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Abstract. In this work we present a new inversion method to obtain AVA high-resolutionattributes
from prestack seismic data. The method aims to find a series of sparse reflectors that, when convolved
with the source wavelet, fit the observed data. To perform the inversion,we propose the use of the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA). FISTA, which can be viewed as an extension of the
classical gradient algorithm, provides sparse solutions minimizing both the misfitbetween the modeled
and the observed data, and thel1-norm of the solution. The advantage of FISTA over other methods
is that no inversion over any matrix is needed, making it numerically stable, easy to apply, economic
in computational terms, and adequate for solving large-scale problems evenwith dense matrix data.
Results on synthetic and field data show that the proposed method is capable toprovide high-resolution
AVA attributes that honor the observed data under noisy conditions, makingit an interesting alternative
to other known methods.
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1 INTRODUCTION

One of the objectives of the inversion of prestack seismic data is the determination of con-
trasts between rock properties such as compressional-wavevelocities, share-wave velocities
and densities. These contrasts can be estimated through theanalysis of the observed variation
of the amplitudes of the reflected waves with the angle of incidence. The amplitude-versus-
angle (AVA) variation can be described by the Zoeppritz equations (Zoeppritz, 1919; Yilmaz,
2001), which provide the relationship between the amplitude of the reflected compressional-
waves and the angle of incidence for a given plane wave that arrives at an interface that sepa-
rates two different media. Due to their high non-linearity,Zoeppritz equations are impractical
for applications such as data interpretation and inversion. Hence, over the last two decades,
various authors have developed several linear approximations (Aki and Richards, 1980; Shuey,
1985; Fatti et al., 1994). The coefficients of such approximations, which are the objective of
the inversion, constitute AVA attributes that may provide important information about fluid
content, a key issue for the characterization of hydrocarbon reservoirs (Castagna et al., 1998;
Smith and Gidlow, 2000).

Due to the non-uniqueness inherent to the this type of inverse problem, there might exist
several sets of coefficients that honor the data equally well, and because some of these might
exhibit a hugel2-norm they are meaningless. More useful solutions can be obtained by the use
of some kind of regularization to promote a certain type of solution through the minimization
of a suitable norm. Sparseness is a property that can be incorporated asa priori information
through l1-norm regularization. Sparse solutions are desirable because they can be used to
characterize significant and close reflectors more accurately than using traditional quadraticl2-
normregularization. In this sense,l1-normregularization favors sparse-spike solutions that lead
to high-resolution images, though at the expense of some mathematical burden and increased
computational cost.

Sparse-spike AVA inversion has been studied with very interesting results by several authors,
either based on a Bayesian inversion where sparseness is obtained through the use of appropri-
ate long-taileda priori probability distributions (Downton and Lines, 2003; Misra and Sacchi,
2008; Alemie and Sacchi, 2011), or based on global optimization algorithms where sparseness
is incorporated as ana priori condition (Pérez and Velis, 2011). The method proposed in this
paper shares the same objectives as those works, but introduces a simple and cost-effective new
procedure to solve this kind of inverse problems: the Fast Iterative Shrinkage-Thresholding Al-
gorithm (FISTA). FISTA is a powerful algorithm presented very recently (Beck and Teboulle,
2009) that can be used to minimize, together with the misfit term, the l1-norm; but as far as
we know, has never been applied for seismic data inversion. FISTA is based on the Iterative
Shrinkage Thresholding Algorithm (ISTA) (Daubechies et al., 2004), an extension of the clas-
sical gradient algorithm to solve large-scale linear inverse problems in a simple way, where at
each iteration only matrix-vector multiplications, and nomatrix inversions, are involved. ISTA
is known to have slow convergence, but FISTA is shown to be faster by several orders of mag-
nitude. In practice, both the misfit and thel1-normare combined into a cost function by means
of a trade-off parameterλ that balances their overall impact.

We tested the method on synthetic normal-move-out (NMO) corrected prestack data using
the classical two-term Shuey’s approximation to the Zoeppritz equations (Shuey, 1985), show-
ing that high-resolution AVA attributes can be derived fromnoisy data very accurately. Tests
on field data allowed us to obtain high-resolution AVA attribute images such asInterceptand
Gradientimages that honor the observed data and show a good lateral continuity.
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2 THEORY

For the inversion we rely on the convolutional model. This model assumes that the medium is
composed of a series of flat, parallel, homogeneous and isotropic layers. Given an angle-gather,
the trace corresponding to thei-th angle of incidenceθi can be expressed as

s(θi) = w ∗ r(θi) + n(θi), i = 1, · · · , N (1)

wherew is the source wavelet of dimensionLw, r(θi) is the reflectivity of dimensionLr, and
n(θi) is the random noise. Bothn(θi) ands(θi) have dimensionLs = Lw + Lr − 1.

