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Abstract.
This work studies the dynamics of a one dimensional elastic bar with random elastic modulus and pre-

scribed boundary conditions, say, fixed at one end, and attached to a lumped mass and two springs (one
linear and another nonlinear) on the other extreme. The system analysis assumes that the elastic mod-
ulus has gamma probability distribution and uses Monte Carlo simulations to compute the propagation
of uncertainty in this continuous–discrete system. After describing the deterministic and the stochastic
modeling of the system, some configurations of the model are analyzed in order to characterize the effect
of the lumped mass in the overall behavior of this dynamical system.
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1 INTRODUCTION

The dynamics of a mechanical system depends on some parameters such as physical and ge-
ometrical properties, constraints, external and internal loading, initial and boundary conditions.
Most of the theoretical models used to describe the behavior of a mechanical system assume
nominal values for these parameters, such that the model gives one response for a given partic-
ular input. In this case the system is deterministic and its behavior is described by a single set
of differential equations. However, in real systems they do not have a fixed value since they are
subjected to uncertainties of measurement, imperfections in manufacturing processes, change
of properties, etc. This variability in the set of system parameters leads to a large number of
possible system responses for a given particular input. Now the system is stochastic and there is
a family of differential equations sets (one for each realization of the random system) associated
to it.

This work aims to study the propagation of uncertainty in the dynamics of a nonlinear con-
tinuos random system with a discrete element attached to it. In this sense, this work considers
a one dimensional elastic bar, with random elastic modulus, fixed on the left extreme and with
a lumped mass and two springs (one linear and another nonlinear) on the right extreme (fixed-
mass-spring bar).

This paper is organized as follows. In section 2 is presented the deterministic modeling of the
problem, the discretization procedure and the algorithm used to solve the equation of interest.
The stochastic modeling of the problem is shown in section 3, as well as the construction of
a probability distribution for the elastic modulus, using the maximum entropy principle, and a
brief discussion on the Monte Carlo method. In section 4, some configurations of the model are
analyzed in order to characterize the effect of lumped mass in the system dynamical behavior.
Finally, in section 5, the main conclusions are emphasized and some directions for future work
outlined.

2 DETERMINISTIC APPROACH

The continuous system of interest is the one-dimensional fixed-mass-spring bar shown in
Figure 1.
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Figure 1: Sketch of a bar fixed at one and attached to two springs and a lumped mass on the other extreme.
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2.1 Strong Formulation

The displacement of this system u evolves according to the following partial differential
equation

ρA
∂2u

∂t2
(x, t) + c

∂u

∂t
(x, t) =

∂

∂x

(
EA

∂u

∂x
(x, t)

)
+ f(x, t), (1)

which is valid for 0 < x < L and 0 < t < T , being L the bar unstretched length and T a finite
instant of time. In this equation ρ is the mass density, E is the elastic modulus, A is the circular
cross section area, c is the damping coefficient, and f(x, t) is an external force depending on
position x and instant t.

The left side of the bar is fixed at a rigid wall while the right side is attached to a lumped
mass m and two springs fixed to a rigid wall. The first spring (of stiffness k) is linear and exerts
a restoring force proportional to the stretching on the bar. The second spring (of stiffness kNL)
is nonlinear and its restoring force is proportional to the cube of the stretching. The force which
the lumped mass exerts on the bar is proportional to acceleration. These boundary conditions
read as

u(0, t) = 0 and EA
∂u

∂x
(L, t) = −ku(L, t)− kNL

[
u(L, t)

]3 −m ∂2u

∂t2
(L, t). (2)

Initially, any point x of the bar presents displacement and a velocity respectively equal to

u(x, 0) = u0(x) and
∂u

∂t
(x, 0) = u̇0(x), (3)

for 0 ≤ x ≤ L. In these equations u0 and u̇0 are given functions of position x.
Moreover, it is noteworthy that u is assumed to be as regular as needed for the initial–

boundary value problem of Eqs.(1), (2), and (3) to be well posed.

