are valid: 

 
          
           

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

, , , ,

, , , , ,

i i

k k

i i

k

k k k

i i iG G

k k k

i i iG

S x t D v x t dx S x t D v x t n x

D S x t v x t n x D S x t v x t dx







 
 

 


1

1
 (17) 

 

   

      
            

(3)

( )

(3 )

( )

( ) (3)

( )

( )

2
( ) ( )

1

( ) ( ) ( )

3

, ,

1
, ,

2

, , , , ,

k

i

k

i

k

k

iG

k k

i iG
i

k k k

i i iG

S x t D v x t dx

S x t D v x t n x

D S x t v x t n x ds D S x t v x t dx












 
 


 



1

1

 (18) 

where ( )k

i
n  denotes the i  th component of the outward unit normal ( )kn


 to the boundary 

( ).k  The demonstrations of Eq. (17) and Eq. (18) are a direct consequence of the 

proposition 2 of Grossi (2011).  

Hamilton´s principle requires that between times 
0
t  and 

1
,t  at which the positions of the 

mechanical system are known, it should execute a motion which makes stationary the 

functional  1

0

( ) ,
t

K Dt
F w E E dt   on the space of admissible functions. From the well 

known expressions of the kinetic and potential energies of the mechanical system under study, 

it follows that the energy functional is given by 

 

   1

( )
0

22 2
( ) ( )

11 2
1 1

2
2 2 2 2 2 2

( ) ( ) ( ) ( )

12 22 16 262 2 2 2 2
1 21 2 2 1 2

6

1

2

2 4

4

k

Nt k k

t G
k

k k k k

w w
F w h C

t x

w w w w w w
C C C C

x xx x x x x

C




                             

                            



 

( , )

2
2

( ) ( )

6

1 2

2
2

( , ) 2 ( , )

( )
1

2

,
k i

k k

k i k i

T R hk
i

w
q w dx

x x

w
r w r ds E dt

n


              

                          
 

 (19) 
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where:  , ,w w x t  
     k k

lm lm
C C x  are the rigidities of the anisotropic material 

(Lekhnitskii, 1968), ( )/ kw n 


 is the directional derivative of w  with respect to the outward 

normal unit vector ( )kn


 to the curve ( ),k  

  ( )

21
( ) ( )2

1
1

/k k

ck
k

N
c c

h T R c
k

E r w r w x ds





              
  (20) 

and the symbol 
1

/ ,
kc

w x      denotes the difference of lateral derivatives 

    2 2

1 1 1

, , , , .

k

k k

c

w w w
c x t c x t

x x x
 

           
 (21) 

The definition of the variation of F  at w  in the direction ,v  is given by 

    
0

; ,
dF

F w v w v
d



 




   (22) 

and the condition of stationary functional  requires that  

  ; 0,
a

F w v v D     (23) 

where 
a
D  is the space of admissible directions at w  for the domain D  of this functional. 

In order to make the mathematical developments required by the application of the techniques 

of the calculus of variations, we assume that:  

 
           
       ( )

( ) ( ) ( ) ( ) ( ) 2 ( ) 2

0 1

4 ( ) ( ) ( ) ( )

, , , , , , ,

, , , , , 1,2, , ,

       
     

 

  
k

k k k k k k

lm

k k k k

G

h C G q t C G E C G w x C t t

w t C G w t C G G G G k N


 (24) 

It must be noted that as a consequence of the presence of the lines hinges, the derivative 

1
/w x   and the corresponding derivatives of greater order, do not necessarily exist in the 

domain ,G  so it is necessary to impose the conditions    ( )

4 ( ), , 1,2, , .
k

k

G
w t C G k N     

In view of all these observations and since Hamilton’s principle requires that at times 
0
t  

and 
1
t  the positions are known, the space D  is given by 

 
         

    prescribed

( )

2 4 ( )

0 1

0 1

; , , , , , , ,

1, , , , , , .

k

k

G
D w w x C t t w t C G w t C G

k N w x t w x t

      


  


 (25) 

The only admissible directions v  at w D  are those for which w v D   for all 

sufficiently small   and  ;F w v  exists. In consequence, and in view of Eq. (25), v  is an 

admissible direction at w  for D  if, and only if, 
a

v D  where 
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         
    =

( )

2 4 ( )

0 1

0 1

; , , , , , , ,

1, ,2, , , 0, .

k

k

a G
D v v x C t t v t C G v t C G

i v x t v x t x G

      
   

  


 (26) 

3 RECTANGULAR ANISOTROPIC PLATES 

Considering a rectangular anisotropic plate with: 

   1 2 1 2
, ,0 ,0 ,G x x x a x b      (27) 

and three lines hinges parallel to the 
2
x  axis. 

