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Abstract. The Molecular Distance Geometry Problem consists in finding the positions in three dimen-
sional space of atoms of a molecule, given some inter-atomic distances. We formulate this problem as
a nonlinear optimization problem and solve some instances using a continuous optimization routine. To
carry out the experiments, we assume initially that the distances have precise values and then add errors
in order to simulate the real data provided by Nuclear Magnetic Resonance Data.

Mecánica Computacional Vol XXXI, págs. 2757-2763 (artículo completo)
Alberto Cardona, Paul H. Kohan, Ricardo D. Quinteros, Mario A. Storti (Eds.)

Salta, Argentina, 13-16 Noviembre 2012

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

 http://www.unifei.edu.br
http://www.ime.unicamp.br
http://www.ime.unicamp.br


1 INTRODUCTION

The Molecular Distance Geometry Problem (MDGP) consists in finding the three dimen-
sional structure of a molecule using only some distances between its atoms. In order to solve this
problem, we need to obtain a set of n points {x1, x2, . . . , xn} ⊂ R3 such that ‖xi − xj‖ = d̂ij ,
where ‖ · ‖ is the Euclidean norm and d̂ij is the Euclidean distance between the atoms i and
j (Liberti et al., 2008, 2010; Lavor et al., 2012). If all the values d̂ij are known exactly, the
problem can be solved in linear time (Dong and Wu, 2002). However, the most interesting sit-
uation occurs when some distances d̂ij contain errors. In this case, we say that these values are
corrupted.

In this work we formulate the task of finding three dimensional structures as a continuous
optimization problem as follows:

minimize
∑

i,j (‖xi − xj‖ − d̂ij)2,

subject to xi ∈ R3, i = 1, 2, . . . , n.
(1)

A possible difficulty that arises in this formulation is the non-differentiability of the objective
function when xi = xj for all i 6= j. However, Jan de Leeuw proved in (De Leeuw, 1984)
that if d̂ij > 0 for all i, j, the local minimizers of (1) are configurations that do not contain
coincident points and a minimization algorithm that uses first derivatives can be applied to
solve the problem.

When the distances between atoms of a protein are obtained without errors, the objective
function of the formulation (1) has many global minimizers. In fact, this happens because any
configuration of points that differs from the original structure by a rigid motion or a rigid motion
composed with a reflection, can be a solution of the problem.

2 COMPUTATIONAL EXPERIMENTS

To carry out the experiments with the formulation (1), we use an optimization routine named
GENCAN (Birgin and Martínez, 2002). This routine, available at www.ime.usp.br/~egbirgin/
tango, is able to find approximate solutions to minimization problems with box constraints. We
assume initially that all inter-atomic distances have precise values. After, we add errors in some
distances to simulate real data and we try to investigate how these errors can affect the structures
obtained. All experiments have been carried out on a single core of an Intel Core 2 CPU 2.4GHz
with 2GB RAM running MAC OS X 10.5 and the codes are written in Fortran 77.

In order to find numerically an adequate set of points with lower value of the objective
function we employ a multistart strategy: we solve the same instance of the problem (1) several
times using a different initial point in each run. Each solution found by GENCAN is compared
with the true structure through an alignment technique that we describe as follows.

2.1 COMPARING STRUCTURES WITH AN ALIGNMENT PROCEDURE

We represent each protein in a simplified way using only the 3D coordinates of nitrogen N ,
carbon C and alpha-carbon Cα presented in each amino acid. This representation captures the
main features of the three-dimensional arrangements of amino acids in the molecule structure.
The Figure 1 presents the generic sketch of an amino acid, where the atomsN (left) ,Cα (center)
and C (right) are shown and the letter G represents an organic substituent.

The most common way to compare structures is to superimpose them in some optimal
manner and looking for their similarities and discrepancies after superimposition. We use
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Figure 1: Sketch of an amino acid.

LOVOALIGN (Andreani et al., 2007, 2008) to compare structures. This routine, available
at www.ime.unicamp.br/~martinez/lovoalign, measures the degree of similarity between two
structures by maximizing the Structal Score

s =
∑ 20

1 + (d/2.24)2
− 10ng, (2)

where d is the Euclidean distance between Cα atoms of each compared structure and ng is
the number of gaps. According to (2), if two structures are identical, the Structal Score is
given by s = 20n, where n is the number of atoms. In this case, if we divide s by n we
obtain a normalized score. In the experiments we use this normalized score to decide if two
proteins have some degree of similarity. The proteins that appear in our computational tests
were extracted from Protein Data Bank (www.rcsb.org/pdb) and are shown in the Table 1. The
proteins with the biggest number of atoms are featured by blue color.

1ACZ 1AHL 1AQR 1BVP 1BRV
1BRZ 1CRN 1EPW 1F39 1FS3
1HOE 1JK2 1LFB 1M40 1MBN
1MQQ 1N4W 1PHT 1POA 1PTQ
1RGS 1RWH 2E7Z 2ERL 3B34

Table 1: Proteins used in the computational experiments.