2.2 Variational Formulation

Let Ut be the class of (time dependent) basis functions andW be the class of weight func-
tions. These sets are chosen as the space of functions with square integrable spatial derivative,
which satisfy the essential boundary condition defined by Eq.(2).

The variational formulation of the problem under study says that one wants to find u ∈ Ut
that satisfy, for all w ∈ W , the weak equation of motion given by

M(ü, w) + C(u̇, w) +K(u,w) = F(w) + FNL(u,w), (4)

whereM is the mass operator, C is the damping operator,K is the stiffness operator,F is the ex-
ternal force operator, and FNL is the nonlinear force operator. These operators are, respectively,
defined as

M(ü, w) =

∫ L

0

(
ρAü(x, t)w(x)

)
dx+mü(L, t)w(L), (5)

C(u̇, w) =

∫ L

0

cu̇(x, t)w(x)dx, (6)
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K(u,w) =

∫ L

0

(
EAu′(x, t)w′(x)

)
dx+ ku(L, t)w(L), (7)

F(w) =

∫ L

0

f(x, t)w(x)dx, (8)

FNL(u,w) = −kNL

[
u(L, t)

]3
w(L), (9)

where ˙ is an abbreviation for temporal derivative and ′ is an abbreviation for spatial derivative.
The variational formulations for the initial conditions of Eq.(3), which are valid for all w ∈

W , are respectively given by

M̃(u(·, 0), w) = M̃(u0, w), (10)

and

M̃(u̇(·, 0), w) = M̃(u̇0, w), (11)

where M̃ is the associated mass operator, defined as

M̃(u,w) =

∫ L

0

ρAu(x, t)w(x)dx. (12)

2.3 An Eigenvalue Problem

Now consider the following generalized eigenvalue problem associated to Eq.(4),

−ν2M(φ,w) +K(φ,w) = 0, (13)

where ν is a natural frequency and φ is an associated mode shape.
In order to solve Eq.(13), the technique of separation of variables is employed, which leads

to a Sturm-Liouville problem (Al Gwaiz, 2007), with denumerable number of solutions. There-
fore, this generalized eigenvalue problem has a denumerable number of solutions, all of then
such as the following eigenpair (ν2n, φn), where νn is the n-th bar natural frequency and φn is
the n-th bar mode shape.

It is important to observe that, the eigenfunctions {φn}+∞n=1 span the space of functions which
contains the solution of the Eq.(13) (Brezis, 2010). As can be seen in Hagedorn and DasGupta
(2007), these eigenfunctions satisfy, for all m 6= n, the orthogonality relations given by

M(φn, φm) = 0, (14)

and

K(φn, φm) = 0, (15)

which made then good choices for the basis function when a weighted residual procedure (Fin-
layson and Scriven, 1966) is used to approximate the solution of a nonlinear variational equa-
tion, such as Eq.(4).
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2.4 Mode Shapes and Natural Frequencies

According to Blevins (1993), a fixed-mass-spring bar has its natural frequencies and the
corresponding orthogonal modes shape given by

νn = λn
c̄

L
, (16)

and

φn(x) = sin

(
λn
x

L

)
, (17)

where c̄ =
√
E/ρ is the wave speed, and the λn are the solutions of

cot (λn) +

(
kL

AE

)
1

λn
−
(

m

ρAL

)
λn = 0. (18)

The first six orthogonal modes shape of the fixed-mass-spring bar with m = 1.5 kg, whose
the other parameters are presented in the beginning of section 4, are illustrated in Figure 2. In
this figure each sub-caption indicates the approximated natural frequency associated with the
corresponding mode.
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Figure 2: The first six orthogonal modes shape and the corresponding (approximated) natural frequencies of a
fixed-mass-spring bar with m = 1.5 kg.

2.5 Galerkin Formulation

In order of approximate the solution of Eqs.(4), (10) and (11) the Galerkin method (Hughes,
2000) is employed. Therefore, the displacement field u is approximated by a linear combination
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of the form

uN(x, t) =
N∑

n=1

un(t)φn(x), (19)

where the basis functions φn are the orthogonal modes shape of the fixed-mass-spring bar,
exemplified in the end of section 2.4, and the coefficients un are time-dependent functions. For
a reason that will be clear soon, define u(t) of RN as the vector in which the n-th component is
un(t).

