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Abstract. In the last twenty years two demanding problems were concurrently studied by
chemical engineering and mathematical researchers: the modelling of chemical reactors
other similar devices and the processes inside them and the numerical (and analytical) solt
of the sets of differential algebraic equations that these models provide them. In this paj
complex subproblem of those just described is considered: the appearance of singulariti
the domain or the border of the modelled process device in the case of PDE models.

The idea of this work is to isolate the possible singularities by means of simplifying the |
nomenological models as far as possible and assessing the errors in the numerical solt
using classical methods and, in particular, the mixed mesh qualitative error estimation me
proposed by the authors. The main idea of this mixed or composite mesh method is tc
struct a numerical model where two or more finite element meshes of different granularitie:
superimposed over the whole domain of the problem.

The mentioned simplifications produce several 1D and 2D differential equation probl
with singularities in the domain and in its border that are solved and their errors studied.

The main conclusion of this presentation is the following: for the models the authors
with it is possible to numerically detect the singularities and to devise computationally che:
methods for their solution.
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1 INTRODUCTION

In recent articles we have developed composite finite element models of several problem
are drawn from Mechanical and Chemical Engineering with the aim of providing reas@nat
posteriorierror estimates, and to obtain improved numerical solutidfs The main idea of
this composite mesh method is to construct a numerical model where two or more finite
ment meshes of different granularities (size of the elements) are superimposed over the
domain of the problem. The motivation of these developments came from the mixture th
of multiphase materia®$. In this class of materials each component occupies a fraction of
total volume. The physical properties of the composite material is obtained from those of «
ponent phases weighted by a participation factor, which is taken as their volumetric fra
or another suitable quantity. In a similar way our numerical model is composed by diffe
finite element meshes and the properties of the whole model is obtained by adding those
component meshes multiplied by a participation factor. In this case, the different behavi
each component come from their intrinsic accuracy instead of their physical properties. Ir
work we study several properties associated to the application of the method to elliptic
lems with boundary conditions of Dirichlet, Neumann, and mixed types and showing boun
singularities.

The finite element error estimates may be compuatexiiori or a posteriori A posteriori
error estimates, computed from the numerical solution, are of practical importance and
be categorized under two main subclasses. The first of these is stress recovery, which i
referred to as a postprocessing or flux-projection technique. It was proposed in the contt
linear elliptic problem$. The second subclass are thoseesidual basedestimators, explicit
or implicit. The literature covering these topics is Vst The error estimates performed by
means of the composite mesh fall within the residual based estimators. The composite |
proposed in previous papers from the authors, is formed by two finite element meshes st
the problem domain. The meshes have different elementhsiaad the connection between
components is enforced, for instance, by connecting common nodes. The patrticipation fe
are defined as and(1 — «) for the fine and coarse meshes, respectively.

Several illustrating examples are treated in this paper:

1. The test problems based on variants of the elliptic stationary form of the heat equati
duy —V - (cVu)+au=f (1)
with initial values, and boundary conditions of Dirichlet, Neumann and Robin type.

2. The elliptic stationary equation associated to the parabolic advection-diffusion equa
u — Au~+vVu + p(u) =0 (2)

with initial values, and boundary conditions of Dirichlet, Neumann and Robin type.
this equatiorp is a polynomial function.
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3. Plane stress and strain problems drawn from linear elasticity.

A finite element model of the variational equation is then set, in order to discretize the p
lem in the space coordinates. The task is done in a mixed mesh framework designed to
a posteriorierror estimation of the numerical solutions and to refine the mesh by means ¢
adaptive algorithm. The primary goal of the adaptive composite mesh finite element methc
the stationary problem is to control the space discretization error of the approximate soluti
measured from integrals of double mesh residuals. The adaptive process igGritief the
h-r type.

The rest of the paper is devoted to the statement of some conclusions about the implen
tion details of the proposed method.

2 NOTATION, MODELS AND METHODS

The test problems we deal with are based on variants of the elliptic stationary form of the
equation
-V - (cVu)+au=f (3)

with boundary conditions of Dirichlet:¢: = r on 92), Neumann# - (cVu) = g on 0f2) and
Robin (7 - (cVu) + qu = g on 0f2) type, where; is the outward unit normal, ang ¢, h, andr
are functions defined oiX2. Both, the linear and nonlinear cases are treated.

