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Abstract. An investigation about energy conserving and numerical stability related to non

linear dynamic problems involving large rotations and large displacements is carried out within

the framework of IsoGeometric Analysis. A corotational kinematics derived from the exact polar

decomposition is used in order to deal with geometrically non linear behavior. The Generalized

α (Gα) and Generalized Energy-Momentum Method (GEMM+ξ) are employed with consistent

and lumped mass, for a large range of continuity class of basis function. A set of examples are

presented in order to show the accuracy and efficiency as well as the improvement of energy

conserving and numerical stability.
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1 INTRODUCTION

The manuscript presents an application of the so-called isogeometric analysis for the
numerical solution of a non linear dynamic problems that involves large rotations and
displacements. The use of standard techniques based on classical FE would incur large
modelling errors associated with the high frequency range introduced by the spatial dis-
cretization, which are usually accounted for by introducing some sort of numerical dissi-
pation.

The development of numerical algorithms to simulate the dynamic response of linear
and nonlinear elastic bodies is a major topic in the field of elastodynamics. Traditional
time-stepping schemes, which present excellent stability properties in the linear range, are
frequently subject to numerical instabilities when they are applied to nonlinear problems
using numerical models based on the finite element method (FEM). Therefore, investi-
gations on elastodynamics using IsoGeometric analysis must be performed in order to
study the influence of the IsoGeometric formulation over numerical issues such as stabil-
ity and accuracy, where aspects related to the time integration process are also extremely
important.

Isogeometric analysis is dedicated to unifying numerical techniques adopted in geo-
metrical design and analysis, which is accomplished by using a single parameterization
framework where the same basis functions are utilized in both procedures. Geometrical
design and analysis have been performed independently with pre-processing programs
based on computer aided design (CAD) technologies and numerical solvers based on the
FEM. However, it is frequently observed that the finite element model obtained after mesh
generation does not match the geometric shape of complex models reproduced with CAD
tools, since insufficient approximations may be utilized depending on the basis functions
adopted in the finite element formulation. Extending this remark to the field of dynamic
analysis, one can also observe that the higher vibration modes of a dynamic response
cannot be accurately represented due to modelling errors introduced when the spatial
discretization procedure is applied to infinite-dimensional continuum systems, which may
give rise to numerical instabilities if numerical dissipation is not adequately employed.
In order to circumvent this drawback, IsoGeometric analysis may be utilized, where B-
splines and NURBS are employed to build the geometric models and to approximate the
solution field. The basic concepts on IsoGeometric analysis were introduced by Hughes et
al. (2005) and many investigations have been performed in order to extend the applica-
bility of the proposed formulation to different fields of computational applied mechanics
(see, for instance, (Bazilevs et al., 2007; Benson et al., 2010; Kiendl et al., 2010)). A com-
prehensive work on IsoGeometric analysis may be found in Cottrell et al. (2009) and for
additional information about B-spline and NURBS parameterizations, readers are ad-
dressed to Piegl and Tiller (1997).

The need for numerical dissipation was soon recognized when unconditional time step-
ping schemes were first applied to finite element models in order to solve dynamic problems
with implicit algorithms. It was observed that large modeling errors associated with the
high frequency range are introduced by the spatial discretization procedure owing to de-
ficiencies found in the element formulation to reproduce the higher modes accurately. In
this sense, although the standard Newmark’s method presented no numerical dissipation,
a formulation with controllable numerical damping was also proposed in Newmark (1959).
Later, the Newmark’s method and other early algorithms with numerical damping such as
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the Wilson’s method and the Houbolt’s method were investigated in Goudreau and Taylor
(1973), who recommended the introduction of a controlled degree of damping to reduce
the spurious action of the higher modes. However, unconditionally stable algorithms
lead to period elongation and the second-order accuracy is lost due to the introduction
of numerical dissipation. This drawback was resolved with the method proposed by
Hilber et al. (1977), which combines unconditional stability, second-order accuracy and
numerical dissipation of higher modes. A similar improvement was obtained with the for-
mulation introduced by Wood et al. (1980) and a generalization of the methods presented
by Hilber et al. (1977) and Wood et al. (1980), the so-called generalized-α method, was
provided by Chung and Hulbert (1993). The generalized-α method leads to second order
accuracy and optimized behavior for the numerical dissipation is obtained when linear
problems are analyzed, where minimal dissipation is observed for lower modes as well as
maximal dissipation is verified for higher modes.

