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Abstract. In the last twenty years two demanding problems were concurrently studied by the
chemical engineering and mathematical researchers: the modelling of chemical reactors and
other similar devices and the processes inside them and the numerical (and analytical) solutions
of the sets of differential algebraic equations that these models provide them. In this paper a
complex subproblem of those just described is considered: the appearance of singularities in
the domain or the border of the modelled process device in the case of PDE models.

The idea of this work is to isolate the possible singularities by means of simplifying the phe-
nomenological models as far as possible and assessing the errors in the numerical solutions
using classical methods and, in particular, the mixed mesh qualitative error estimation method
proposed by the authors. The main idea of this mixed or composite mesh method is to con-
struct a numerical model where two or more finite element meshes of different granularities are
superimposed over the whole domain of the problem.

The mentioned simplifications produce several 1D and 2D differential equation problems
with singularities in the domain and in its border that are solved and their errors studied.

The main conclusion of this presentation is the following: for the models the authors deal
with it is possible to numerically detect the singularities and to devise computationally cheaper
methods for their solution.
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1 INTRODUCTION

In recent articles we have developed composite finite element models of several problems that
are drawn from Mechanical and Chemical Engineering with the aim of providing reasonablea
posteriorierror estimates, and to obtain improved numerical solutions1 2 3 4. The main idea of
this composite mesh method is to construct a numerical model where two or more finite ele-
ment meshes of different granularities (size of the elements) are superimposed over the whole
domain of the problem. The motivation of these developments came from the mixture theory
of multiphase materials5 6. In this class of materials each component occupies a fraction of the
total volume. The physical properties of the composite material is obtained from those of com-
ponent phases weighted by a participation factor, which is taken as their volumetric fraction
or another suitable quantity. In a similar way our numerical model is composed by different
finite element meshes and the properties of the whole model is obtained by adding those of the
component meshes multiplied by a participation factor. In this case, the different behavior of
each component come from their intrinsic accuracy instead of their physical properties. In this
work we study several properties associated to the application of the method to elliptic prob-
lems with boundary conditions of Dirichlet, Neumann, and mixed types and showing boundary
singularities.

The finite element error estimates may be computeda priori or a posteriori. A posteriori
error estimates, computed from the numerical solution, are of practical importance and may
be categorized under two main subclasses. The first of these is stress recovery, which is also
referred to as a postprocessing or flux-projection technique. It was proposed in the context of
linear elliptic problems7. The second subclass are those ofresidual basedestimators, explicit
or implicit. The literature covering these topics is vast8 9. The error estimates performed by
means of the composite mesh fall within the residual based estimators. The composite mesh,
proposed in previous papers from the authors, is formed by two finite element meshes sharing
the problem domain. The meshes have different element sizeh, and the connection between
components is enforced, for instance, by connecting common nodes. The participation factors
are defined asα and(1− α) for the fine and coarse meshes, respectively.

Several illustrating examples are treated in this paper:

1. The test problems based on variants of the elliptic stationary form of the heat equation

d ut −∇ · (c∇u) + au = f (1)

with initial values, and boundary conditions of Dirichlet, Neumann and Robin type.

2. The elliptic stationary equation associated to the parabolic advection-diffusion equation

ut −∆u + v∇u + p(u) = 0 (2)

with initial values, and boundary conditions of Dirichlet, Neumann and Robin type. In
this equationp is a polynomial function.
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3. Plane stress and strain problems drawn from linear elasticity.

A finite element model of the variational equation is then set, in order to discretize the prob-
lem in the space coordinates. The task is done in a mixed mesh framework designed to make
a posteriorierror estimation of the numerical solutions and to refine the mesh by means of an
adaptive algorithm. The primary goal of the adaptive composite mesh finite element method for
the stationary problem is to control the space discretization error of the approximate solution as
measured from integrals of double mesh residuals. The adaptive process is of theh and of the
h-r type.

The rest of the paper is devoted to the statement of some conclusions about the implementa-
tion details of the proposed method.

2 NOTATION, MODELS AND METHODS

The test problems we deal with are based on variants of the elliptic stationary form of the heat
equation

−∇ · (c∇u) + au = f (3)

with boundary conditions of Dirichlet (hu = r on ∂Ω), Neumann (η · (c∇u) = g on ∂Ω) and
Robin (η · (c∇u) + qu = g on∂Ω) type, whereη is the outward unit normal, andg, q, h, andr
are functions defined on∂Ω. Both, the linear and nonlinear cases are treated.