By standard calculations we derive the weak form of the differential equation:Fsuth
that

/((CVU) -V + auv — fv) de = / (—qu+ g)vds, Yv 4)
Q o002

The stationary elliptic counterpart of the diffusive-advective nonlinear equation case is

treated. The main equation is

-V - (cVu) +vVu+ p(u) =0in Q (5)

wherep(u) is a polynomial function in:, with Dirichlet and Robin® - (cVu) + ¢(u) = 0 on
0f2) boundary conditions, wheigu) is a polynomial function defined a.

The standard numerical integration of the PDE is performed by the Matlab toolboxes, w
are efficient for the classes of problems we deal with (see the Matlab reference books for d
on these routines, e1§). We resort to the Matlab Partial Differential Equations Toolbox for tf
ancillary developments.

A description of the composite mesh concept is given in the next section where we di
the double mesh method for error estimation.

2.1 The finite element composite mesh

The composite mesh is formed by two (or more) finite element meshes of different acct
(different element sizé), which share the problem domain. Connection between compone
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is enforced (for instance connecting common nodes). A participation factor for each me
defined, for details sée
The main characteristics of the particular double meshes we use in this paper are:

1. Triangle element meshes

2. the finer mesh is the refinement of the coarser one obtained by subdivision of the tria
by the midpoints of the edges

3. the common nodes connect the two meshes

4. the double mesh have the sum of the elements of both, the fine and coarse meshes
same quantity of nodes than the fine mesh

5. the participation factors are equal for the meshes

6. in the case of solution improvement the participation factors depend on the local ord
the method

2.2 Error estimation

In the next section the methods for error estimation and solution improvement are stated.

In addition to the residual as estimation of errors, for some of the problems other error
mators can be considered. Among them, the Zienkiewicz‘Zma the Zadunaisky methods
have been tested for comparison purposes.

2.3 Mixed mesha posteriorierror estimator

In this section we apply the double mesh method error estimation to the border singula
problems.

2.3.1 Double mesh method

The double mesh is composed by two finite element meshes of element sizek,. At start
time the mesh is refined near the possible singular points. If these are not known in ad\
we resort in the method the task of locating all of them. In general the second mesh he
additional property of being a refinement of the first. The common nodes connect the
meshes so the complete set of elements are connected. The participation factor of each
meshes is set as equal, but other arrangements are equally possible.

The ulterior application of our results to monolith catalytic reactor modeling lead us to se
also the case of structured meshes of rectangular elements, where one such element
the spatial subdomain with four elements of the finer mesh (in the case of 3D element
subelements are eight). The nodes of the coarser element are the points of connection
two meshes.
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Other relations between the two meshes are also possible, e.g. the finer mesh should
a refinement of the coarser. Instead a set of connection points of the domain related tc
meshes could be defined and the nodal points be restricted so the connection points of tt
meshes coincide.

When dealing with the case of a mesh that is a refinement of the other we form a comg
of the two (with weightsa: and (1 — a)) respectively) so the set of their elements are the uni
of the elements of both and the nodes classify between common nodes and free nodes
finer mesh. The effects of weights appear at the system of equations level. For further d
of double mesh algorithm implementation 3ee

2.3.2 Error estimation

The operator problem
Lu=f (6)

can be approximated —as was stated in the second section— by standard finite element n
as
Liup, = fi, 1=1,2 (7)

where, in generalh; > hs, and in practical applications; = 2h,, h; being the element size
of finite element mesi/,,,, i = 1,2. The meaning of symbols; are the following, globally
they represent the norm of the partition of the domain in elements, but locally they refer tc
diameter of the element and say that the elements ofisizefine those of sizé;. In the usual
case the meshes are connected at common nodes (they are the nodes of the coarser me
one is a refinement of the other.

The mixed mesh solution,, ;, is obtained from

(aLimo + (1 = a)Lo)upn, = (afime + (1 — a)f)

where the symbol.,_., stands for the immersion of matrik; into the correct places af,
padded with zeros. The same ffr

We can define the symbal,, ,,, for the function, bilinear in the elements, that coincide
with uy,,, In the coarser nodes (mesli,,) and is bilinearly interpolated in the remaining
nodes (those of mesly,,, that are not on mesh/;,). And we define the symbat,, 5., for the
function bilinear on mesh/,,, that is a projection of.,, ,, to the coarser mesh.

