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Abstract. Computational magnetogasdynamics is an important tool to develop interdisciplinary 
technologies  as aerospace design and for astrophysical studies. A model of a flow affected by 
electromagnetic forces must include the full set of Maxwell’s equations coupled with the Navier-
Stokes equations (full MGD). However, in some phenomena the idea lmagnetogasdynamics equations 
(ideal MGD) are an accurate description. The ideal MGD equations are simplest than the full MGD 
equations. The ideal MGD numerical simulations allow the reduction of expensive, and sometimes 
unviable, experimental parametric studies. However numerical simulations are limited by the 
requirement of solving accurately  the hyperbolic non-linear differential equations. In addition, the 
ideal MGD equations are nonconvex and, as consequence, the wave structure is more complex than 
the Euler gasdynamics equations. In this work are presented results of the compressible, two-
dimensional, time-dependent transient Orszag-Tang MGD problem. The results were obtained using a 
modification of the original finitevolume Harten-Yee TVD scheme, incorporating a new sonic fix for 
the acoustic causality points. 
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1  INTRODUCTION 

Magnetogasdynamics (MGD) flows have applications in aerospace technologies, 
astrophysics, geophysics, interstellar gas masses dynamics, etc. A MGD model is based on 
the assumption of the plasma continuum hypothesis and thus relatively few macroscopic 
quantities are required to characterize the state of the system. A revision about the physical 
models used in aerospace applications is given in (D'Ambrosio and Giordano, 2004). The 
ideal MGD equations constitute a hyperbolic partial differential system. This system presents 
non-convex singularities and the wave structure is more complicated than for the Euler 
equations (Kantrowitz and Petschek, 1966). The nonlinear coupling of these waves plays an 
important role in determining physical phenomena and in the numerical solution (Leveque et 
al., 1998).  

In ideal MGD the numerical simulations are a very important tool, by reducing expensive, 
and sometimes unviable, experimental parametric studies. However, the numerical 
simulations always are limited by the ability to analyze and to solve accurately the hyperbolic 
non-linear differential equations system. To solve the ideal MGD equations system is 
convenient to use a conservative form because it allows obtaining the correct jump conditions 
of discontinuities and shocks (Leveque, 1992; Toro, 2009). The utilization of the numerical 
conservative scheme is desirable because ensures that mass, momentum, and energy are 
conserved. Several schemes has been proposed and implemented to solve the ideal MGD 
equations (Balbas et al., 2004; Myong and Roe, 1998; Udrea, 1999). In this work, a 
modification of the Harten-Yee TVD technique is used (Yee et al., 1985; Maglione et al., 
2011). The Harten-Yee TVD scheme has proven to be accurate and reliable for the simulation 
of supersonic flows of gases (Yee, 1989; Elaskar, et al., 2000; Falcinelli, et al, 2008). We 
implement this technique, with a modification that allows to numerically solve the ideal MGD 
flows. 

Among the difficulties to reach accurate numerical solutions we have the problem of the 
acoustic causality points. A new wave structure is produced by the non-linear wave 
interaction (Courant and Friedrich, 1999). In ideal MGD there are sonic points and points 
where non-convexity appears, these points are called points of acoustic causality (Serna, 
2009) and it is necessary to implement an entropy corrector scheme, introducing the necessary 
artificial viscosity. 

The main objective of this work is to prove the new sonic fix capacity to solve the Orszag–
Tang vortex problem. Another important objective was to test the code in solving problems 
with periodic boundary conditions. The proposed sonic fix had been successful implemented: 
for the 2D Riemann magnetogasdynamics problem proposed by Brio and Wu, and for the 
2.5D Tóth magnetogasdynamics flow, (Maglione and Elaskar, 2010; Maglione et al., 2011). 
Also the numerical code was used in astrophysical applications (Maglione et al., 2011). 

The numerical approach uses an approximate Riemann solver with a high resolution TVD 
technique. The eight-wave technique introduced by Powell (Powell, 1995) and the 
eigenvectors are normalized according to Zachary, et al. (1994) and Roe (1996) are 
implemented.  

2 MAGNETOGASDYNAMICS EQUATIONS 

The equations of non-dimensional transient real MGD in conservative form are given by 
(Goldston and Rutherford, 2003; D'Ambrosio and Giordano, 2004). 
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where , u ,e ,p, T are the density, velocity, total energy, pressure and temperature of 
plasma respectively. B is the magnetic field, K thermal conductivity,   electrical resistive and 
  viscous stress. Re, Al, Lu, Pe are the Reynolds, Alfvén, Lundquist  and Peclet numbers.  