By standard calculations we derive the weak form of the differential equation: Findu such
that ∫

Ω

((c∇u) · ∇v + auv − fv) dx =

∫
∂Ω

(−qu + g)v ds, ∀v (4)

The stationary elliptic counterpart of the diffusive-advective nonlinear equation case is also
treated. The main equation is

−∇ · (c∇u) + v∇u + p(u) = 0 in Ω (5)

wherep(u) is a polynomial function inu, with Dirichlet and Robin (η · (c∇u) + q(u) = 0 on
∂Ω) boundary conditions, whereq(u) is a polynomial function defined on∂Ω.

The standard numerical integration of the PDE is performed by the Matlab toolboxes, which
are efficient for the classes of problems we deal with (see the Matlab reference books for details
on these routines, e.g.10). We resort to the Matlab Partial Differential Equations Toolbox for the
ancillary developments.

A description of the composite mesh concept is given in the next section where we define
the double mesh method for error estimation.

2.1 The finite element composite mesh

The composite mesh is formed by two (or more) finite element meshes of different accuracy
(different element sizeh), which share the problem domain. Connection between components
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is enforced (for instance connecting common nodes). A participation factor for each mesh is
defined, for details see4.

The main characteristics of the particular double meshes we use in this paper are:

1. Triangle element meshes

2. the finer mesh is the refinement of the coarser one obtained by subdivision of the triangles
by the midpoints of the edges

3. the common nodes connect the two meshes

4. the double mesh have the sum of the elements of both, the fine and coarse meshes and the
same quantity of nodes than the fine mesh

5. the participation factors are equal for the meshes

6. in the case of solution improvement the participation factors depend on the local order of
the method

2.2 Error estimation

In the next section the methods for error estimation and solution improvement are stated.
In addition to the residual as estimation of errors, for some of the problems other error esti-

mators can be considered. Among them, the Zienkiewicz-Zhu7 and the Zadunaisky15 methods
have been tested for comparison purposes.

2.3 Mixed mesha posteriorierror estimator

In this section we apply the double mesh method error estimation to the border singularities
problems.

2.3.1 Double mesh method

The double mesh is composed by two finite element meshes of element sizesh1 > h2. At start
time the mesh is refined near the possible singular points. If these are not known in advance
we resort in the method the task of locating all of them. In general the second mesh has the
additional property of being a refinement of the first. The common nodes connect the two
meshes so the complete set of elements are connected. The participation factor of each of the
meshes is set as equal, but other arrangements are equally possible.

The ulterior application of our results to monolith catalytic reactor modeling lead us to select
also the case of structured meshes of rectangular elements, where one such element shares
the spatial subdomain with four elements of the finer mesh (in the case of 3D elements the
subelements are eight). The nodes of the coarser element are the points of connection of the
two meshes.
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Other relations between the two meshes are also possible, e.g. the finer mesh should not be
a refinement of the coarser. Instead a set of connection points of the domain related to both
meshes could be defined and the nodal points be restricted so the connection points of the two
meshes coincide.

When dealing with the case of a mesh that is a refinement of the other we form a composite
of the two (with weightsα and (1−α) respectively) so the set of their elements are the union
of the elements of both and the nodes classify between common nodes and free nodes of the
finer mesh. The effects of weights appear at the system of equations level. For further details
of double mesh algorithm implementation see3

2.3.2 Error estimation

The operator problem
Lu = f (6)

can be approximated —as was stated in the second section— by standard finite element method
as

Liuhi
= fi, i = 1, 2 (7)

where, in general,h1 > h2, and in practical applicationsh1 = 2h2, hi being the element size
of finite element meshMhi

, i = 1, 2. The meaning of symbolshi are the following, globally
they represent the norm of the partition of the domain in elements, but locally they refer to the
diameter of the element and say that the elements of sizeh2 refine those of sizeh1. In the usual
case the meshes are connected at common nodes (they are the nodes of the coarser mesh) and
one is a refinement of the other.

The mixed mesh solutionuh1h2 is obtained from

(αL1→2 + (1− α)L2)uh1h2 = (αf1→2 + (1− α)f2)

where the symbolL1→2 stands for the immersion of matrixL1 into the correct places ofL2

padded with zeros. The same forf .
We can define the symboluh1h2n for the function, bilinear in the elements, that coincides

with uh1h2 in the coarser nodes (meshMh1) and is bilinearly interpolated in the remaining
nodes (those of meshMh2 that are not on meshMh1). And we define the symboluh1h2p for the
function bilinear on meshMh1 that is a projection ofuh1h2 to the coarser mesh.