Since uN is not a solution of Eq.(4), when the field u is approximated by uN a residual
function is obtained. This residual function is orthogonally projected into the vector space
spanned by the functions {φn}Nn=1 in order to minimize the error incurred by the approximation
(Hughes, 2000). This procedure results in the following N × N set of nonlinear ordinary
differential equations

[M ] ü(t) + [C] u̇(t) + [K]u(t) = f(t) + fNL

(
u(t)

)
, (20)

supplemented by the following pair of initial conditions

u(0) = u0 and u̇(0) = u̇0. (21)

where [M ] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, and the
upper dot again denotes the time derivative. Also, f(t), fNL

(
u(t)

)
, u0, and u̇0 are vectors of

RN , which respectively represent the external force, the nonlinear force, the initial position, and
the initial velocity.

The initial value problem of Eqs.(20) and (21) has its solution approximated by Newmark
method (Newmark, 1959). The reader interested in details about this integration scheme is
encouraged to see Hughes (2000).

3 STOCHASTIC APPROACH

3.1 Probabilistic Model

Consider a probability space (Ω,A,P), where Ω is sample space, A is a σ-field over Ω and
P is a probability measure. In this probabilistic space, the elastic modulus is assumed to be a
random variable E : Ω → R that associates to each event ω ∈ Ω a real number E(ω). Con-
sequently, the displacement of the bar is the random field U : [0, L]× [0, T ]× Ω→ R, which
evolves according the following stochastic partial differential equation

ρA
∂2U

∂t2
(x, t, ω) + c

∂U

∂t
(x, t, ω) =

∂

∂x

(
E(ω)A

∂U

∂x
(x, t, ω)

)
+ f(x, t), (22)

being the partial derivatives now defined in the mean square sense (Papoulis and Pillai, 2002).
This problem has boundary and initial conditions similar to those defined in Eqs.(2) and (3), by
changing u for U only.

3.2 Elastic Modulus Distribution

The elastic modulus cannot be negative, so it is reasonable to assume the support of random
variable E as the interval (0,+∞). Therefore, the probability density function (PDF) of E is a
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nonnegative function pE : (0,+∞)→ R, which respects the following normalization condition∫ +∞

0

pE(ξ)dξ = 1. (23)

Also, the mean value of E is known real number µE , i.e.,

E [E] = µE, (24)

where the expected value operator of E is defined as

E [E] =

∫ +∞

0

E(ξ)pE(ξ)dξ (25)

Finally, one also wants that E has finite variance, i.e.,

E
[
(E − µE)2

]
< +∞, (26)

which is possible (Soize, 2000), for example, if

E
[
ln (E)

]
< +∞. (27)

Following the suggestion of Soize (2000), the maximum entropy principle (Shannon, 1948;
Jaynes, 1957a,b) is employed in order to consistently specify pE . This methodology chooses
for E the PDF which maximizes the differential entropy function, defined by

S [pE] = −
∫ +∞

0

pE(ξ) ln
[
pE(ξ)

]
dξ, (28)

subjected to (23), (24), and (27), the restrictions that effectively define the known information
about E.

Respecting the constraints imposed by (23), (24), and (27), the PDF that maximizes Eq.(28)
is given by

pE(ξ) = 1(0,+∞)
1

µE

(
1

δ2E

) 1

δ2E


1

Γ(1/δ2E)

(
ξ

µE

) 1

δ2E
− 1


exp

(
− ξ

δ2EµE

)
, (29)

where 1(0,+∞) denotes the indicator function of the interval (0,+∞), δE is the dispersion factor
of E, and Γ indicates the gamma function. This PDF is a gamma distribution.