2.3.3 Order of the methods

As seen elsewhe?éf h; = 4h3 and, as beforé, = 2h,, we can write, for each common node

Uy — Ui op (8)

Upy — Up,

expression that allows us to compute the approximate asymptotic local order of the me
from the results obtained from meshes,,: = 1,2,3
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Near the singular points in the border the order of the methods drop dramatically.
estimation of the order is then less accurate than in the parts of the domain that are far
these points. The method can detect the singular areas and refine there the mesh still
case.

2.3.4 Improving results by extrapolation

Richardson’s extrapolation, as is known, is a way to obtain an improved solution from
results corresponding to different mesh accuracy. Mgt a finite element mesh with element
sizeh,; andM,,, another mesh with element size. Letu be the exact solution (unknown) anc
uy, its approximation obtained with mesgl,, (: = 1, 2), then

u = up, + Ch{ + O(h?) 9)
u = up, + Chy + O(hj) (10)

wherep is the order of the approach and> p. Eliminating constan’

A 1
hP ha ™ hP
(-1 G-y

B 2P 1
Unihor = muhz - muhl

u= up, + O((max{hy, ha})?) (12)
and |fh1 = 2h2 = 4h3

(12)
up,hyr IN 12 is the Richardson’s extrapolation between mesligsand M;,,. This solution is

computed over the nodes of the coarse mégh J.
If a third mesh)M,,, is defined as a refinement 8f,,, then

Upy — Upy - hlp — h2p

~ 13
uh3 — Uh2 hgp — hgp ( )
and |fh1 = 2h2 = 4h3
Uhy = Uy, 9P (14)
Ups — Up,

This expression allows us to compute the approximate order of the numerical method, fror
results of three meshéd,, , M, andM,,,.
2.3.5 Estimation of errors via extrapolation

We have just obtained the extrapolation formula

Unyhar = Uy + o (Uny = Uny) (15)
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the symbol(), stands for Richardson extrapolation.

In equation 15 the terng;'~ (us, — us,) can be interpreted as the principal part of the e
trapolation correction. In the case pf= 2 the coefficient isl /3, tending tol when the order
degrades towards one.

The local order obtained from equation 8 is needed in equation 15 for the extrapola
Their are also useful for the determination of weights in the extrapolation-like double
method for solution improvement.

The meaning of the Richardson correction is that, in each node common to the two mes
necessary to add to the nodal vatyg the error estimation so the valug, . be a step nearer
the true value: (the next order in the asymptotic error expansion). In the points of the sec
mesh that are not common with those of the first one we can calculate a bilinear interpc
The symboluy, ., represents the interpolated values from the Richardson extrapolation,
the symboluy,,, the projected values to the coarser mesh that coincide wyith,. For
example, ifh; = 1/20 andhy = 1/40, the bilinear functionsuy,, wn, ny, Unyn, Uhyhopn Uhyhyrns
are all of sizetl x 41, andun, , Un,hops Uhops Uhyhors Yhyhyrp, &€ all of size2l x 21.

2.3.6 Residuals

We can calculate the following residuals

ri = Littnny — fi (16)

the solutionuy, ,, being adapted to the dimension of the matrices involved.
We can prove that
r+ry=0 (17)

over the nodes.

The double mesh solutiom,, 1, lies, in general terms, between the solutians i = 1, 2.
So the sum of the absolute values of the residuals is related and in a direct proportion t
difference between the two approximate solutions and to their absolute errors. The main i
that the estimation can be done with only one double mesh calculation.

2.3.7 Band integrals of the residuals

In some of the applications the constructed rectangular grids (double meshes) /of-sizg
were obtained from simple rectangular finite element meshes ofisieeg. in the case of
catalytic reactors it is advisable to construct a mesh that is refined near the catalyzer and
bands are less coarse there than in the bulk channel. Each element of a finite element mi
2D) is subdivided into four rectangular components of ¢iz2 = hy,. We then obtain a new
simple finite element mesh of general siz€. In a rectangular double mesh of sizeeach
element of the simple coarse mesh shares the same domain with four elements of the finer
their common nodes being those of the coarser one.
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The j band integral of the residuals is

Ri=Y > Y w yrime)) (18)

=12 _J

e/ pi(e])

wheree' stands for the index of elements of the mesties (1 for the coarser; = 2 for the
finer) in the bandj considered. The symbojs(e!) andw, o) are the integration nodes anc

weights for the element .

