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Abstract. The response to resonant and near-resonant forcing is studied in a simple model

using the forced inviscid Burgers equation ut +
(

u2

2

)

x
= f . The nonlinear term represents

simultaneously energy transfer and dissipation mechanisms in more complex systems.
In this work we show the energetic interplay between the dissipation done by the solution of

the forced Burgers equation and the work done by the forcing function.
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1 INTRODUCTION

The forced inviscid Burgers equation is studied as a model for the non-linear interaction of
dispersive waves:

ut +

(

1

2
u2

)

x

= f(x, t) (1)

where the dependent variable u(x, t) represents a mode with linear frecuency ω = 0, and u

2π is periodic in space with vanishing mean
∫ 2π

0
u dx = 0 and the force f(x, t) is tuned to

mimic the effects of the other modes, near or far from resonance with u. Moreover f smooth
2π periodic in space with vanishing mean

∫ 2π

0
fdx = 0.

A resonant force f is one that does not depend on time, and a near resonant force is one that
evolves slowly on time.

The model equation (1) above is a simplified version of the equations describing the interac-
tion among resonat triads involving a non-dispersive wave1 .

The simplification consists in freezing the two dispersive members of the triad, thus making
them act as a prescribed force on u(x, t).

The tone of this paper is mostly descriptive, with the emphasis placed on the relevance of the
striking behavior of our simple model to more general systems. For the proofs of many of its
results, as well as for a more detailed account of the numerics, we refer the reader to2 .

It is well known that the inviscid Burgers equation develops shocks. The equation has an
energy:

E(t) =

∫ 2π

0

1

2
u2(x, t)dx

which satisfies the equation:
dE

dt
+ Ed = Wf

dE

dt
−

∑

(

1

12
[u]3

)

=

∫ 2π

0

u(x, t) f(x, t) dx.

Brackets stand for jump across of the enclosed expression [u] = u+ − u−. Ed > 0 accounts
for the dissipation of energy at the shocks. Wf represents the work done by the forcing term f .

For the case of a single forcing mode the equation (1) has the form:

ut +

(

1

2
u2

)

x

= f(x− ωt) (2)

where f is ’nice’ and that the initial conditions are such that the solution is at all times piece-
wise smooth with a finite number of shocks. The equation (2) admits exact travelling waves
solutions of the form:

u(x, t) = G(x− ω t) z = x− ωt

Then the equation becomes the ode
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d
dz

(

1
2
(G− ω)2

)

= f(z).
This has solution

G(z) = ω ±
√

2F (z) (3)

where F =
∫

f(s)ds, with the integration constant selected so that F (z) ≥ 0. We define Fcr

such that minz∈[0,2π)Fcr = 0.
These solutions not only can be written exactly in closed form but they describe the long

behavior for the solution of (2).
Generically, three distinct cases can arise with the solution determined uniquely by ω if Fcr

has a single minimum per period2 .

2 TWO FORCING MODES

Here we study the effects on the solutions of (1) of a forcing term consisting of the sum of two
travelling waves of different speeds.

Our interest in this situation arises from the general question of the effects of the superposi-
tion of many near resonats interactions in general systems.

ut +

(

1

2
u2

)

x

= g1(x) + g2(x− Ω t). (4)

We distinguish two distinct extreme regimes.
1) Ω >> 1, the leading order effects of g2 on u cancel due to averaging, see2 .
2) Quasi-steady forcing:
Ω � 1, g1 and g2 combine into a single quasisteady force yielding a quasi- steady solution

u(x, Ωt) punctuated by intermitent events.
We will only clarify the second case.
When 0 < Ω << 1 we can think of the solution of (4) as frozen in time near each t = t0.
This yields a quasi-steady leading order solution u = u(x, Ωt) where u(x, Ωt0) is given

by the steady state solution ( case Ω = 0) to the case with a single forcing mode with f =
g1(x) + g2(x− Ωt0).

We consider τ = Ω t slow time variable and the following asymptotic expansion:

u(x, t) = u0(x, τ) + Ω u1(x, τ) + O(Ω2), (5)

then at the leading order we obtain:
u0(x, τ) = ±

√

2 G(x, τ) G =
∫

g1(x) + g2(x− τ)dx, minG = 0.
These solution works as long G has a single minimum per period in which the position of

the shock s(τ) and the position for the smootly crossing xm(τ) (where minG = 0), are well
defined and depend smoothly on τ .

However there will generally be some special times τ = τcr at which fails, generically G

will have several local minimus evolving in time with one of then smaller than the other. The
generic special times occur when two local minimums become the global minimum, see figure
1.
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At this times s and xm cease to be smooth, jump discontinuily from one position to the other.
There is a set of discrete times when the solution u needs to adjust rapidly from one quasi-

steady to another. The existence of these adjustment process which we call ”storms” raises
some questions:

Figure 1: Asymptotic t → ∞ solution to the equation

What is the time scale (ie. duration) of a storm?
During a storm are there significant effects in the energy exchange between the forcing f

and the solution u?
Away from the storm there is leading order balance between Wf and Ed, Ed −Wf = O(Ω).
How is the balance affected by the storms?
The energy E ∼

∫ 2π

0
1
2
u2

0dx =
∫ 2π

0
Gdx, is continuous in τ even though u0 itself is not. The

any extra energy exchange between u and f during the storm will need to be matched by extra
dissipation.

By using an asymptotic expansion we can compute that the scale of the time during the storm
is: T =

√
Ω t .

From figure 2 we can observe that the energy dissipation rate Ed (the same is valid for the
work done by the forcing Wf ) shows a marked spike during the storm, these doubling of the
energy dissipation rate is easily explained as arising from the apparearance of an extra shock
during the storm of a size comparable to the regular one.

The close agreement between the energy dissipated and the work performed by the forcing
can be explained by the slow evolution of the storms faster than the regular O(Ωt) but clearly
slower than O(t) rate. Hence at any particular time the energy input and output need to be
balance to leading order, then even during the storm the solution is quasi-steady, Ed −Wf =

0(
√

(Ω)).
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Figure 2: Energy dissipation rate Ed = Ed(t)

3 CONCLUSIONS

Non linear dissipation by breaking waves introduces a rich scenario. Moreover we obseve
a sharp transition between near-resonant and far from resonant behavior and an intermitent
behavior with multiple near resonances.
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