Consequently the corresponding sub domains are given by: 

   ( )

1 2 1 1 2
, , ,0 , 1, ,4,i

i i
G x x c x c x b i


        (28) 

where 
0

0c   and 
4

.c a  

The curves ( )k  described by Eq. (3) in this case are given by: 

 

  
  
     
  
  

( ,1)

1 1 1 1

( ,2)

1 1 1

(1,1) (1,2)

1 1 1 1 2 2

(1,3)

1 1 1

(4,1) (4

3 1 1 3

, 0 , 0, , 2,3,

, , 0, , 2,3,

, , 0, , 0, , , 0, ,

, 0 , 0, ,

, 0 , 0, ,

k

k k k

k

k k k

c x x c c k

c x b x c c k

c x b x c b x b x b

x x c

c x x a c

 



        
        
                

      
           

  
,2)

2 2

(4,3)

1 1 3

, , 0, ,

, , 0, ,

a x x b

a x b x a c

     
       

 (29) 

where the following notation has been adopted: 

 (1) (1,1) (1,2) (1,3),      (30) 

and (see Figure 3) 

 (4) (4,1) (4,2) (4,3).      (31) 

It must be noted that the upper sides of the plate are given by (see Figure 3): 

           ( , ), , 1,1 , 2,2 , 3,2 , 4,3k j k j   (32) 

which correspond 
( ) ( )

1 2
0, 1,k kn n    meanwhile the lower sides of the plate are given by 

           , 1,3 , 2,1 , 3,1 , 4,1k j   (33) 

and 
( ) ( )

1 2
0, 1.k kn n     
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Figure 3: Rectangular plate with three internal lines hinges 

From the development of the Calculus of Variations of the energy functional the following 

relations are obtained: 

 
   
   

(1) (2)

( , )

(2) (1)

( , )

1 2 2

1 2 2

, , 0, , ,

, , 0, ,

k j

k j

D w x x t D w y t

D w x x t D w y t








1 1

1 1




 (34) 

when           , 1,1 , 2,2 , 3,2 , 4,3k j   and 

 
   
   

(1) (2)

( , )

(2) (1)

( , )

1 2 2

1 2 2

, , 0, , ,

, , 0, ,

k j

k j

D w x x t D w y t

D w x x t D w y t








1 1

1 1




 (35) 

when           , 1,3 , 2,1 , 3,1 , 4,1 .k j   Finally we have 

 

   
   
   
   

(1) (1)

(1,2)

(2) (2)

(1,2)

(1) (1)

(4,2)

(2) (2)

(4,2)

1 2 2

1 2 2

1 2 2

1 2 2

, , 0, , ,

, , 0, , ,

, , 0, , ,

, , 0, , .

D w x x t D w y t

D w x x t D w y t

D w x x t D w y t

D w x x t D w y t

















1 1

1 1

1 1

1 1









 (36) 

In analogue manner we have  

      (1)( , ) ( )

2 2 2 2
0, 0, , 0, , ,k j k

R
r y D w y t S y t1   (37) 

when           , 1,1 , 2,2 , 3,2 , 4,3k j   and 

      (1)( , ) ( )

2 2 2 2
0, 0, , 0, , ,k j k

R
r y D w y t S y t1   (38) 

1x

2x

(1)G (4)G

(2,2)

(2)G

(2,1)

 1 1,c b

1( ) c

 1 1,c a

(3)G

(1,2) 2( ) c 3( ) c (4,2)

 2 2,c a  3 3,c a

(3,1)

(3,2)

 2 2,c b  3 3,c b

(1,3) (4,1)

(1,1) (4,3)
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when           , 1,3 , 2,1 , 3,1 , 4,1 .k j    

where  

    ( )
3

( ) ( )

1

, ,
jk k

i ij
j

S A x D w x t



  (39) 

with the coefficients ( )k

ij
A  as elements of the symmetric matrix 

 

( ) ( ) ( )

11 12 16
( ) ( ) ( )

12 22 26
( ) ( ) ( )

16 26 66

2

2 .