2.3.3 Order of the methods

As seen elsewhere3 if h1 = 4h3 and, as beforeh1 = 2h2, we can write, for each common node,

uh2 − uh1

uh3 − uh2

' 2p (8)

expression that allows us to compute the approximate asymptotic local order of the method
from the results obtained from meshesMhi

, i = 1, 2, 3
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Near the singular points in the border the order of the methods drop dramatically. The
estimation of the order is then less accurate than in the parts of the domain that are far from
these points. The method can detect the singular areas and refine there the mesh still in this
case.

2.3.4 Improving results by extrapolation

Richardson’s extrapolation, as is known, is a way to obtain an improved solution from two
results corresponding to different mesh accuracy. LetMh1 a finite element mesh with element
sizeh1 andMh2 another mesh with element sizeh2. Let u be the exact solution (unknown) and
uhi

its approximation obtained with meshMhi
(i = 1, 2), then

u = uh1 + Chp
1 + O(hq

1) (9)

u = uh2 + Chp
2 + O(hq

2) (10)

wherep is the order of the approach andq > p. Eliminating constantC

u =

hp
1

hp
2(

hp
1

hp
2
− 1

)uh2 −
1(

hp
1

hp
2
− 1

)uh1 + O((max{h1, h2})q) (11)

and ifh1 = 2h2 = 4h3

uh1h2r =
2p

(2p − 1)
uh2 −

1

(2p − 1)
uh1 (12)

uh1h2r in 12 is the Richardson’s extrapolation between meshesMh1 andMh2 . This solution is
computed over the nodes of the coarse mesh (Mh1).

If a third meshMh3 is defined as a refinement ofMh2 then

uh2 − uh1

uh3 − uh2

' h1
p − h2

p

h2
p − h3

p (13)

and ifh1 = 2h2 = 4h3
uh2 − uh1

uh3 − uh2

' 2p (14)

This expression allows us to compute the approximate order of the numerical method, from the
results of three meshesMh1 , Mh2 andMh3.

2.3.5 Estimation of errors via extrapolation

We have just obtained the extrapolation formula

uh1h2r = uh2 +
1

2p − 1
(uh2 − uh1) (15)
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the symbol()r stands for Richardson extrapolation.
In equation 15 the term 1

2p−1
(uh2 − uh1) can be interpreted as the principal part of the ex-

trapolation correction. In the case ofp = 2 the coefficient is1/3, tending to1 when the order
degrades towards one.

The local order obtained from equation 8 is needed in equation 15 for the extrapolation.
Their are also useful for the determination of weights in the extrapolation-like double mesh
method for solution improvement.

The meaning of the Richardson correction is that, in each node common to the two meshes is
necessary to add to the nodal valueuh2 the error estimation so the valueuh1h2r be a step nearer
the true valueu (the next order in the asymptotic error expansion). In the points of the second
mesh that are not common with those of the first one we can calculate a bilinear interpolant.
The symboluh1h2rn represents the interpolated values from the Richardson extrapolation, and
the symboluh1h2rp the projected values to the coarser mesh that coincide withuh1h2r. For
example, ifh1 = 1/20 andh2 = 1/40, the bilinear functionsuh2, uh1h2 , uh1n, uh1h2pn uh1h2rn,
are all of size41× 41, anduh1 , uh1h2p, uh2p, uh1h2r, uh1h2rp, are all of size21× 21.

2.3.6 Residuals

We can calculate the following residuals

ri = Liuh1h2 − fi (16)

the solutionuh1h2 being adapted to the dimension of the matrices involved.
We can prove that

r1 + r2 = 0 (17)

over the nodes.
The double mesh solutionuh1h2 lies, in general terms, between the solutionsuhi

, i = 1, 2.
So the sum of the absolute values of the residuals is related and in a direct proportion to the
difference between the two approximate solutions and to their absolute errors. The main idea is
that the estimation can be done with only one double mesh calculation.