3 BOUNDS FOR THE RESIDUALS

By Céa’s lemma (at least for the linear cases) there exists a cordstnth that
leall = llu = un, || < Cllu = un,p|| (19)

and, of course
el = llu — un, || < Csllu — up,p, || (20)

also, in general, there exists a const@nsuch that
[t = tnyny || < Coflu — uny || (21)
so there exist constanf3, C' such that
Irall < Dlfun, = unina || < Cllu —up, || = Clleal| (22)

this inequality guarantees the relation between the residuals and the errors in the sense
the real errors are low the residuals must rest accordingly low.
The other inequality, needed for the normed equivalence between these measures of
with constant’, i
leall = llu = uny[| < Caffra]l (23)

Is also necessary and we have obtained this in particular cases. The main problemis: a g
proof is still lacking, we are confident to solve this problem in the following and show the res
soon. Obtained this the equivalence between residuals and errors is complete. Of course
equivalence is useful in a local framework in our construction:

These inequalities are also valid in a local framework: it is necessary to center in a con
element and take the nearest neighbor elements region. There the same inequalities
proved (we are working on the last one). These local bounds allow to justify the adaf
procedure based on the residuals (local integration of the residuals like the band integrat
previous subsection).
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4 ELLIPTIC TEST PROBLEMS REVISITED

In* and several recerinief and Mecompresentations we have treated several elliptic test €
amples in order to assess the quality of element residuadspasteriorierror estimators. A
representative sample of these is shown here for the sake of completeness.

The first examples are the double mesh solution of Laplace equation with Dirichlet boun
conditions and a retract angle singularity.

A family of Laplace problems with singularities were studied over the unit square. Here
solutions are

1 1o = 7T 1 1

u(z,y) = ((z — 5)2 + (y — 5)2)7’ cos ;97 0 = arctan((y — 5)/@ - 5)) (24)

w = 2w — 243, and several values for angle of apert@@ For example the casg =
arctan(ﬁ) is treated. The order of the singularity is associated witt a solution improve-

ment is to be performed (sé¢he participation factory depends on the order of singularity.

Figure 1: Domain contained in the unit
square, example 1.

Fig. 1 shows the domain of this family of examples: a unit square without a centered a
of various apertures, from near zero (approximated crack) to a value that is greater)tian
this case the aperture of the retract angle lead to a vertex that is a singular point in the bou
of the domain. On the boundaries the border conditions are Dirichlet.

In the next subsections we show brief quotations of our previous study of several case
aperture anglegs and the order of the methods from the norms of errors for the meshe:
different granulometry.

4.1 Anglern/2

In the Table 1 we show the fine mesh errors (exact errors from exact solution) for the &
23 = w/2 case. There is the exact solution and, is the (simple) finite element solution for
the fine mesh. We consider the ener@y, and sup norms for different quantity of nodes i
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the mesh. In the., norm case it is possible to observe the superlinear order that correspu
to this aperture. In this case the theoretical orde/i5so our results are coincident with the
theoretical order expected.

Table 1: Fine mesh errors (exact errors), angle.

Nodes)| |[u — up||5 | [|u— un|lL, | [[u—unl[r
142 3.2e—4 3.24e—3 1.1e—2
519 1.3e—4 1.3e—3 7.3e—3
1981 5.45e—5 5.1le—4 4.7e—3
5025 2.0le—4 3.0e—3

Observation: In thd., norm column we observe the superlinear order.

4.2 Very little angle: crack

The residuals, the Zienkiewicz-Zhu error estimators and the Zadunaisky’s method error es
tor have similar patterns and all detect the corner singularity.

In the Table 2 we show the previously obtained fine mesh errors (also exact errors) fo
domain with an angle near zero (crack) in order to estimate the order of the method.

The energy/., and sup norms are included in function of the quantity of nodes in each me
In the L, norm column we observe the lineal order. In this case the theoretical order i nes

Table 2: Fine mesh exact errors for the crack domain.