2 2 4

k k k

k k k

k k k

C C C

C C C

C C C

          

A  (40) 

Finally for the remaining two sides we have: 

      (1)(1,2) (1)

2 2 1 2
0, 0, , 0, , ,

R
r y D w y t S y t1   (41) 

and  

      (1)(4,2) (4)

2 2 1 2
0, 0, , 0, , .

R
r y D w y t S y t1   (42) 

Let us consider the first of Eqs. (37). From Eq. (34) and the relations between the 

derivatives of order two lead to the following boundary condition: 

        (2) ( )

(1,1)

3
(1,1) (1)

1

, , .
j

R ij
j

r x D w x t A x D w x t

 

1  (43) 

From Eq. (40) it is immediate that Eq. (43) in the classical notation is given by: 

 

       

       

2
(1,1) (1)

1 2 1 2 12 1 2 1 22
2 1
2 2

(1) (1)

22 1 2 1 2 26 1 2 1 22
1 22

, , , , , ,

, , , 2 , , , ,

R

w w
r x x x x t C x x x x t

x x

w w
C x x x x t C x x x x t

x xx

 
 

 
 

 
 

 (44) 

and analog expressions correspond to the other sides. 

4 THE RITZ AND LAGRANGE MULTIPLIERS METHOD 

The transition conditions (45) obtained from the calculus of variations from the energy 

functional shown in Eq.(19), ensure the continuity of the transverse deflection along the 

internal lines hinges.  

 
     2 2 2 2, , , , , , , , ,

1,2, , 1.
k k k k kw c x t w c x t w c x t x a b

k N

       
 

 (45) 

Since it is difficult to construct a simple and adequate deflection function which can be 

applied to the entire plate, and to show the continuity of displacement and the discontinuities 

of the slope crossing the lines hinges, the Ritz method is used in conjunction with the 

Lagrange multiplier method to force the continuity along the lines hinges by means of a 

suitable Lagrange multipliers (Quintana and Grossi, 2012). When the plate makes free 
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vibrations, the displacements of the plate are given by harmonic functions of the time, i.e. 

    ( ) ( ), , , cos , 1,2, , ,k kw x y t W x y t k N    (46) 

where   is the radian frequency of the plate. Substituting Eq. (46) into Eq. (19)  

the Lagrange multipliers method requires the stationarity of the functional  

 
max

,
G
I F R   (47) 

where R  is the subsidiary condition which imposes the transition conditions shown in 

Eq.(45). In the present paper the transverse deflections for rectangular plates are represented 

by means of  

 
     ( ) ( ) ( ) ( )

1 2 1 2
1 1

1 1 2 2

, , 1,2,

/ , / ,

k km n
k k k k

ij i j
i j

W x x a p x q x k

x x a x x b
 

 

 

  (48) 

where a  and b  are the side lengths of the plate, ( ) ( ),k k

i i
p q  are polynomials. The application 

of the Ritz method in conjunction with the Lagrange multipliers methods leads to the 

following governing eigenvalue equation (Quintana and Grossi, 2012):  

     2K - M = 0 ,a           (49) 

where 
2b h D   is the non-dimensional frequency parameter. For sake of simplicity 

( ) ,kD D ( ) , 1,2, ,kh h k N    has been adopted. 

4.1 Convergence and comparison of eigenvalues and modal shapes 

In order to establish the accuracy and applicability of the approach developed and 

discussed in the previous sections, numerical results were computed for a number of plate 

problems for which comparison values were available in the literature and also convergence 

studies have been implemented. Additionally, new numerical results were generated for 

rectangular plates with one or more internal lines hinges and different boundary conditions. 