2.3.7 Band integrals of the residuals

In some of the applications the constructed rectangular grids (double meshes) of sizeh = h1

were obtained from simple rectangular finite element meshes of sizeh, e.g. in the case of
catalytic reactors it is advisable to construct a mesh that is refined near the catalyzer and so the
bands are less coarse there than in the bulk channel. Each element of a finite element mesh (in
2D) is subdivided into four rectangular components of sizeh/2 = h2. We then obtain a new
simple finite element mesh of general sizeh/2. In a rectangular double mesh of sizeh, each
element of the simple coarse mesh shares the same domain with four elements of the finer mesh,
their common nodes being those of the coarser one.
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Thej band integral of the residuals is

Rj =
∑
i=1,2

∑
ej
i

∑
pi(e

j
i )

ωpi(e
j
i )
r2
i (pi(e

j
i )) (18)

whereej
i stands for the index of elements of the meshes (i = 1 for the coarser,i = 2 for the

finer) in the bandj considered. The symbolspi(e
j
i ) andωpi(e

j
i )

are the integration nodes and

weights for the elementej
i .

3 BOUNDS FOR THE RESIDUALS

By Céa’s lemma (at least for the linear cases) there exists a constantC such that

‖e2‖ = ‖u− uh2‖ ≤ C‖u− uh1h2‖ (19)

and, of course
‖e1‖ = ‖u− uh1‖ ≤ C3‖u− uh1h2‖ (20)

also, in general, there exists a constantC2 such that

‖u− uh1h2‖ ≤ C2‖u− uh2‖ (21)

so there exist constantsD, C̃ such that

‖r2‖ ≤ D‖uh2 − uh1h2‖ ≤ C̃‖u− uh2‖ = C̃‖e2‖ (22)

this inequality guarantees the relation between the residuals and the errors in the sense that if
the real errors are low the residuals must rest accordingly low.

The other inequality, needed for the normed equivalence between these measures of error,
with constantC̃2,

‖e2‖ = ‖u− uh2‖ ≤ C̃2‖r2‖ (23)

is also necessary and we have obtained this in particular cases. The main problem is: a general
proof is still lacking, we are confident to solve this problem in the following and show the results
soon. Obtained this the equivalence between residuals and errors is complete. Of course these
equivalence is useful in a local framework in our construction:

These inequalities are also valid in a local framework: it is necessary to center in a concrete
element and take the nearest neighbor elements region. There the same inequalities can be
proved (we are working on the last one). These local bounds allow to justify the adaptive
procedure based on the residuals (local integration of the residuals like the band integration of
previous subsection).
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4 ELLIPTIC TEST PROBLEMS REVISITED

In4 and several recentEnief andMecompresentations we have treated several elliptic test ex-
amples in order to assess the quality of element residuals asa posteriorierror estimators. A
representative sample of these is shown here for the sake of completeness.

The first examples are the double mesh solution of Laplace equation with Dirichlet boundary
conditions and a retract angle singularity.

A family of Laplace problems with singularities were studied over the unit square. Here the
solutions are

u(x, y) = ((x− 1

2
)2 + (y − 1

2
)2)

π
2ω cos

π

ω
θ, θ = arctan((y − 1

2
)/(x− 1

2
)) (24)

ω = 2π − 2β, and several values for angle of aperture2β. For example the caseβ =
arctan( 1

1000
) is treated. The order of the singularity is associated withβ. If a solution improve-

ment is to be performed (see3 the participation factorα depends on the order of singularity.

Figure 1: Domain contained in the unit
square, example 1.

Fig. 1 shows the domain of this family of examples: a unit square without a centered angle
of various apertures, from near zero (approximated crack) to a value that is greater thanπ.) In
this case the aperture of the retract angle lead to a vertex that is a singular point in the boundary
of the domain. On the boundaries the border conditions are Dirichlet.

In the next subsections we show brief quotations of our previous study of several cases for
aperture angle2β and the order of the methods from the norms of errors for the meshes of
different granulometry.

4.1 Angleπ/2

In the Table 1 we show the fine mesh errors (exact errors from exact solution) for the angle
2β = π/2 case. Thereu is the exact solution anduh is the (simple) finite element solution for
the fine mesh. We consider the energy,L2, and sup norms for different quantity of nodes in
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the mesh. In theL2 norm case it is possible to observe the superlinear order that corresponds
to this aperture. In this case the theoretical order is3/2 so our results are coincident with the
theoretical order expected.

Table 1: Fine mesh errors (exact errors), angleπ/2.