Nodes| [ju —un|lp | [[u—unllz, | [lu—unL.
97 | 6.6e—3 | 1.63e—2 | 4.2Te—2
345 | 3.6e—3 | 8.02e—3 | 3.47e—2
1297 | 1.9e-3 | 3.96e-3 | 2.6le—2

5025 1.97e—3 1.9¢—2

Observation: In thd., norm column appears the lineal order of the method.

When comparing the residuals computed with the double mesh and exact errors, we
observed that the residuals are able to detect the singular point in the boundary of the do
The objective of the computation of the residuals is to detect the elements with the bigger e
In this case those near the singular point.

The sup norm of residuals is bounded in this case for those of the exact errors.
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4.3 Angle nearr, non convex case

The precedent cases are the classical ones in the verification of a method adapted to loce
detection. We also show previous results for the cases of convex and non convex poly
domain with angle near. These cases are important because the theoretical order iz m#ar
the residuals are still efficient for the detection of the singular node (center of the unit sque

We have an uniform improvement in the solutions due to the fact that the singularity is v
lesser demandant. See the respective tables with the errors.

In the first place we recall the non convex case and then the convex one

In Table 3 we show the double mesh errors with respect to the exact solution for the do
with an angle ofr — ¢ (hon convex case) The same norms than in the precedent case:
included. And in the., norm column we observe the order nain this case the participation
factor for solution improvement results should be of approximatety 4,/3

Table 3: Double mesh errors (exact errors) for the domain with angle ( non convex case).

Nodes| [[u — unnlle | v — Unnyllz, | v — ninsllzs
373 4.8¢—11 4.2e—7 3.2e—6
1417 1l.1le—11 1.2e—7 1.6e—06
5521 2.7e—12 3.5e—8 8.2e—7

Observation: See the quadratic order in ihecolumn.

4.4 Angle nearr, convex case

In this case, that is complementary of the precedent, the domain is nearly a rectangle w
angle slightly greater tham with vertex in the center of the unit square. It is indeed a conv
polygon but in this case we also detect the singularity in the vertex and its consequences.

Here the solution of the problem resides in fié space and the previous ones in the spa
H'Ys con0 < s < 1.

In the Table 4 we show the double mesh exact errors in the same norms than before.
the order i

The sup norm of residuals and exact errors are very similar.

In Fig 2 we plot the solution of the test problem with the mesh superimposed and the «
plotted in darker shade.

45 Orders of methods

In the figure 3 we plot the sup and, norms for different meshes. We obtain the orders fro
the slope of the curves: in the, norm case for the crack example the order is linear; infthe

norm case for the angle/2 example the order is superlinear (né#8). The sup norms show
lower orders of convergence.
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Table 4: Double mesh exact errors for the angle e (convex case).

Nodes| ||u — up,pn, || &

||u — Uhyhy ||L2

||u — Uhyhy ||Loo

371 4.4e—11
1413 1.0e—11
5513 2.5e—12

4.4e—7
1.3e—7
3.7¢—8

3.1le—6
1.4e—6
T.4e—T7

Observation: Quadratic order.

Color: u-solexa0(x,y) Height: u

Figure 2: Test problem. Angle neai(con-

vex case). The mesh is superimposed and
the errors are concentrated near the vertex.
Note that it is a convex polygonal domain.

5 NONLINEAR AND ADVECTIVE PROBLEMS

In this section we treat elliptic stationary examples associated with advective and nonli

terms.

10"

107}

107}

107}

10°F

Figure 3: Error norms: +(blue): sup
norm (crack),«(blue): L, norm (crack),
+(green): sup norm (ar/2), o(green): Lo
norm (a. w/2), x(red): Ly norm (crack)
adapted mesh.

The methodology proposed is able to perform error estimation in a set of more com
problems than those of this section. The main characteristics are: (1) systems of equatiot
advective terms, and (3) nonlinear coefficients.

Also in this section several problems associated to the modeling of catalytic chemical 1

tors are considered.