We summarize the main steps of our experiments as follows. To each protein in the Table 1,
we take all distances between pairs of atoms and we add errors in some values to simulate real
data, in a random way. Then, we solve the problem (1) hundred times employing a different
initial point. In each run, the solution obtained by GENCAN is compared with the true structure
using the routine LOVOALIGN. If the normalized score obtained after the comparison is ap-
proximately equal to 20, we declare success, otherwise, a new initial point is generated and the
problem (1) is solved again with the same data. The results shown in the next tables correspond
to runs where we obtain the highest values of normalized scores.

2.2 RESULTS

In order to investigate the effect of errors in the resolution of the problem (1), we carry out
three sets of experiments with the selected proteins. In each set, we extract some values d̂ij from
the distance matrix associated to each protein and then, we add errors in such a way that the final
(corrupted) values belong to the interval [d̂ij − 2, d̂ij + 2]. In the two first sets of experiments,
we adopt the criterion used by Bonnie Berger et al (Berger et al., 1999) to select entries from
the distance matrices. In the first set, we take only a small fraction of total distances to add
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errors. To each protein, this fraction was determined according to the relation

derr =

⌊
1

2
n(1− ε)

⌋
, (3)

where n is the total number of atoms and ε is a random real number in [0, 1
2
). In the second

set, we employ (3) to generate randomly wrong values by row in the distance matrix. It was
proved that, in both cases, it is possible to reconstruct the original structure (Berger et al., 1999).
Finaly, in the last set we suppose that 10% of the total distances are obtained with errors. In this
case we choose the values d̂ij in a random way to add errors.

The first three columns in Table 2 show, respectively, the name of each protein, the number of
atoms considered and the total of inter-atomic distances. To each set of experiments derr means
the number of corrupted distances (with errors), f(x) indicates the final value of objective
function attained by GENCAN and s is the normalized score obtained after the comparison
between the true structure and the numerical solution. Despite of final values of f(x) do not
be small in the tests, we get good values to normalized scores. This means that the numerical
and true structures are quite similar and the errors do not affect much the quality of solutions
obtained. In the table below, the proteins with the largest number of atoms are written with blue
color.

Set 1 Set 2 Set 3

prot atoms dt derr f(x) s derr f(x) s derr f(x) s

1ACZ 324 52326 51 6.22E+01 20.000 25477 3.32E+04 19.916 5232 6.90E+03 19.980

1AHL 147 10731 10 1.72E+01 19.999 5185 6.79E+03 19.782 1073 1.32E+03 19.952

1AQR 120 7140 3 5.17E+00 20.000 3437 4.39E+03 19.775 714 9.41E+02 19.961

1BPV 312 48516 38 4.42E+01 20.000 23617 3.11E+04 19.889 4851 6.27E+03 19.973

1BRV 57 1596 24 2.14E+01 19.998 753 8.50E+02 19.562 159 1.99E+02 19.900

1BRZ 159 12561 35 4.28E+01 19.999 6075 7.83E+03 19.807 1256 1.60E+03 19.970

1CRN 138 9453 68 7.98E+01 19.996 4552 5.83E+03 19.782 945 1.21E+03 19.949

1EPW 3861 7451730 672 9.13E+02 20.000 3649435 4.86E+06 19.989 745173 9.92E+05 19.998

1F39 303 45753 30 4.13E+01 20.000 22269 2.90E+04 19.895 4575 5.90E+03 19.976

1FS3 372 69006 168 2.24E+02 19.999 33626 4.38E+04 19.917 6900 9.04E+03 19.983

1HOE 222 24531 102 1.20E+02 19.999 11908 1.54E+04 19.855 2453 3.20E+03 19.974

1JK2 270 36315 18 2.02E+01 20.000 17658 2.31E+04 19.844 3631 4.66E+03 19.961

1LFB 232 26796 76 9.10E+01 19.999 13013 1.67E+04 19.816 2679 3.39E+03 19.971

1M40 1224 748476 361 4.79E+01 20.000 366145 4.87E+05 19.975 74847 9.96E+04 19.995

1MBN 459 105111 56 7.31E+01 20.000 51276 6.77E+04 19.936 10511 1.40E+04 19.986

1MQQ 2032 2063496 316 3.76E+02 20.000 1010105 1.34E+06 19.984 206349 2.75E+05 19.997

1N4W 1610 1295245 735 9.90E+02 20.000 633872 8.40E+05 19.981 129524 1.72E+05 19.996

1PHT 249 30876 6 6.02E+02 20.000 15006 1.98E+04 19.885 3087 3.99E+03 19.977

1POA 354 62481 108 1.27E+02 20.000 30440 3.96E+04 19.889 6248 8.17E+03 19.978

1PTQ 150 11175 7 1.13E+01 20.000 5402 6.78E+03 19.785 1117 1.44E+03 19.965

1RGS 792 313236 45 6.00E+01 20.000 153092 2.03E+05 19.957 31323 4.14E+04 19.991

1RWH 2265 2563980 970 1.32E+03 20.000 1255227 1.67E+06 19.986 256398 3.42E+05 19.997

2E7Z 2907 4223871 675 9.01E+02 20.000 2068257 2.76E+06 19.990 422387 5.63E+05 19.998

2ERL 120 7140 56 6.71E+01 19.995 3437 4.41E+03 19.690 714 8.82E+02 19.926

3B34 2790 3890655 1121 1.51E+03 20.000 1905038 2.53E+06 19.989 389065 5.18E+05 19.998

Table 2: Reconstructing 3D structures with errors in the distances.