All calculations have been performed taking Poisson’s ratio 0.3 . To describe the 

boundary conditions the following nomenclature is used, e.g. for a plate with boundary 

conditions SFCF correspond to Edge (1,2)  simply supported, Edge (4,2)  free, Edge 
(1,3) (2,1) (3,1) (4,1)      clamped,  and  Edge (1,1) (2,2) (3,2) (4,3)     free (see Figure 

3). 

Results of a convergence study of the values of the frequency parameter 2 /b h D   

are presented in Table 1. The first six values of   are presented for a square SSSS plate with 

an internal line hinge located at two different positions, namely, 
1

0.3c   and 
1

0.5c   where 

/c c a  is the hinge location. The convergence of the mentioned frequency parameters is 

studied by gradually increasing the number of polynomial in the approximate functions (1),W  
(2)W  and the Lagrange multiplier ( ).y   It can be observed that the frequency parameters 

converge monotonically from above as the number of terms increases and the values obtained 

with N  terms agree with the values reported in Quintana and Grossi (2012). 
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  Mode Sequence 

c  N  1 2 3 4 5 6 

0.3 4 16.79228 39.09601 47.57494 72.15651 97.65285 127.74591 

 5 16.78916 39.08796 47.56763 72.12600 96.43386 98.21747 

 6 16.78915 39.08628 47.42135 72.01026 96.30013 98.21611 

 7 16.78915 39.08628 47.42135 72.01025 96.29318 96.80383 

 8 16.78915 39.08628 47.42073 72.00980 96.29287 96.80383 

 9 16.78915 39.08628 47.42073 72.00980 96.29286 96.78357 

 10 16.78915 39.08628 47.42073 72.00980 96.29286 96.78357 

 11 16.78915 39.08628 47.42073 72.00980 96.29286 96.78347 

        

 Reference 16.78915 39.08628 47.42073 72.0098 96.29286 96.78357 

        

0.5 4 16.14205 46.92498 49.45364 75.71555 79.13290 111.98548 

 5 16.13485 46.88817 49.35421 75.40041 79.06601 97.49206 

 6 16.13478 46.73884 49.34806 75.28386 78.95728 97.47892 

 7 16.13478 46.73877 49.34802 75.28341 78.95725 96.06101 

 8 16.13478 46.73815 49.34802 75.28338 78.95684 96.06096 

 9 16.13478 46.73815 49.34802 75.28338 78.95684 96.04060 

 10 16.13478 46.73815 49.34802 75.28338 78.95684 96.04060 

 11 16.13478 46.73815 49.34802 75.28338 78.95684 96.04051 

        

 Reference 16.13478 46.73815 49.34802 75.28338 78.95684 96.0406 

Table 1. Convergence study of the first six values of the frequency parameter   for an isotropic square SSSS 

plate with an internal line hinge located a 0.3c  and 0.5c . Reference: Quintana and Grossi (2012) 

Table 2 depicts a comparison with the values obtained in Quintana and Grossi (2012) of 

the first six values of the frequency parameter   for CSFF rectangular isotropic plates with 

/ 1/ 2b a  and / 1/ 3b a  and with an internal line hinge located at different positions. 

The agreement observed is excellent. 

 

/b a  c  Reference Mode sequence 

   1 2 3 4 5 6 

1/2 1/3 Present 3.51514 7.68667 8.21521 16.48131 23.84325 26.59203 

  Reference 3.51554 7.68729 8.21567 16.48237 23.84415 26.5944 

 1/2 Present 2.23656 7.49759 11.37571 18.02734 19.13566 26.52157 

  Reference 2.23689 7.49831 11.37617 18.02897 19.13922 26.52227 

 2/3 Present 1.50111 7.51734 10.04917 17.09403 24.69761 26.37444 

  Reference 1.5014 7.51825 10.05115 17.09667 24.69953 26.37498 

         

1/3 1/3 Present 1.55388 3.63465 4.77940 10.02915 10.58447 17.30755 

  Reference 1.55403 3.63483 4.77971 10.02977 10.58499 17.30863 

 1/2 Present 0.98822 4.74937 5.02554 8.52496 10.42039 16.30504 

  Reference 0.98842 4.74981 5.02579 8.52647 10.42137 16.3068 

 2/3 Present 0.66315 4.44705 4.75928 10.16342 10.99039 14.99425 

  Reference 0.66334 4.44817 4.75985 10.16473 10.9914 14.99632 

         

Table 2. Comparison of the first six values of the frequency parameter   for CSFF rectangular isotropic plates 

with / 1/ 2b a  and / 1/ 3b a  with an internal line hinge located at different positions with the values 

obtained in Quintana and Grossi (2012). 