3.3 Stochastic Solver: Monte Carlo Method

Uncertainty propagation in the stochastic dynamics of the continuous–discrete system under
study is computed by Monte Carlo (MC) method (Metropolis and Ulam, 1949). This stochastic
solver uses a Mersenne twister pseudorandom number generator (Matsumoto and Nishimura,
1998), to obtain many realizations of the random variable E. Each one of these realizations
defines a new Eq.(4), so that a new variational problem is obtained. After that, these new
variational problems are solved deterministically, such as in section 2.5. All the MC simulations
reported in this work use 45 samples to access the random system. Further details about MC
method can be seen in Liu (2001); Shonkwiler and Mendivil (2009); Robert and Casella (2010).
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4 NUMERICAL EXPERIMENTS

The numerical experiments presented in this section adopt the following deterministic pa-
rameters for the studied system: ρ = 7900 kg/m3, c = 10 kNs/m, A = 625π mm2,
k = 650 N/m, kNL = 650 × 1013 N/m3, L = 1 m, and T = 8 ms. Besides that, four
values for the lumped mass are considered: m = 1.5, 7.5, 15, and 75 kg. The random variable
E, is characterized by µE = 203 GPa and δE = 10%.

The initial conditions for displacement and velocity are respectively given by

u0 = α1φ3(x) + α2x, and u̇0 = 0, (30)

where α1 = 0.1 mm and α2 = 0.5 × 10−3. Note that u0 reaches the maximum value at
x = L. This function is used to “activate" the spring cubic nonlinearity, which depends on the
displacement at x = L.

The time-dependent external force acting on the system has the form of a sine wave with
circular frequency equal to the first natural frequency

f(x, t) = σφ1(x) sin (ν1t), (31)

where the external force amplitude is σ = 1 N .
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Figure 3: This figure illustrates the mean value (blue line) and a 98% of probability interval of confidence
(grey shadow) for the random process U(L, ·, ·), for several values of the continuous–discrete mass ratio.
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4.1 Analysis of Random System Envelope of Reliability and Phase Space

The mean value of U(L, ·, ·) and an envelope of reliability, wherein a realization of the
stochastic system has 98% of probability of being contained, are shown, for different values of
the continuous–discrete mass ratio ρAL/m, in Figure 3. By observing this figure one can note
that, as the value of lumped mass increases, the decay of the system displacement amplitude de-
creases significantly. This indicates that this continuous–discrete system is not much influenced
by damping for small values of the continuous–discrete mass ratio.

The mean phase space of the fixed-mass-spring bar at x = L is shown, for different values of
the continuous–discrete mass ratio, in Figure 4. The observation made in the previous paragraph
can be confirmed by analyzing this figure, since the system mean orbit tends from a stable
focus to an ellipse as the continuous–discrete mass ratio decreases. In other words the limiting
behavior of the system when ρAL/m→ 0+ is a mass-spring system.
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Figure 4: This figure illustrates the mean value of the fixed-mass-spring bar phase space at x = L, for several
values of the continuous–discrete mass ratio.

4.2 Analysis of Random System PDF

The difference between the system dynamical behavior, for different values of m, is even
clearer if one looks to the PDF estimations of the (normalized) random variable U(L, T, ·),
which are presented in Figure 5. For large values of the continuous–discrete mass ratio, the
PDF of U(L, T, ·) displays bimodal shape, which tends to a unimodal shape as the lumped
mass grows, i.e., the continuous–discrete mass ratio decreases. Furthermore, it can be noted
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that when ρAL/m ≈ 1 the greatest probability occurs around the mean value of U(L, T, ·).
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Figure 5: This figure illustrates estimations to the PDF of the (normalized) random variable U(L, T, ·), for several
values of the continuous–discrete mass ratio.

5 CONCLUDING REMARKS

A model to describe the dynamics of fixed-mass-spring bar with a random elastic modulus
is presented. The aleatory parameter is modeled as a random variable with gamma distribution,
being the probability distribution of this parameter obtained by the principle of maximum en-
tropy. The paper analyzes some configurations of the model to order to characterize the effect
of the lumped mass in the overall behavior of this dynamical system. This analysis shows that
the dynamics of the random system is significantly altered when the values of the lumped mass
are varied.
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