The reflection coefficient for a reflector at timet can be approximated, in a general form, as

rt(θ) =
n

∑

k=1

xtkgk(θ), (2)

wherextk are coefficients that depend on the physical properties of the rocks on each side of
the interface (velocities and densities),n is the order of the chosen approximation (usually
n = 2 or 3), andgk(θ) are functions that depend on the angle of incidence, which must be less
than the critical angle (Ikelle and Amundsen, 2005).

Combining equations (1) and (2), and omitting the noise term for simplicity, it yields

s(θi) = A(θi)x, i = 1, · · · , N (3)

wherex = (x11, · · · , xLr1, · · · , x1n, · · · , xLrn)
T andA(θi) is an augmented matrix of dimen-

sionLs × nLr that can be expressed as

A(θi) = (A1(θi)|...|An(θi)) . (4)

Here,Ak(θi) with k = 1, ..., n are sub-matrices of dimensionLs × Lr, whose elements are
given by

[Ak(θi)]hj = gk(θi)wh−j+1, (5)

for h = 1, ..., Ls andj = 1, ..., Lr. Then, theN systems of equations given by equation (3) can
be arranged in a unique system in the form

Ax = s, (6)

whereA is a column block matrix with blocks given byA(θi), ands is a one column block
vector with blocks given bys(θi).

A sparse solution of the system given by equation (6) can be estimated using least-squares
with l1-normregularization, which implies to find thex that minimizes the cost function

J =‖ Ax− s ‖2 +λ ‖ x ‖1 . (7)

In this equation, the first term, which represents the error or misfit, is used to measure the
differences between the observed and the modeled data. On the other hand, the second term is
used to penalize non-sparse solutions. The trade-off parameterλ is used to balance the weight
of the two terms. To find the minimum ofJ we propose the use of FISTA (Beck and Teboulle,
2009). Step-by-step, FISTA is as follow:
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1. Set the constantα greater than or equal to the maximum eigenvalue ofA
T
A.

2. Setz1 = x0 andt1 = 1, wherex0 is an initial solution.

3. For each FISTA iterationk = 1, 2, 3, ...:

(a)

xk = Tλ/2α

{

zk −
1

α
A

T (Azk − s)

}

, (8)

whereTβ{·} is a soft-thresholding function which is applied to each element of its
vectorial argument and is defined by

Tβ{y} =

{

y (1− β/|y|) . if |y| ≥ β
0. if |y| < β

(9)

(b)

tk+1 =
1 +

√

1 + 4t2k
2

. (10)

(c)

zk+1 = xk +
tk−1

tk+1

(xk − xk−1) . (11)

(d) Check convergence or stopping condition.

Step 1 is required to prevent the argument of the soft-thresholding function to become neg-
ative. To find the maximum eigenvalue we use the Rayleigh’s power method, which is an
efficient technique to find an approximation of the dominant eigenvalue of a matrix, e.g. see
Larson and Edwards(1999).

3 NUMERICAL EXAMPLES

3.1 First example: synthetic data

We generated a synthetic NMO-corrected gather consisting of 13 traces withθi ∈ (0◦, 36◦)
and 13 reflectors with times between 0.0 and 1.6 s. The AVA response was modeled using the
two-term Shuey approximation, then equation (2) becomes

rt(θ) = It +Gt sin
2(θ). (12)

The coefficientsIt andGt, which are the objective of the inversion and are functions of the phys-
ical properties of the media at each side of an interface, areknown asInterceptandGradient
(Shuey, 1985). To test the method against noisy data we added Gaussian noise with standard
deviationσ = maxti |st(θi)|/SNR, where SNR is the signal-to-noise ratio. In this particular
example we set SNR=10. The data was generated using a Ricker wavelet (Ricker, 1940) with
central frequencyf0 = 30 Hz. Figures1(a) and (b) show theInterceptandGradientvalues used
to generate the data and Figures1(c) and (d) show the noise-free data and the noisy data.

Before applying FISTA to minimize equation (7) we need to select and appropriate trade-off
parameter. There are various methods to estimateλ, such as the L-curve criterion, the dis-
crepancy principle, and the generalized cross-validationcriterion (Farquharson and Oldenburg,
2004). For the numerical examples we decided to estimate the trade-off parameter using the
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discrepancy principle. This formulation is preferred whenan estimation of the noise level is
available. In practice, we construct thel1-curve of the solution, also known as Pareto curve
(Berg and Friedlander, 2009), and choseλ as the one that minimizes thel1-norm while the
l2-normof the errors (i.e. the misfit) remains less or equal than the noise level.
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Figure 1: ActualIntercept(a) andGradient(b) used to generate the synthetic data. c) Noise-free synthetic data. d)
Noisy data with SNR=10.

Figure2 shows thel1-curves corresponding to the noise-free and the noisy gathers. Clearly,
the higher theλ, the lower thel1-norm, andvice versa. Through the discrepancy principle we
estimated a value ofλ = 0.25 for the data with SNR = 10.
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Figure 2: Red line:l1-curve corresponding to a) noise-free data, b) noisy data with SNR=10. The blue line
indicates the noise level.