5.1 Example 2

In this example we recall a non advective non linear elliptic equation associated to a para
equation with known exact solution that reads

~Au+ (1 +uw)u = (1+2°+9°)(2* +9°) — 4, inQ=[0,1]? (25)
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with the boundary cond|t|on§7i 0,9)=0,0<y <1,z =0; g(a;,O) =0,0<x<1,y=0;
u(l,y) = (1+ )Ogyglx_lu(azl) (1+2?),0 <z <1,y =1, sothe exact
solution of this test problem ig(z,y) = (2% + y?).

This equation is of the same type of models of temperature diffusion in a 2D chemical re:
with Neumann and Dirichlet boundary condition. The residuals detect the change (gradien
the errors of the methods.

The next example includes nonlinear and advective terms.

5.2 Example 3

In this example the nonlinearities appear in the main body of the equation, an advective
represents the flux of matter inside the 2D reactor and nonlinear (polynomial) boundary
ditions represent the catalytic chemical reaction on the top wall of the reactor. The equ
is

ou

—Aut (It u)ut+2(1—y) - =0, inQ=[0,1 (26)

with the boundary cond|t|ons(0 y)=1,0<y<1,z=0; 8“(:c 0)=0,0<z<1,y=0;
Gy =0,0<y<lz=1(x1)=—*0<c<ly=1

Based on the residuals correspondlng to double mesh (.5) solutions we refine adap-
tively the meshes. Here the exact solution is not known so the reference must be done ve
finer mesh finite element solution. In this case the residuals also detect the zones with g
errors.

5.3 Example 4: systems of elliptic equations

This subsection follows the companion pajdeand is included for the sake of completeness.

Monolith catalytic reactors can be modelled by systems of partial differential equati
These equations represent the mass and energy balances inside the reactor. The comp
detailed system is so complex that several simplifications are in order for a mathematical :
of the principal characteristics and properties of the original system.

The first simplifications (they are not essential but very convenient) lead to a system in
spatial dimensions (radial symmetric submodels) and only one species to be treated, sow
two equations one for the mass balance of this species and the other for the heat balance
reactor.

The first steps in the mathematical analysis of the problem are towards the study o
equations in a non coupled form. For them we perform determination of the ranges fo
approximated solutions and study characteristics of the solutions, if they are monotonic, 1
of values of operation, etc. The goal is to consider the possibilities in the case of couplir
the equations.

In the domain where the problem is studied the catalytic substance is on one of the wa
the catalytic tube, in this case the upper wall (see Fig. 4). Here the main chemical reaction
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Latalyuc wall
 HIEEEEEEN

Inlet — Outlet

- - . ).; .

Figure 4: Schematics of the catalytic reac-
tor domain.

place. The heat transfer processes also are concentrated in this wall. The other portions
boundary of the domain are the inlet where the values of the temperature and concentratis
known, and the other two sides of the unit square where Neumann conditions are impose!

The length of the reactor is variable. In our examples we take the adimensional un
distance for the sake of simplicity. The longer the reactor, the greater the amount of elimin
reaction of the target species. The mean length of the reactor can be used as a design par

The simplified equation that models the process: concentratiofia chemical species (e.qg.
propane) in a oxygen rich atmosphere is

—Aw + auw = 0 (27)

wherea is a parameter andis the temperature of the domain (we take the unit square)
The boundary condition on the catalytic boundary are

ow/0n + buw = 0 (28)

where the symbadw/0n corresponds to the normal derivativewofandb is a parameter. The
other boundary conditions are standard as was explained.
The simplified equation for the distribution of temperatures in our domain is

—Au 4 cwu =0 (29)

wherec is a parameter.
The Robin boundary conditions on the catalytic boundary are

ou/on — dwu = — f(u) (30)

whered es a parameter anf{«) is a function of temperature (heat transfer processes)

In order to solve this problem we use an iterative method. We start with a concentre
distribution provided by the uncoupled equation. Then the heat equation is solved an
residuals are studied in order to decide if the mesh has to be refined (near the singular vert
we obtain a new temperature distribution. The equation of concentrations is then solved (1
the new temperature distribution) and the residuals are calculated.
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The new distributions are compared to the previous two and the process continues t
acceptable level of tolerance.

After convergence in concentrations and temperatures, in Fig. 5 the residuals correspo
to the concentrations are shown. See that the residual map detects the singularity (due
unmatching of the boundary conditions)

x10° x10°

w
o
@

o

-
[ T
~

o
~

Figure 5: Residuals corresponding to the Figure 6: Zienkiewicz-Zhu errors for con-
concentrations. centrations distribution.