Nodes ‖u− uh‖E ‖u− uh‖L2 ‖u− uh‖L∞

142 3.2e−4 3.24e−3 1.1e−2
519 1.3e−4 1.3e−3 7.3e−3
1981 5.45e−5 5.1e−4 4.7e−3
5025 2.01e−4 3.0e−3

Observation: In theL2 norm column we observe the superlinear order.

4.2 Very little angle: crack

The residuals, the Zienkiewicz-Zhu error estimators and the Zadunaisky’s method error estima-
tor have similar patterns and all detect the corner singularity.

In the Table 2 we show the previously obtained fine mesh errors (also exact errors) for the
domain with an angle near zero (crack) in order to estimate the order of the method.

The energy,L2 and sup norms are included in function of the quantity of nodes in each mesh.
In theL2 norm column we observe the lineal order. In this case the theoretical order is near1

Table 2: Fine mesh exact errors for the crack domain.

Nodes ‖u− uh‖E ‖u− uh‖L2 ‖u− uh‖L∞

97 6.6e−3 1.63e−2 4.27e−2
345 3.6e−3 8.02e−3 3.47e−2
1297 1.9e−3 3.96e−3 2.61e−2
5025 1.97e−3 1.9e−2

Observation: In theL2 norm column appears the lineal order of the method.

When comparing the residuals computed with the double mesh and exact errors, we have
observed that the residuals are able to detect the singular point in the boundary of the domain.
The objective of the computation of the residuals is to detect the elements with the bigger errors.
In this case those near the singular point.

The sup norm of residuals is bounded in this case for those of the exact errors.
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4.3 Angle nearπ, non convex case

The precedent cases are the classical ones in the verification of a method adapted to local error
detection. We also show previous results for the cases of convex and non convex polygonal
domain with angle nearπ. These cases are important because the theoretical order is near2 but
the residuals are still efficient for the detection of the singular node (center of the unit square).

We have an uniform improvement in the solutions due to the fact that the singularity is much
lesser demandant. See the respective tables with the errors.

In the first place we recall the non convex case and then the convex one
In Table 3 we show the double mesh errors with respect to the exact solution for the domain

with an angle ofπ − ε (non convex case) The same norms than in the precedent cases are
included. And in theL2 norm column we observe the order near2. In this case the participation
factor for solution improvement results should be of approximatelyα = 4/3

Table 3: Double mesh errors (exact errors) for the domain with angleπ − ε ( non convex case).

Nodes ‖u− uh1h2‖E ‖u− uh1h2‖L2 ‖u− uh1h2‖L∞

373 4.8e−11 4.2e−7 3.2e−6
1417 1.1e−11 1.2e−7 1.6e−6
5521 2.7e−12 3.5e−8 8.2e−7

Observation: See the quadratic order in theL2 column.

4.4 Angle nearπ, convex case

In this case, that is complementary of the precedent, the domain is nearly a rectangle with an
angle slightly greater thanπ with vertex in the center of the unit square. It is indeed a convex
polygon but in this case we also detect the singularity in the vertex and its consequences.

Here the solution of the problem resides in theH2 space and the previous ones in the space
H1+s, con0 < s < 1.

In the Table 4 we show the double mesh exact errors in the same norms than before. Here
the order is2

The sup norm of residuals and exact errors are very similar.
In Fig 2 we plot the solution of the test problem with the mesh superimposed and the error

plotted in darker shade.

4.5 Orders of methods

In the figure 3 we plot the sup andL2 norms for different meshes. We obtain the orders from
the slope of the curves: in theL2 norm case for the crack example the order is linear; in theL2

norm case for the angleπ/2 example the order is superlinear (near5/3). The sup norms show
lower orders of convergence.
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Table 4: Double mesh exact errors for the angleπ + ε (convex case).

Nodes ‖u− uh1h2‖E ‖u− uh1h2‖L2 ‖u− uh1h2‖L∞

371 4.4e−11 4.4e−7 3.1e−6
1413 1.0e−11 1.3e−7 1.4e−6
5513 2.5e−12 3.7e−8 7.4e−7

Observation: Quadratic order.
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5 NONLINEAR AND ADVECTIVE PROBLEMS

In this section we treat elliptic stationary examples associated with advective and nonlinear
terms.

The methodology proposed is able to perform error estimation in a set of more complex
problems than those of this section. The main characteristics are: (1) systems of equations, (2)
advective terms, and (3) nonlinear coefficients.

Also in this section several problems associated to the modeling of catalytic chemical reac-
tors are considered.

