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Abstract. In this work we present a new inversion method to obtain AVA high-resoluwitributes
from prestack seismic data. The method aims to find a series of sparséorsftbat, when convolved
with the source wavelet, fit the observed data. To perform the invensi@propose the use of the Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA). FISTA, whi@nde viewed as an extension of the
classical gradient algorithm, provides sparse solutions minimizing both the besiieen the modeled
and the observed data, and thenorm of the solution. The advantage of FISTA over other methods
is that no inversion over any matrix is needed, making it numerically stablg,teagpply, economic
in computational terms, and adequate for solving large-scale problemsnaétfedense matrix data.
Results on synthetic and field data show that the proposed method is cappigeitie high-resolution
AVA attributes that honor the observed data under noisy conditions, mélkamgnteresting alternative
to other known methods.
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1 INTRODUCTION

One of the objectives of the inversion of prestack seismia dathe determination of con-
trasts between rock properties such as compressional-wegeities, share-wave velocities
and densities. These contrasts can be estimated througimaéihesis of the observed variation
of the amplitudes of the reflected waves with the angle ofdeicce. The amplitude-versus-
angle (AVA) variation can be described by the Zoeppritz ¢éigua Zoeppritz 1919 Yilmaz,
2007, which provide the relationship between the amplitudehef teflected compressional-
waves and the angle of incidence for a given plane wave thigearat an interface that sepa-
rates two different media. Due to their high non-lineargeppritz equations are impractical
for applications such as data interpretation and inversidance, over the last two decades,
various authors have developed several linear approamafiki and Richards198Q Shuey
1985 Fatti et al, 1994). The coefficients of such approximations, which are thectbje of
the inversion, constitute AVA attributes that may provideportant information about fluid
content, a key issue for the characterization of hydrogareservoirs Castagna et 411998
Smith and Gidlow2000.

Due to the non-uniqueness inherent to the this type of ievpreblem, there might exist
several sets of coefficients that honor the data equally, @ell because some of these might
exhibit a hugd,-norm they are meaningless. More useful solutions can kearadat by the use
of some kind of regularization to promote a certain type d¢@ison through the minimization
of a suitable norm. Sparseness is a property that can bepm@ted as priori information
through;-norm regularization. Sparse solutions are desirable becagsectdn be used to
characterize significant and close reflectors more acdyrthi@n using traditional quadratig-
normregularization. In this sensg;normregularization favors sparse-spike solutions that lead
to high-resolution images, though at the expense of sombkeammsdtical burden and increased
computational cost.

Sparse-spike AVA inversion has been studied with very @gting results by several authors,
either based on a Bayesian inversion where sparsenessiisenbtiarough the use of appropri-
ate long-taileda priori probability distributions Downton and Lines2003 Misra and Sacchi
2008 Alemie and Sacchi2011), or based on global optimization algorithms where spasgn
is incorporated as aa priori condition Pérez and Velis2011). The method proposed in this
paper shares the same objectives as those works, but ine®disimple and cost-effective new
procedure to solve this kind of inverse problems: the Fasatlive Shrinkage-Thresholding Al-
gorithm (FISTA). FISTA is a powerful algorithm presentedyeecently Beck and Teboulle
2009 that can be used to minimize, together with the misfit tetme,/{-norm; but as far as
we know, has never been applied for seismic data inversid®8TA-is based on the Iterative
Shrinkage Thresholding Algorithm (ISTAP@aubechies et gl2004), an extension of the clas-
sical gradient algorithm to solve large-scale linear isegproblems in a simple way, where at
each iteration only matrix-vector multiplications, andmatrix inversions, are involved. ISTA
is known to have slow convergence, but FISTA is shown to beerfds/ several orders of mag-
nitude. In practice, both the misfit and thenormare combined into a cost function by means
of a trade-off parametey that balances their overall impact.

We tested the method on synthetic normal-move-out (NMOjeobed prestack data using
the classical two-term Shuey’s approximation to the Zogppquations $huey 1985, show-
ing that high-resolution AVA attributes can be derived frooisy data very accurately. Tests
on field data allowed us to obtain high-resolution AVA atiitd images such dsterceptand
Gradientimages that honor the observed data and show a good lateitaiwaioy.
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2 THEORY

For the inversion we rely on the convolutional model. Thigdelassumes that the medium is
composed of a series of flat, parallel, homogeneous andsotiayers. Given an angle-gather,
the trace corresponding to tkwth angle of incidencé; can be expressed as

wherew is the source wavelet of dimensidn,, r(6;) is the reflectivity of dimensior.,, and
n(0;) is the random noise. Boti(6#;) ands(6¢;) have dimensioi; = L,, + L, — 1.
The reflection coefficient for a reflector at timmean be approximated, in a general form, as

Tt(e) = Z fL’thk@); (2)
k=1

wherex;, are coefficients that depend on the physical propertieseofdbks on each side of
the interface (velocities and densities),is the order of the chosen approximation (usually
n = 2 or 3), andgy(0) are functions that depend on the angle of incidence, whicét ineiless
than the critical anglelkelle and Amundser2005.