Table 3 gives the first four values of the frequency parameter    for a CCCC anisotropic 

square plate with different values of the dimensionless rotational restriction 
12
R  of the first 
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hinge and 
23
R  of the second hinge located at 

1
0.25c   and 

2
0.75c   respectively. The 

modal shapes shown correspond to 
12 23

0R R   and 
12 23

,R R   these last values are 

compared with the ones obtained in Grossi (2001). The plate anisotropy is 
11

1,D 
 

22
0.1,D 

 66
0.0247750,D 

 12
0.03,D 

 16 26
0.D D   

12
R  

23
R  Mode sequence 

  1 2 3 4 

0 0 23.45956 30.56252 37.85855 44.15721 

  

    
10 0 23.61956 30.75000 44.68048 45.98426 

1000 0 23.64241 30.77948 45.97679 46.06113 

  0 23.64268 30.77983 45.98424 46.07002 

  10 23.92261 31.09512 46.34815 59.35300 

  1000 23.96589 31.14802 46.40945 62.73310 

    23.96640 31.14865 46.41019 62.77503 

  

    
      

Reference  23.96642 31.14868 46.4672 62.77512 

Table 3. First four values of the frequency parameter   for a CCCC anisotropic square plate with different 

values of the dimensionless rotational restriction 
12
R  of the first hinge and 

23
R  of the second hinge located at 

1
0.25c  and 

2
0.75c  respectively, the modal shapes shown correspond to 

12 23
0 R R  and 

12 23
, R R  these last values are compared with the ones obtained in the Reference: Grossi (2001). The 

plate anisotropy is 
11

1,D
 22

0.1,D
 66

0.0247750,D
 12

0.03,D
 16 26

0. D D  

4.2 New numerical results 

Table 4 presents the first six values of the frequency parameter   for a SSSS anisotropic 

rectangular plate with two internal hinges, with / 1/ 2b a  and / 2b a , with the 

dimensionless translational restriction 
12

,T T  located at the first hinge, at 
1

0.25c  , and 

23
T T  located at the second hinge at 

2
0.5c   and 0.75 . The plate anisotropy considered is 

11
1,D   

22
0.2482224,D   

66
0.3361177,D   

12
0.3448467,D   

16
0.495691,D   

26
0.155368.D   

Figure 4 shows the first five values of the frequency parameter   and modal shapes 

contour lines of a FFCS anisotropic rectangular plate with two internal hinges, located at 

1
1/ 3c  and 

2
2 / 3c , with / 1/ 2b a  and / 2b a . The plate anisotropy considered 

is 
11

1,D  
22

0.115202317,D  
66

0.0948810,D  
12

0.100812496,D  

16
0.24333539,D  

26
0.0120837.D  
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/b a  
2
c  T  Mode Sequence 