5.1 Example 2

In this example we recall a non advective non linear elliptic equation associated to a parabolic
equation with known exact solution that reads

−∆u + (1 + u)u = (1 + x2 + y2)(x2 + y2)− 4, in Ω = [0, 1]2 (25)
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with the boundary conditions∂u
∂η

(0, y) = 0, 0 ≤ y ≤ 1, x = 0; ∂u
∂η

(x, 0) = 0, 0 ≤ x ≤ 1, y = 0;
u(1, y) = (1 + y2), 0 ≤ y ≤ 1, x = 1; u(x, 1) = (1 + x2), 0 ≤ x ≤ 1, y = 1; so the exact
solution of this test problem isu(x, y) = (x2 + y2).

This equation is of the same type of models of temperature diffusion in a 2D chemical reactor
with Neumann and Dirichlet boundary condition. The residuals detect the change (gradients) in
the errors of the methods.

The next example includes nonlinear and advective terms.

5.2 Example 3

In this example the nonlinearities appear in the main body of the equation, an advective term
represents the flux of matter inside the 2D reactor and nonlinear (polynomial) boundary con-
ditions represent the catalytic chemical reaction on the top wall of the reactor. The equation
is

−∆u + (1 + u)u + 2(1− y)2∂u

∂x
= 0, in Ω = [0, 1]2 (26)

with the boundary conditionsu(0, y) = 1, 0 ≤ y ≤ 1, x = 0; ∂u
∂η

(x, 0) = 0, 0 ≤ x ≤ 1, y = 0;
∂u
∂η

(1, y) = 0, 0 ≤ y ≤ 1, x = 1; ∂u
∂η

(x, 1) = −u2, 0 ≤ x ≤ 1, y = 1;
Based on the residuals corresponding to double mesh (α = 0.5) solutions we refine adap-

tively the meshes. Here the exact solution is not known so the reference must be done versus a
finer mesh finite element solution. In this case the residuals also detect the zones with greater
errors.

5.3 Example 4: systems of elliptic equations

This subsection follows the companion paper11 and is included for the sake of completeness.
Monolith catalytic reactors can be modelled by systems of partial differential equations.

These equations represent the mass and energy balances inside the reactor. The complete and
detailed system is so complex that several simplifications are in order for a mathematical study
of the principal characteristics and properties of the original system.

The first simplifications (they are not essential but very convenient) lead to a system in two
spatial dimensions (radial symmetric submodels) and only one species to be treated, so we have
two equations one for the mass balance of this species and the other for the heat balance of the
reactor.

The first steps in the mathematical analysis of the problem are towards the study of the
equations in a non coupled form. For them we perform determination of the ranges for the
approximated solutions and study characteristics of the solutions, if they are monotonic, range
of values of operation, etc. The goal is to consider the possibilities in the case of coupling of
the equations.

In the domain where the problem is studied the catalytic substance is on one of the walls of
the catalytic tube, in this case the upper wall (see Fig. 4). Here the main chemical reaction takes
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Figure 4: Schematics of the catalytic reac-
tor domain.

place. The heat transfer processes also are concentrated in this wall. The other portions of the
boundary of the domain are the inlet where the values of the temperature and concentration are
known, and the other two sides of the unit square where Neumann conditions are imposed.

The length of the reactor is variable. In our examples we take the adimensional unitary
distance for the sake of simplicity. The longer the reactor, the greater the amount of elimination
reaction of the target species. The mean length of the reactor can be used as a design parameter.

The simplified equation that models the process: concentrationw of a chemical species (e.g.
propane) in a oxygen rich atmosphere is

−∆w + auw = 0 (27)

wherea is a parameter andu is the temperature of the domain (we take the unit square)
The boundary condition on the catalytic boundary are

∂w/∂η + buw = 0 (28)

where the symbol∂w/∂η corresponds to the normal derivative ofw andb is a parameter. The
other boundary conditions are standard as was explained.

The simplified equation for the distribution of temperatures in our domain is

−∆u + cwu = 0 (29)

wherec is a parameter.
The Robin boundary conditions on the catalytic boundary are

∂u/∂η − dwu = −f(u) (30)

whered es a parameter andf(u) is a function of temperatureu (heat transfer processes)
In order to solve this problem we use an iterative method. We start with a concentration

distribution provided by the uncoupled equation. Then the heat equation is solved and the
residuals are studied in order to decide if the mesh has to be refined (near the singular vertex) so
we obtain a new temperature distribution. The equation of concentrations is then solved (under
the new temperature distribution) and the residuals are calculated.
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The new distributions are compared to the previous two and the process continues till an
acceptable level of tolerance.