The ideal MGD equations accurately describe the macroscopic dynamics of perfectly 
conducting plasma. This system expresses conservation of mass, momentum, energy, and 
magnetic flux and conform a nonlinear conservative system of eight partial differential 
equations. The equations of non-dimensional ideal one-fluid MGD in conservative form are 
given by (D'Ambrosio and Giordano, 2004); 
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To close de system, is introduced perfect gas state equation, so the specific internal energy 
depends on temperature only. Then for the total energy results as, 

                                            
1 2 2

p
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
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u u B B
                                         (3) 

Using a Cartesian coordinate system the Eq. (2) can be written, for two dimensions in 
quasi-linear form, as 

                                            c cA B
t x y

  
  

  
U U U

0                                          (4) 

with the state vector 

                                    , , , , , , ,
T

x y z x y zu u u B B B e   U                              (5) 

where [Ac] y [Bc]  are the Jacobian matrices. The evaluation of the eigenvalues and the 
eigenvectors is simpler using the conservative variables: 

                                                  , , , , , , ,
T

x y z x y zu u u B B B pW                                         (6) 

To overcome the difficulties introduced by the null eigenvalue of the Jacobian matrices, 
the eight-wave technique introduced by Powell (1995) is used in this work. The modified 
Jacobian matrix [Ap] (using primitive variables) is:   
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 The eigenvectors are normalized according to Zachary et al. (1994) and Roe (1996). The 
resulting eigenvalues representing MGD waves are: “entropy wave”, “Alfvén waves”, “fast 
magneto-acoustic waves”, “slow magneto-acoustic waves” and “magnetic flux wave”. The 
expressions for these are: 

-Entropy wave: e xu   
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-Alfvén waves:  a x au c    
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-Fast magneto-acoustic waves:  f x fu c    
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-Slow magneto-acoustic waves: s x su c    
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-Magnetic flux wave:  d xu   
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The Alfvén, entropy wave and magnetic flux waves, are linearly degenerate; hence the 
flow velocity is constant throughout the wave. The magneto-acoustic waves are nonlinear and 
can be shock or rarefaction waves. However, under particular relations between the magnetic 
field and the sound velocity theses waves may be locally non-convex (Serna, 2009).  

3 FINITE VOLUME FORMULATION 

To obtain the numerical solution of the system described by Eq.(2), a finite volume scheme 
has been implemented using a structured mesh, together an approximate Riemann solver to 
calculate the fluxes with an explicit finite-differences scheme for the evaluation of the time 
evolution. 

The numerical flows are evaluated by means of the Harten-Yee TVD technique, which 
allows the capturing of discontinuities, simultaneously achieving a second order approach 
(Yee, 1989). 

The explicit TVD-finite volume scheme can be expressed as, see Fig. (1), 
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The function   in Eq. (18) is an entropy correction to z, whereas   is generally a small 
and constant value that needs to be calibrated for each problem. A proper choice of the 
entropy parameter   for higher Mach number flows not only helps in preventing nonphysical 
solutions but can act, in some sense, as a control in the convergence rate and in the sharpness 
of shocks (Yee, 1989). 

For time-accurate calculations in explicit numerical algorithms 
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and the wave strength of the m-th wave is 
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where mL  is the left eigenvector for the m-th wave and W represents the primitive variable 
vector. 

4 NEW FIX SONIC  

If we apply to Eq. (2) the traditional Harten-Yee scheme, developed for gas dynamics 
equations, the sonic fix, given by Eq. (15), acts only on sonic point, but it does not act on non-
convex point; because the gasdynamics flows do not present non-convex points.  

To obtain “proper” numerical results for the Brio and Wu two dimensional MGD problem, 
the entropy correction of Harten scheme, Eq. (18), needs to be calibrated with relatively big 
values of  (Maglione et al., 2003). For gasdynamics hypersonic flows, a variable  
depending on the spectral radius of the Jacobian matrices of fluxes is very helpful in terms of 
stability and convergence rate (Yee, 1989). However, numerical tests show that this technique 
does not provide satisfactory results on the coplanar Riemann MGD problem. The use of a 
constant value, for 2D simulations, equal to the average in absolute value of the eigenvalues 
of the Jacobian matrices of fluxes show satisfactory results for short time only (Maglione et 
al., 2007), also this technique introduces too much numerical viscosity around a large vicinity 
of the sonic point. As a result of this scheme the solutions are not particularly satisfactory for 
long computation time.  