Figure3(a) shows the actualInterceptused to generate the data, Figure3(b) shows theIn-
terceptestimated from the noise-free data, and Figure3(c) shows theInterceptestimated from
the noisy data. In the second case (nosiy data), we can observe that the results are very accurate
even in the presence of noise. The solution shows some spurious spikes, but their amplitudes
are relatively small. Figures3(d) and3(e) show the results of the inversion of the noisy data
using conventional methods such as the least-squares (LS) inversion or theIntercept/Gradient
sample-by-sample analysis (Yilmaz, 2001), respectively. The low resolution of the solutions
obtained by these two techniques makes it difficult to interpret the estimated attributes. In the
case of the conventional LS inversion, a prewhitening was used to stabilize the inversion, thus
the amplitudes of the attributes are underestimated. The results show that under noisy condi-
tions the solutions obtained by FISTA are much more accuratethan the ones obtained with a
conventional strategy.

Figure3(f) shows the actualGradientused to generate the data while Figures3(g) to 3(j)
show the estimatedGradientusing FISTA and the conventional methods. As in the case of the
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Intercept, in the presence of noise FISTA estimated theGradientmuch more accurately than
the conventional strategies.
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Figure 3: ActualIntercept(a) andGradient(f). EstimatedInterceptandGradient: b) and g) from noise-free data, c)
and h) from data with SNR=10, d) and i) using the conventionalLS, e) and j) using theIntercept/Gradientanalysis.
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Figure 4: EstimatedInterceptandGradientfrom data with SNR=10 using a) and f)λ = 1.0, b) and g)λ = 0.5, c)
and h)λ = 0.25, d) and i)λ = 0.1, e) and j)λ = 0.01.
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Figure 4 shows that whenλ is selected smaller than the value given by the discrepancy
principle, which is equal to 0.25, the amplitudes of the spurious spikes both in theIntercept
and theGradientmight become larger than acceptable. On the other hand, ifλ is larger than
this value, the estimatedGradientmight be severely underestimated. The last issue is expected
because theGradienthas a larger scale that theIntercept. Thus, forλ larger than optimal value,
thel1-norm term in equation (7) becomes significantly more sensitive to theGradientvariations
than the misfit term. Then, FISTA tends to reduce at each iteration thel1-norm of theGradient
more than thel1-norm of theIntercept, whitout affecting the misfit significantly.

3.2 Second example: field data

The field data consist of 110 NMO-corrected angle-gathers with a sampling interval of 4 ms
and a time window from 0.1 s to 0.5 s. To improve the lateral continuity the inversion was done
on “super-gathers”, where each super-gather was built by averaging five consecutive gathers.
Once inverted, the array containing the estimatedInterceptandGradientcoefficients was as-
signed to the center gather. The next super-gather adds the next gather and discards the first one,
and so the inversion process is repeated until all gathers are processed. The wavelet used in the
inversion was estimated from each super-gather by assumingzero-phase (Robinson and Treitel,
2002).

Figures5(c) and5(d) show the resulting high-resolutionInterceptandGradient images ob-
tained using FISTA. All significant reflectors were resolvedcorrectly and a good lateral conti-
nuity was obtained, showing the consistency of the proposedmethod. From the estimated AVA
coefficients we reconstruct the gathers and calculate the corresponding stack which is shown
in Figure5(b). This is quite similar to the original stacked data (Figure 5(a)), showing that the
inversion honors the original input data.
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Figure 5: a) Actual stack, b) estimated stack from the inverted data, c) and d) high-resolution invertedIntercept
andGradientimage using FISTA.
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Figures6(a) and6(b) show theInterceptandGradient images obtained using the conven-
tional LS inversion. As in the case of the synthetic data example, the amplitudes of the estimated
solutions were very much affected by the prewhitening used to stabilize the inversion, specially
theGradientimage, that was significantly underestimated. Finally, Figures6(c) and6(d) show
the Interceptand Gradient images obtained using theIntercept/Gradient sample-by-sample
analysis. As can be seen, the resolution of the solutions obtained using the method proposed in
this work is higher than the obtained using the conventionalmethods.
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Figure 6: a) and b) EstimatedInterceptandGradientsection using conventional LS inversion, c) and d) estimated
InterceptandGradientsection using aIntercept/Gradientanalysis.

4 CONCLUSIONS

In this work we presented a sparse-spike AVA inversion technique which is based on the
Fast Iterative Shrinkage-Thresholding Algorithm. The method aims to obtain high-resolution
AVA attributes from prestack data, such asInterceptandGradient, minimizing both the misfit
between the modeled and the observed data, and thel1-norm of the solution. The numerical
tests on synthetic data showed that the method is robust in presence of noise and provides very
good results in all inverted magnitudes. Comparisons against conventional methods showed that
the proposed strategy is capable to obtain solutions with higher resolution, and therefore easily
to interpret. Because FISTA only uses matrix-vector multiplications, the method is economic in
terms of computational cost. Numerical tests on field data showed that the proposed technique
is capable of obtaining high-resolutionInterceptandGradient images that honor the observed
data, improving the solutions obtained using conventionalmethods.
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