After convergence in concentrations and temperatures, in Fig. 5 the residuals corresponding
to the concentrations are shown. See that the residual map detects the singularity (due to the
unmatching of the boundary conditions)
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Figure 5: Residuals corresponding to the
concentrations.
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Figure 6: Zienkiewicz-Zhu errors for con-
centrations distribution.

In the Fig. 6 we show the Zienkiewicz-Zhu error estimation for the same estimation as Fig.
5 It is possible to see the general agreement of both estimations.

6 LINEAR ELASTICITY EXAMPLE

6.1 Singularities in a structural problem: cracked strip

The double mesh method has been applied to a problem of interest in structural mechanics,
which is the stress concentration around the tip of crack. For this, a plane stress problem of a
strip subject to a uniform tension load and with a crack transverse to the load direction has been
studied.

The case to be analyzed is shown in figure 7. A linear elastic analysis have been performed.
Due to the symmetry a half domain has been modelled.

The deformed mesh computed with a standard finite element mesh is shown in figure 8, and
the map of principal tension stress in figure 9. The stress concentration around the crack tip
may be seen in this figure.

The double mesh withα = 0.5 has been used in order to estimate the errors. The residuals
obtained are drawn in figure 10. It may be observed that errors are also concentrated in the
region around the crack tip.
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Figure 7: Problem of a tensed cracked
strip.
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Figure 8: Crack problem: deformed mesh.

7 IMPROVING FINITE ELEMENT SOLUTIONS WITH A MIXED MESH

In the previous sections some results have been shown where the double mesh is used in order
to obtain error estimations of the numerical solution. The double mesh may also be used in
order to obtain improved solutions. In this case the participation factor is selected asα > 1
leading to a sort of extrapolated behavior of the Finite Element model. Some results either for
regular or singular problems are shown in the following.

7.1 Elliptic problem with a retract angle

The example 1, of a square domain with a retract angle2β = π
2
, has been modelled with double

mesh with a participation factorα = 5
3
.

TheL2 norm of the error for a mesh with 519 nodes is7.2e−4 and for 1981 nodes is2.3e−4.
These values should be compared with those in theL2 column of Table 1. The exact errors for
the double mesh withα = 5

3
are roughly1

2
the exact errors for the fine mesh. These results are

for a problem with singularities, and it should be pointed out that the computational effort is
roughly the same for the double and the fine mesh. The optimal value for the the participation
factor in this case isα = 1.46.

7.2 Elastic problem

An elastic cantilever beam has been studied as 2D plane stress problem in reference13. Using a
double mesh withα = 4

3
accurate results has been obtained. Figure 11 shows the global relative

error in L2 norm vs. the number of unknowns, for: the simple mesh; the composite mesh with
α = 1

2
; and the composite mesh withα = 4

3
. The effect of the extrapolation implied in the

double mesh strategy is clear in this figure. The displacement of the beam tip is shown in figure
12 for which the comments are the same as for figure 11.
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7.3 Elastic problem with singularity

The problem of a cracked strip, shown in figure 7, has been studied with a composite mesh using
α = 4

3
(see3). Figure 13 shows the global relative error in infinity norm of the displacement

vector for: the simple mesh; the composite mesh withα = 1
2
; and the composite mesh with

α = 4
3
. The comments are similar as for the previous example.

8 CONCLUSIONS

The use of a composite, or mixed, finite element mesh for elliptic problems with border singu-
larities is studied. Two or more finite element meshes are allowed to share the problem domain.
These component meshes have different intrinsic accuracies and are affected each by a weight
or participation factor. The composite mesh has been used to estimatea posterioridiscretization
errors.

A semiquantitative error estimator based in a double mesh algorithm has been proposed and
we have shown that the pattern of thisa posteriorierror is similar to the exact error.

More research is still needed, but the composite mesh method appears to be a powerful and
simple tool for obtaining accurate finite element error estimation and allow for adaptivity of
meshes.

It is interesting to note that, including convex polygonal domains, the error estimator is
efficient and it is not related to the order of the method.

When the singularities are created by the non conforming boundary conditions in a vertex of
the polygonal domain the method is also efficient even in case of nonlinear methods.
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