The development of energy-conserving algorithms were motivated by the work pre-
sented by Belytschko and Schoeberle (1975), who concluded that a numerical algorithm
is stable in terms of energy if the sum of kinetic and internal energies within each time
step is limited by the external work and the kinetic and internal energies evaluated in the
previous time step. Moreover, it was verified that algorithms presenting unconditional
stability for applications in linear dynamics are frequently subject to numerical instabil-
ity when the nonlinear case is analyzed. Following the energy criterion introduced by
Belytschko and Schoeberle (1975), Hughes et al. (1978) proposed an energy-conserving
scheme for nonlinear dynamics where the trapezoidal rule is extended by using the La-
grange multiplier method to enforce energy conservation. Nevertheless, Ortiz (1986)
demonstrated that energy conservation is not sufficient for maintaining numerical sta-
bility in the nonlinear range. Kuhl and Ramm (1996) also observed that the constraint
energy method presented by Hughes et al. (1978) conserves the total energy perfectly, but
leads to failure in the iteration procedure related to the Newton-Raphson linearization.

Indeed, Simo and Tarnow (1992) had already noticed the importance of momentum
conservation by proposing the energy-momentum method, which conserves total energy
as well as linear and angular momentum. Furthermore, second-order accuracy is also
preserved. The energy-momentum method was developed considering the mid-point rule
to evaluate the internal forces in every time step of the time integration process in or-
der to reach energy conservation algorithmically, since it was concluded that the stress
update procedure is crucial to obtain a numerical algorithm with energy-momentum con-
servation. The original formulation was introduced using a constitutive model for Saint
Venant-Kirchoff materials, which was extended to arbitrary hyperelastic materials by
Gonzalez (2000), who proposed a modified evaluation of the stress tensor employing dis-
crete derivative to describe the required form for the algorithmic update of the second
Piola-Kirchoff stress tensor. Later, Laursen and Meng (2001) reformulated the stress up-
date scheme presented by Simo and Tarnow (1992) to account for general hyperelastic
models properly, where some restrictions found in the original formulation were removed.
An energy-momentum conserving algorithm for hypoelastic constitutive models was de-
veloped by Noels et al. (2004) by using a new expression for evaluating the internal forces
at element level. Braun and Awruch (2008) also utilized a hypoelastic formulation for
applications in nonlinear elastodynamics using the eight-node hexahedral element with
one-point quadrature techniques. According to Romero (2012), there are infinite ways
of obtaining second order accuracy as well as energy and momentum conservation algo-
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rithms, whereas the characterization of the conserving stress as a minimization problem
leads to that conclusion.

Although the conservation of energy and momentum is mandatory in order to obtain a
stable numerical algorithm, it was also realized that some amount of numerical dissipation
must be introduced in the model to damp out spurious contributions of the high-frequency
range to the dynamic response, which are induced due to problems related to the finite
element discretization of the spatial domain. On the other hand, it is well known that clas-
sical dissipative methods may fail when they are applied to nonlinear problems and loss of
accuracy is generally observed in these cases. This situation motivated the development
of energy dissipative momentum conserving algorithms, where momentum is conserved,
energy dissipation is controlled and order of accuracy is maintained. Kuhl and Ramm
(1996) proposed the constraint energy-momentum method, a time-stepping scheme com-
bining conservation and dissipation properties, where energy and momentum are enforced
considering the constraint energy methodology proposed by Hughes et al. (1978) and the
generalized-α method (Chung and Hulbert, 1993) is utilized in order to obtain a dissipa-
tive time integration model. Optimized parameters for the α methods were determined
leading to an integration process with less numerical dissipation for lower frequencies
and more dissipation on higher frequencies of the energy spectrum. An algorithm based
on controllable numerical dissipation and the energy-momentum method introduced by
Simo and Tarnow (1992) was presented by Kuhl and Crisfield (1999) considering a non-
linear version of the generalized-α method. The numerical scheme was called generalized
energy-momentum method and applications for shell dynamics were later investigated by
Kuhl and Ramm (1999). Armero and Petocz (1998) and Crisfield et al. (1997) modified
the energy-momentum method proposed by Simo and Tarnow (1992) to include numeri-
cal dissipation by using a damping parameter that only affects the second Piola-Kirchof
stress tensor. Nevertheless, the so-called modified energy-momentum method is only first
order accurate. In order to circumvent this drawback, Armero and Romero (2001b) devel-
oped a dissipative time-stepping algorithm with energy conservation properties that also
preserves second order accuracy. Reviews on energy-momentum and dissipative methods
may be found in Kuhl and Crisfield (1999); Armero and Romero (2001a); Erlicher et al.
(2002).