In the Fig. 6 we show the Zienkiewicz-Zhu error estimation for the same estimation as
5 It is possible to see the general agreement of both estimations.

6 LINEAR ELASTICITY EXAMPLE
6.1 Singularities in a structural problem: cracked strip

The double mesh method has been applied to a problem of interest in structural mech.
which is the stress concentration around the tip of crack. For this, a plane stress problen
strip subject to a uniform tension load and with a crack transverse to the load direction has
studied.

The case to be analyzed is shown in figure 7. A linear elastic analysis have been perfol
Due to the symmetry a half domain has been modelled.

The deformed mesh computed with a standard finite element mesh is shown in figure &
the map of principal tension stress in figure 9. The stress concentration around the cra
may be seen in this figure.

The double mesh withh = 0.5 has been used in order to estimate the errors. The residt
obtained are drawn in figure 10. It may be observed that errors are also concentrated
region around the crack tip.
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Figure 8: Crack problem: deformed mesh.
Figure 7: Problem of a tensed cracked
strip.

7 IMPROVING FINITE ELEMENT SOLUTIONS WITH A MIXED MESH

In the previous sections some results have been shown where the double mesh is used i
to obtain error estimations of the numerical solution. The double mesh may also be us
order to obtain improved solutions. In this case the participation factor is selected-a$
leading to a sort of extrapolated behavior of the Finite Element model. Some results eithe
regular or singular problems are shown in the following.

7.1 Elliptic problem with a retract angle

The example 1, of a square domain with a retract apgle- Z, has been modelled with double
mesh with a participation facter = 2.

The L, norm of the error for a mesh with 519 node§ 3¢ —4 and for 1981 nodes &3¢ —4.
These values should be compared with those in‘theolumn of Table 1. The exact errors for
the double mesh withy = 2 are roughly; the exact errors for the fine mesh. These results ¢
for a problem with singularities, and it should be pointed out that the computational effo

roughly the same for the double and the fine mesh. The optimal value for the the particip.
factor in this case is = 1.46.

7.2 Elastic problem

An elastic cantilever beam has been studied as 2D plane stress problem in reéfergaicgy a
double mesh witla = ‘51 accurate results has been obtained. Figure 11 shows the global rel
error in Ly, norm vs. the number of unknowns, for: the simple mesh; the composite mesh*
o = 3; and the composite mesh with = % The effect of the extrapolation implied in the
double mesh strategy is clear in this figure. The displacement of the beam tip is shown in f
12 for which the comments are the same as for figure 11.
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Figure 9: Crack problem: map of principal Figure 10: Crack problem: residuals.
stress.

7.3 Elastic problem with singularity

The problem of a cracked strip, shown in figure 7, has been studied with a composite mesh
a = % (se€). Figure 13 shows the global relative error in infinity norm of the displaceme
vector for: the simple mesh; the composite mesh with- ; and the composite mesh with
o= g‘ The comments are similar as for the previous example.

8 CONCLUSIONS

The use of a composite, or mixed, finite element mesh for elliptic problems with border sir
larities is studied. Two or more finite element meshes are allowed to share the problem do
These component meshes have different intrinsic accuracies and are affected each by a
or participation factor. The composite mesh has been used to estpasterioridiscretization
errors.

A semiquantitative error estimator based in a double mesh algorithm has been propose
we have shown that the pattern of thiposteriorierror is similar to the exact error.

More research is still needed, but the composite mesh method appears to be a powerf
simple tool for obtaining accurate finite element error estimation and allow for adaptivity
meshes.

It is interesting to note that, including convex polygonal domains, the error estimatc
efficient and it is not related to the order of the method.

When the singularities are created by the non conforming boundary conditions in a vert
the polygonal domain the method is also efficient even in case of nonlinear methods.
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Figure 11. Cantilever beam problem:

Global relative error in b norm (x) Sim-

ple mesh; (0) Composite mesh= %; (+)

Composite mesh = 3
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Figure 13: Crack problem: Global rela-
tive error in infinity norm of the displace-
ment vector (x) Simple mesh; (0) Com-
posit;a meshy = %; (+) Composite mesh
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