The performance of routine GENCAN in the three sets of experiments are shown in the
Table 3. In this table iter is the number of total iterations, evalf is the total of evaluations of
objective function and t is the CPU time in seconds. We remember that the values in this table
correspond to runs where we obtained the highest values of normalized scores. We can note
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that the numbers of iterations and evaluations of function are small and the values of time are
reasonable in all tests.

Set 1 Set 2 Set 3

prot iter evalf t iter evalf t iter evalf t

1ACZ 17 38 0.320 19 38 0.284 19 42 0.352

1AHL 19 52 0.064 23 49 0.088 19 46 0.068

1AQR 16 37 0.036 16 38 0.044 15 38 0.036

1BPV 15 25 0.268 17 33 0.268 17 30 0.208

1BRV 17 42 0.012 19 40 0.012 13 22 0.008

1BRZ 14 20 0.076 16 41 0.064 17 31 0.080

1CRN 15 25 0.064 15 21 0.052 18 33 0.056

1EPW 20 34 41.843 21 39 53.675 22 45 51.700

1F39 18 24 0.292 18 40 0.236 18 45 0.320

1FS3 19 38 0.280 19 42 0.384 17 35 0.324

1HOE 15 24 0.112 16 32 0.108 15 26 0.112

1JK2 18 49 0.236 20 46 0.320 27 75 0.576

1LFB 26 65 0.248 18 33 0.192 18 26 0.160

1M40 16 28 3.732 19 38 2.748 17 40 2.968

1MBN 17 37 0.500 16 36 0.472 16 39 0.556

1MQQ 19 37 8.373 26 85 12.645 22 61 11.420

1N4W 16 36 4.864 15 36 4.332 19 37 5.204

1PHT 17 26 0.204 16 34 0.148 14 28 0.164

1POA 18 33 0.340 17 33 0.320 17 41 0.440

1PTQ 14 22 0.056 20 32 0.056 15 27 0.036

1RGS 18 32 1.460 19 43 1.872 18 37 1.720

1RWH 22 57 16.553 21 50 11.697 18 35 10.510

2E7Z 22 50 17.189 20 34 16.441 24 54 22.720

2ERL 16 21 0.040 17 27 0.040 15 29 0.040

3B34 21 58 20.565 20 43 15.685 20 45 21.060

Table 3: Performance of routine GENCAN.

In order to illustrate some results of the tables presented before, we considered the protein
named 1EPW. The Figure 2 a) shows the true structure and the Figure 2 b) indicates the numer-
ical solution obtained by GENCAN in the experiment of Set 3. Both figures were constructed
using only the first 300 atoms of each structure (N , Cα, C). The atoms were represented by
points and consecutive atoms were joined by line segments. We also compute all distances be-
tween pairs of atoms in each structure and then we plot a graph to investigate the results. The
graph of Figure 3 shows, respectively, the true distances d̂ij (without errors) in the x axis and
the final distances between points ‖xi − xj‖ of the numerical solution in the y axis.

We remember that the problem (1) was solved using the values d̂ij with errors. We can
observe in this test that despite of the fact that the final value of objective function is not small
(≈ 9 × 105), the final distances are reasonably adjusted to true distances (without errors). In
fact, the value of the normalized score obtained in this experiment is approximately equal to 20.
This means that we obtained a structure that has great similarity with the true configuration.

3 CONCLUSIONS

In this work we proposed an optimization approach to solve some instances of the Molecular
Distance Geometry Problem (MDGP). We considered the case where some distances between
atoms have errors and then we solved a minimization problem to recover the true structure using
only information about interatomic distances. The problems were solved with a routine named
GENCAN.
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a) true structure b) numerical structure

Figure 2: Comparing structures.

d̂ij

‖xi − xj‖

Figure 3: True distances without errors versus numerical distances.
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In order to investigate the quality of obtained solutions, we compared the true structure
with the numerical one employing an alignment procedure. The degree of similarity after the
comparison was measured by the normalized Structal Score, a real number in the interval [0, 20].
According to numerical experiments, we observed that in all tests the obtained configurations
had great similarities with the true structures. We know that the criterion of comparison adopted
in this work is not realistic. In fact, we used the true structure to evaluate the quality of numerical
solutions. However, in a future work we intend to investigate other methods to predict if the
solutions found are good or not without realize any comparison with the true structure.
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