Combining equationsl] and @), and omitting the noise term for simplicity, it yields

s(0) = A(6)x, i=1,-- N (3)

wherex = (z11, -+ ,Tp,1, s T1n, > Tr,n) " @andA(6;) is an augmented matrix of dimen-
sion L, x nL, that can be expressed as

A(0;) = (A1(6s)]...|An(0:)) - (4)

Here, A(6;) with £ = 1,...,n are sub-matrices of dimensidn, x L,, whose elements are
given by

[Ak(0:)]; = gr(0i)wn—js1, ()

forh=1,...,L,andj =1, ..., L,.. Then, theN systems of equations given by equati@hgan
be arranged in a unique system in the form

Ax =s, (6)

where A is a column block matrix with blocks given b¥(6;), ands is a one column block
vector with blocks given bg(6;).

A sparse solution of the system given by equationcan be estimated using least-squares
with [;-normregularization, which implies to find thethat minimizes the cost function

J=ll Ax—s|* +A [ x ] - (7)

In this equation, the first term, which represents the erromisfit, is used to measure the
differences between the observed and the modeled data.eQutitér hand, the second term is
used to penalize non-sparse solutions. The trade-off peeamis used to balance the weight
of the two terms. To find the minimum of we propose the use of FISTBéck and Teboulle
2009. Step-by-step, FISTA is as follow:
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1. Set the constant greater than or equal to the maximum eigenvalud 6A..
2. Setz,; = xo andt; = 1, wherex, is an initial solution.
3. For each FISTA iteratioh = 1,2, 3, ...
(a) ,
Xp = T)\/Qa {Zk - aAT (AZk - S)} ) (8)

whereTs{-} is a soft-thresholding function which is applied to eachhedat of its
vectorial argument and is defined by

Toty} = { AU T, ©
(b) i
U1 = H—21+4tk (10)
() .
Zp+1 = Xk + tk—_l (Xk - Xk_1> . (11)

k+1

(d) Check convergence or stopping condition.

Step 1 is required to prevent the argument of the soft-timldsig function to become neg-
ative. To find the maximum eigenvalue we use the Rayleigh'sgpawethod, which is an
efficient technique to find an approximation of the dominageevalue of a matrix, e.g. see
Larson and Edwardd.999.

3 NUMERICAL EXAMPLES
3.1 First example: synthetic data

We generated a synthetic NMO-corrected gather consisfidg traces withy; € (0°,36°)
and 13 reflectors with times between 0.0 and 1.6 s. The AVAaresp was modeled using the
two-term Shuey approximation, then equati@nlfecomes

Tt<9) = [t + Gt SiIlZ(@). (12)

The coefficientd; andG,, which are the objective of the inversion and are functidrie@phys-
ical properties of the media at each side of an interfacekiaog/n asinterceptand Gradient
(Shuey 1985. To test the method against noisy data we added Gaussise with standard
deviationo = maxy; |s;(0;)|/SNR, where SNR is the signal-to-noise ratio. In this parécul
example we set SNR=10. The data was generated using a Rickelewv@icker, 1940 with
central frequency,, = 30 Hz. Figuresl(a) and (b) show thinterceptandGradientvalues used
to generate the data and Figudgs) and (d) show the noise-free data and the noisy data.
Before applying FISTA to minimize equatioif)(we need to select and appropriate trade-off
parameter. There are various methods to estimatguch as the L-curve criterion, the dis-
crepancy principle, and the generalized cross-validatidgarion (Farquharson and Oldenburg
2004). For the numerical examples we decided to estimate the-édparameter using the
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discrepancy principle. This formulation is preferred wlanestimation of the noise level is
available. In practice, we construct thecurve of the solution, also known as Pareto curve
(Berg and Friedlande2009, and chose\ as the one that minimizes thig-norm while the
lo-normof the errors (i.e. the misfit) remains less or equal than tigerlevel.

d .
a) Actual Intercept b) Actual Gradient ©) Synthetic data, noise free ) Synthetic data, SNR=10
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Figure 1: Actualntercept(a) andGradient(b) used to generate the synthetic data. c) Noise-free siatthata. d)
Noisy data with SNR=10.

Figure2 shows thd;-curves corresponding to the noise-free and the noisy atdearly,
the higher the\, the lower thd;-norm, andvice versa Through the discrepancy principle we
estimated a value of = 0.25 for the data with SNR = 10.
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Figure 2: Red line:l;-curve corresponding to a) noise-free data, b) noisy dath &NR=10. The blue line
indicates the noise level.