   1 2 3 4 5 6 

1/2 0.5 0 6.13272 11.37277 18.17580 20.13500 27.30896 32.08927 

  10 7.63488 12.38857 18.76423 20.69716 27.73055 32.33768 

  100 12.88142 18.08172 23.62405 25.12977 31.00894 34.83498 

  1000 14.91485 27.64070 35.54541 40.42164 43.09226 45.16699 

  10000 15.12288 28.18826 42.68467 43.41719 45.13909 46.85752 

 0.75 0 6.32794 10.19099 19.72051 20.31024 27.14421 32.91900 

  10 7.47868 11.53123 20.19905 20.80931 27.70484 33.09273 

  100 11.81817 18.86774 24.36218 24.50014 32.08935 34.73187 

  1000 14.68894 27.11056 38.34673 39.06688 42.42447 44.69072 

  10000 15.09332 28.12712 43.22336 43.23943 44.93227 46.73932 
         

2 0.5 0 14.99106 33.44484 35.48624 57.75759 72.83382 88.92077 

  10 17.37731 34.60772 37.26786 58.44827 73.68858 89.38113 

  100 31.36994 43.56466 50.56603 64.28163 80.93638 93.39404 

  1000 83.40285 90.06103 103.14080 116.25158 124.56296 130.59208 

  10000 150.03590 159.29239 176.02018 201.02375 234.35466 276.83000 

 0.75 0 15.07049 29.55181 34.56451 56.57771 65.37057 87.86891 

  10 16.97118 31.28123 35.66269 57.20247 66.22118 88.26760 

  100 28.76254 41.22825 46.70113 62.33214 73.55855 91.71980 

  1000 73.87318 80.81618 94.81841 112.35227 118.07792 125.83710 

  10000 141.62027 149.97440 165.31486 188.57398 220.05158 261.18673 

         

Table 4. First six values of the frequency parameter   for a SSSS anisotropic rectangular plate with two internal 

hinges, located at 
1

0.25c  and 
2

0.5c  and 0.75 , with / 1/ 2b a  and / 2b a , with the dimensionless 

translational restriction 
12

,T T  located at the first hinge, at 
1

0.25c , and 
23
T T  located at the second 

hinge, 
2

0.5c  and 0.75 . The plate anisotropy considered is 
11

1,D  
22

0.2482224,D  
66

0.3361177,D  

12
0.3448467,D  

16
0.495691,D  

26
0.155368.D  

/b a  Mode sequence 

 1 2 3 4 5 

1/2 

     
 5.07587429 5.79203293 7.89533066 9.991669568 16.49430191 

2 

     
 4.99314088 10.0006422 16.2635517 19.68378208 23.75561997 

Figure 4. First five values of the frequency parameter   and modal shapes contour lines of a FFCS anisotropic 

rectangular plate with two internal hinges, located at 
1

0.33c  and 
2

0.66c  with / 1/ 2b a  and / 2b a  

The plate anisotropy considered is 
11

1,D  
22

0.115202317,D  
66

0.0948810,D  
12

0.100812496,D  

16
0.24333539,D  

26
0.0120837.D  
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Figure 5 shows the first five values of the frequency parameter   and modal shapes 

contour lines of a FFCS anisotropic rectangular plate with three internal hinges, located at 

1
0.3,c

 2
0.3,c  and 

3
0.9c , with / 1/ 2b a  and / 2b a . The plate anisotropy 

considered is 
11

1,D   
22

0.115202317,D   
66

0.0948810,D   
12

0.100812496,D   

16
0.24333539,D   

26
0.0120837.D 

 

 
/b a  Mode sequence 

 1 2 3 4 5 

1/2 5.06333355 5.711700994 7.591103 10.0988422 15.73005937 

 

     
2 4.988601252 9.833599991 16.24223254 18.63116706 23.38073109 

 

     

Figure 5. First five values of the frequency parameter   and modal shapes contour lines of a FFCS anisotropic 

rectangular plate with three internal hinges, located at 
1

0.3,c
 2

0.3,c  and 
3

0.9c , with / 1/ 2b a  and 

/ 2b a . The plate anisotropy considered is 
11

1,D  
22

0.115202317,D  
66

0.0948810,D  

12
0.100812496,D  

16
0.24333539,D  

26
0.0120837.D  

5 CONCLUSIONS 

This paper presents the formulation of an analytical model for the dynamic behavior of 

anisotropic plates, with several arbitrarily located internal lines hinges with elastics supports 

and piecewise-smooth boundaries elastically restrained against rotation and translation. The 

equations of motion and its associated boundary and transition conditions were derived 

handling Hamilton’s principle in a rigorous framework. 

An approach to the solution of the natural vibration problems, of the mentioned plates by a 

direct variational method, has been presented. A simple, computationally efficient and 

accurate algorithm has been developed for the determination of frequencies and modal shapes 

of natural vibrations. The approach is based on a combination of the Ritz method and the 

Lagrange multipliers method. Sets of parametric studies have been performed to show the 

influence of the line hinge and its location on the vibration behaviors. 
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