In the present work, a numerical model based on IsoGeometric analysis is developed
for applications in nonlinear elastodynamics for investigations on nonlinear elastostatics.
The kinematic description of the continuum is performed using the corotational approach
in the context of IsoGeometric analysis. A hypoelastic constitutive model is adopted uti-
lizing corotational stress and strain tensors, where the small strain hypothesis and large
displacements and rotations are considered. The numerical model is obtained by apply-
ing the Bubnov-Galerkin weighted residual method over the Cauchy’s equation of motion
and a Newton-Raphson scheme is adopted for linearization of the residual vector in the
nonlinear range. Geometry and solution fields are approximated using NURBS basis func-
tions according to the isoparametric concept. The Generalized-α Method and Generalized
Energy-Momentum Method with an additional parameter (GEMM+ξ) are implemented
into the IsoGeometric formulation in order to obtain stable and dissipative schemes for
time integration. The influence of aspects related to the IsoGeometric discretization is
investigated for numerical applications where numerical instabilities are expected when
standard finite element models are utilized.
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2 THEORETICAL ASPECTS

2.1 Governing equations for elastodynamics and corotational approach

Problems on elastodynamics may be formulated considering the Cauchy’s equation of
motion, where mass and energy conservation must be also enforced over the volume en-
closing the body (see, for instance, Malvern (1969)). Considering a classical Lagrangian
kinematical description in the Cartesian coordinate system and in the absence of temper-
ature changes, the system of governing equations are reduced to the following expressions

∫

Ω0

ρ (X, t0) dΩ =
∫

Ω

ρ (x, t) dΩ ∀t ∈ [t0, t] (1a)

ρü − div σ − b = 0 in Ω × [t0, t] (1b)

u = u on ΓD × [t0, t] (1c)

σ · n = t on ΓN × [t0, t] (1d)

u (x, t0) = u0 in Ω (1e)

u̇ (x, t0) = u̇0 in Ω (1f)

where Equations (1a) and (1b) represent mass and momentum balances over the spatial
domain Ω(t) corresponding to the body, respectively, with the first-order tensors X and x

containing components of the material (Xi) and spatial (xi) coordinates in the Cartesian
coordinate system, t denotes time, ρ is the specific mass of the body, b is the first-order
tensor of body forces per unit mass, the second-order tensor σ contains components of
the Cauchy stress tensor and the first-order tensors u and ü are the displacement and the
second time derivative of the displacement. The boundary conditions are given according
to Equations (1c) and (1d), where the first-order tensors u and t are the prescribed
Dirichlet and Neumann boundary conditions (Dirichlet: prescribed primitive variables -
displacement prescribed) and (Neumann: prescribed derivatives of primitive variables -
prescribed surface traction), over the boundaries ΓD and ΓN , respectively, taking into
account that n is the unit outward normal defined on boundary ΓN . Equation (1e-1f)
specifies the initial conditions (t = t0; Ω = Ω0) for the displacement and its first time
derivative fields. In addition, ΓD

⋃
ΓN = Γ and ΓD

⋂
ΓN = ∅. It is important to notice

that the equilibrium equation, which is derived from the Cauchy’s equation of motion, is
defined taking into account the current deformed configuration of the body (Ω).