In order to obtain a method that does not need  calibration for each MGD problem, it is 
convenient to improve the Van Leer technique (Van Leer et al., 1989), vastly applied for 
gases. 

           1 1
2 2

max ,0m m
GD i i   

                     (21) 

           

1 1 1
2 2 2

1
2

max                  If  cuts across zero

         1,..,8 

 min                                       Otherwise           

m m m
i i i

MGD
k

m
i

k

  





  



   
 



             (22) 

For increasing the accuracy of the previous schemes and to avoid the spurious oscillations, 
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a new entropy correction function was proposed (Maglione and Elaskar, 2010; Maglione et 
al., 2011). The new entropy correction function introduces high numerical viscosity only 
restricted to the proximity of the acoustic points,  

 

  2

2

                              others 

2
+1         acoustic points

z

z z
z

 



  




       (23)                      

A comparison between Harten´s original sonic entropy fix, Eq. (18) and the new proposed 
fix Eq. (23), is shown in Fig. (2). The new function is a continuously differentiable 
approximation to z, fulfilling, 

      

   
 

   
0 1

   



   

 

 





       

(24) 

The necessity to introduce a new sonic fix for 2-D MGD flow and not for the 1-D MGD 
occurs because the number of the eigenvalues crossing over zero, when the modified Van 
Leer's technique is used, is increasing for the two-dimensional test with respect the one-
dimensional case. This effects it is specially note for the compound wave (Maglione et al., 
2011). 

 
                                         0                                                                                                                

Fig. 2 Comparison between the new sonic fix and Harten´s original (Dotted line: Original sonic fix, Long Dash 
line: Proposed Sonic fix). 

5 ORSZAG–TANG PROBLEM  

The Orszag–Tang vortex problem is a very important two-dimensional numerical test for 
MGD codes (Serna, 2009; Tóth, 2000). The main reason for choosing this problem is that it 
requires the implementation of periodic boundary conditions. This feature had not been 
implemented earlier in the numerical code. This test problem was proposed for the first time 
in (Zachary et al., 1994) and has become a standard benchmark for MGD numerical schemes. 
The evolution of this complex MGD flow contains interactions between several shock waves 
traveling at different speeds and the formation of intermediate shocks. In the Orszag–Tang 
vortex problem the flow starts from smooth initial data but gradually becomes very complex. 

 z  
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The computational domain is a square with: 

     ,   0, 2   0, 2x y                                                       (25) 

The two-dimensional MGD system (4) is solved with a uniform grid of 200 x 200 cells 
using the high resolution scheme (13), (14).  Periodic boundary conditions are imposed in 
both x- and y-directions following the methodology presented by (Leveque, 2002) for high-
resolution methods.  

The initial primitive variables (6) are defined as:  

   

   

         

         

2, ,0 ,   , ,0

, ,0 sin , , ,0 sin ,     , ,0 0

, ,0 sin , , ,0 sin 2 ,    , ,0 0

x y z

x y z

x y p x y

u x y y u x y x u x y

B x y y B x y x B x y

   

   

   

        
(26) 

with γ = 5/3. Figs. 3-5 show the numerical approximation of the Orszag–Tang vortex system 
at t = 1.533 for the x component of the velocity, density and magnetic field module, 
respectively.  

The problem is symmetric under a rotation of 180º, providing a symmetry test for the 
numerical code developed.  

Fig. 3.  Numerical approximation for the x component of the velocity in the Orszag–Tang vortex. 
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Fig. 4.  Numerical approximation for the density in the Orszag–Tang vortex. 
 

Fig. 5.  Numerical approximation for the magnetic field module in the Orszag–Tang vortex. 
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6 CONCLUSION 

In this paper the new sonic fix introduced for the TVD Harten-Yee's scheme is used to 
solve a high nonlinear flow and a very important two-dimensional numerical test for MGD 
codes: The Orszag–Tang vortex problem. Also we confirm advantages found with the new 
sonic fix in previous applications (Maglione et al., 2011). The advantages are that the sonic 
fix does not require a particular calibration (e.g.  a function of the eigenvalues of the jacobian 
matrix). The results obtained are in agreement with the ones described in (VITA, 2012; Serna, 
2009; Tóth, 2000). 
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