Figure 3(a) shows the actuahterceptused to generate the data, Fig@(b) shows thdn-
terceptestimated from the noise-free data, and Fig(® shows thdnterceptestimated from
the noisy data. In the second case (nosiy data), we can @tbevthe results are very accurate
even in the presence of noise. The solution shows some sigwsokes, but their amplitudes
are relatively small. Figure3(d) and3(e) show the results of the inversion of the noisy data
using conventional methods such as the least-squaresrf&sion or thénterceptGradient
sample-by-sample analysi¥ilmaz, 2001), respectively. The low resolution of the solutions
obtained by these two techniques makes it difficult to imetrghe estimated attributes. In the
case of the conventional LS inversion, a prewhitening wasl tis stabilize the inversion, thus
the amplitudes of the attributes are underestimated. Thdtseshow that under noisy condi-
tions the solutions obtained by FISTA are much more accubate the ones obtained with a
conventional strategy.

Figure 3(f) shows the actuabGradientused to generate the data while FiguBég) to 3(j)
show the estimate@radientusing FISTA and the conventional methods. As in the caseeof th
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Intercept in the presence of noise FISTA estimated @mdientmuch more accurately than
the conventional strategies.

a) Actual b) FISTA, noise free C) FISTA, SNR=10 d) LS inversion, SNR=10 e) I/G analysis. SNR=10
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Figure 3: Actualntercept(a) andGradient(f). EstimatednterceptandGradient b) and g) from noise-free data, c)
and h) from data with SNR=10, d) and i) using the conventituale) and j) using thinterceptGradientanalysis.
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Figure 4: EstimatethterceptandGradientfrom data with SNR=10 using a) andX)= 1.0, b) and g)\ = 0.5, )
and h)A = 0.25, d) and i)A = 0.1, e) and j)A = 0.01.
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Figure 4 shows that when\ is selected smaller than the value given by the discrepancy
principle, which is equal to 0.25, the amplitudes of the gpus spikes both in théntercept
and theGradientmight become larger than acceptable. On the other handisilarger than
this value, the estimate@radientmight be severely underestimated. The last issue is exgbecte
because th&radienthas a larger scale that th&ercept Thus, for) larger than optimal value,
thel,-norm term in equation/s) becomes significantly more sensitive to theadientvariations
than the misfit term. Then, FISTA tends to reduce at eachtiveréhel;-norm of theGradient
more than thé,-norm of thelntercept whitout affecting the misfit significantly.

3.2 Second example: field data

The field data consist of 110 NMO-corrected angle-gathetis avsampling interval of 4 ms
and a time window from 0.1 s to 0.5 s. To improve the lateratiooiity the inversion was done
on “super-gathers”, where each super-gather was built byaging five consecutive gathers.
Once inverted, the array containing the estimdtedrceptand Gradientcoefficients was as-
signed to the center gather. The next super-gather addsxhgather and discards the first one,
and so the inversion process is repeated until all gatherpracessed. The wavelet used in the
inversion was estimated from each super-gather by assuramgphaseRobinson and Treitel
2002.

Figures5(c) and5(d) show the resulting high-resolutidnterceptand Gradientimages ob-
tained using FISTA. All significant reflectors were resolwedrectly and a good lateral conti-
nuity was obtained, showing the consistency of the propasettiod. From the estimated AVA
coefficients we reconstruct the gathers and calculate tiresmonding stack which is shown
in Figure5(b). This is quite similar to the original stacked data (Fegt(a)), showing that the
inversion honors the original input data.
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Figure 5: a) Actual stack, b) estimated stack from the imddata, c) and d) high-resolution invertedercept
andGradientimage using FISTA.
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Figures6(a) and6(b) show thelnterceptand Gradientimages obtained using the conven-
tional LS inversion. As in the case of the synthetic data eolanthe amplitudes of the estimated
solutions were very much affected by the prewhitening useabilize the inversion, specially
the Gradientimage, that was significantly underestimated. FinallyuFeg6(c) and6(d) show
the Interceptand Gradient images obtained using tHaterceptGradient sample-by-sample
analysis. As can be seen, the resolution of the solutioresradad using the method proposed in
this work is higher than the obtained using the conventiomethods.

a) b)
Estimated Intercept using conventional LS inversion Estimated Gradient using conventional LS inversion
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Figure 6: a) and b) EstimatddterceptandGradientsection using conventional LS inversion, c) and d) estichate
InterceptandGradientsection using dnterceptGradientanalysis.

4 CONCLUSIONS

In this work we presented a sparse-spike AVA inversion tephewhich is based on the
Fast Iterative Shrinkage-Thresholding Algorithm. The Imoet aims to obtain high-resolution
AVA attributes from prestack data, suchlaserceptandGradient minimizing both the misfit
between the modeled and the observed data, anf]therm of the solution. The numerical
tests on synthetic data showed that the method is robusesepce of noise and provides very
good results in all inverted magnitudes. Comparisons ageamsentional methods showed that
the proposed strategy is capable to obtain solutions wighdriresolution, and therefore easily
to interpret. Because FISTA only uses matrix-vector muttgilons, the method is economic in
terms of computational cost. Numerical tests on field datavek that the proposed technique
is capable of obtaining high-resolutidmterceptand Gradientimages that honor the observed
data, improving the solutions obtained using conventiomathods.
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