In the present model, geometrically nonlinear problems are analyzed taking into ac-
count the corotational approach (any tensor field in corotational frame are identified by
(̂·)), where stress and strain are described according to a coordinate system locally at-
tached to every quadrature point. Consequently, a linear constitutive model restricted to
small strains can be adopted in order to relate strain and stress measures, which may be
written as

σ̂ = Ĉ
mat

: ǫ̂ = λtr(ǫ̂)1 + 2µǫ̂ (2)

where σ̂ and ǫ̂ are the Cauchy stress tensor and the small strain tensor, both defined in

the corotational system. Ĉ
mat

is the fourth-order elastic tensor, which may be described

in terms of the Lamé constants, λ and µ. It is important to notice that when infinitesimal
displacements and rotations are observed, the geometrical linear approach can be utilized
and the undeformed configuration of the body (Ω0) is taken as reference throughout the
analysis.
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Theoretically, the motion of a continuum can be decomposed into rigid body motion
and pure deformation. This separation of rigid body and purely deformational motions is
originated by assumption of large rotations. Once the spatial discretization of the problem
is fine enough, this decomposition can be performed at the quadrature level, and conse-
quently, in a corotational coordinate system, where the pure deformation part is always
a small quantity with respect to the element dimensions. The corotational description
maintains orthogonality of the reference frame, which leads to exact decomposition of
the motion into rigid body and deformational parts. In this sense, an elastic constitutive
formulation is very effective for corotational descriptions, since the nonlinear problem can
be posed in rate form by considering the small strain hypothesis and an objective rate of
the Cauchy stress tensor.

Assuming that all kinematical variables at the previous configuration tn of the body
are known, the displacement field at the end of the current load step can be obtained
from integration of the strain rate tensor over the time interval defining the present load
increment [tn, tn+1]. In addition, this integration to obtain the strain increment must be
performed in the corotational coordinate system, where only the deformational part of the
incremental displacement field is considered. The strain rate tensor in the corotational
system is defined as:

d̂ =
1

2




∂v̂def

∂x̂
+

(

∂v̂def

∂x̂

)t


 (3)

where v̂def represents the velocity field associated with the deformation part of the motion
in the corotational system. In order to obtain strain increments, some methodology must
be adopted to integrate the strain tensor over the time interval [tn, tn+1]. In the present
work, the mid-point integration proposed by Hughes and Winget (1980) is utilized, where
the velocity is assumed to be constant within the time interval and the reference config-
uration is attached to the intermediate configuration tn+

1

2

in the corotational system.
According to the mid-point integration, the strain increment may be obtained from:

tn+1∫

tn

d̂ dτ =
1

2




∂∆ûdef

∂x̂n+
1

2

+




∂∆ûdef

∂x̂n+
1

2





t

 = ∆ǫ̂ (4)

where ∆ûdef is the deformation part of the displacement increment in the corotational
system and x̂n+

1

2

is the intermediate configuration of the body defined in the corotational
system, which can be determined according to the following expression:

x̂n+
1

2

= R
n+

1

2

· xn+
1

2

=
1

2
R

n+
1

2

· (xn + xn+1) (5)

where R
n+

1

2

is the orthogonal transformation tensor performing rotation from the global

system to the corotational system defined locally at the intermediate configuration tn+
1

2

.

The displacement increment referring to the present time interval [tn, tn+1] can be decom-
posed as follows:

∆u = ∆udef + ∆urot (6)

where ∆udef and ∆urot are, respectively, the deformation and rotation parts of the dis-
placement increment defined in the global coordinate system. It is important to notice
that the decomposition described in Equation (6) is locally performed at element level.
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The deformation displacement increment in the corotational system can be obtained from
the following expression:

∆ûdef = R
n+

1

2

· ∆udef = x̂n+1 − x̂n (7)

where the transformation tensor R is evaluated at the intermediate configuration tn+
1

2

of

the current time interval [tn, tn+1], since the strain rate tensor must be referred to the body
configuration at tn+

1

2

. Coordinates corresponding to the previous and current configura-
tions of the body in the corotational system are obtained with following transformations:

x̂n = R
n

· xn; x̂n+1 = R
n+1

· xn+1 (8)

where R
n

and R
n+1

are orthogonal transformation tensors performing rotations from the
global system to the corotational system defined locally at tn and tn+1, respectively.

After determining the strain increment in the corotational system, strain and stress
updates can be performed with the following equations:

ǫ̂
n+1

= ǫ̂
n

+ ∆ǫ̂ (9a)

σ̂
n+1

= σ̂
n

+ ∆σ̂ (9b)

where n and n + 1 denote the previous and current configurations in the corotational
system, respectively. It is well known that the Cauchy stress tensor in the corotational
system is frame-invariant, since stress measures are not affected by rigid body motions, but
the rate of the Cauchy stress tensor is not. Therefore, in order to obtain an incrementally
objective constitutive formulation, the Jaumann rate tensor is adopted in this work, which
may be described as follows:

◦

σ̂
J

= ˙̂σ + σ̂ · Ω̂ − Ω̂ · σ̂ (10)

where spin tensor Ω̂ is the antisymmetric part of the spatial velocity gradient tensor L̂

defined in the corotational system. The corotational spin tensor must be also integrated
over the time interval [tn, tn+1] considering the same mid-point rule adopted in Equation
(4).

The orthogonal transformation tensor R may be evaluated using several methods. In
the present work, a classical polar decomposition theorem is utilized, where spectral de-
composition or eigenprojection of the right Cauchy-Green deformation tensor C is adopted
to obtain the right stretch tensor U.

Being the deformation gradient tensor defined as

F =
∂x

∂X
(11)

it can be decomposed uniquely (while det(F) > 0) into a symmetric part and an orthog-
onal part

F = Q · U = V · Q (12)

where Q is an orthogonal tensor and U and V are the right and left stretch tensors.

Recall that the right Cauchy-Green deformation tensor is defined as

C = Ft · F (13)
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Then, taking into account Equation (12)

C = Ut · Qt · Q · U = U2 (14)

and from spectral decomposition or eigenprojection of C, the following expression may
be written

C = λ2
i Ni ⊗ Ni = U2 (15)

where λ2
i and Ni are eigenvalues and eigenvectors of C, respectively. Then, the orthogonal

tensor is evaluated as
Q = F · U−1 = F ·

(

λ−1
i Ni ⊗ Ni

)

(16)

The transformation tensor utilized in the corotational formulation is obtained considering
that R = Qt.

2.2 Weak Formulation

A numerical model based on IsoGeometric analysis may be constructed using vari-
ational principles in the same form as that utilized by the FEM, which are equivalent
to consider the corresponding weak forms obtained from the Galerkin method applied
to the governing equations. In elastodynamics the Hamilton’s principle can be adopted
according to the following expression:

t∫

t0

δ (K − π) dt +

t∫

t0

δWd dt (17)

with

K =
1

2

∫

Ω

ρu̇ · u̇ dΩ δK =
∫

Ω

ρδu̇ · u̇ dΩ (18a)

π =
∫

Ω

U(ǫ) dΩ −
∫

Ω

u · b dΩ −
∫

Γ

u · t dΓ δπ =
∫

Ω

δǫ : σ dΩ −
∫

Ω

δu · b dΩ −
∫

Γ

δu · t dΓ

(18b)

Wd = −
∫

Ω

u · fd dΩ δWd = −
∫

Ω

δu · fd dΩ (18c)

where K and π are the kinetic energy and the total potential energy, respectively, with δK

and δπ denoting its corresponding variations, Wd is the work done by any nonconserving
force of the system and δWd is the respective variation, U(ǫ) =

∫

Ω σ : ǫdΩ is the strain
energy density function and fd is the vector of nonconserving forces, including viscous
damping fd = χu̇. The displacement variations δu must vanish at the time limits t0 and
tf and also on boundary ΓD, where Dirichlet boundary conditions are imposed.

The semidiscrete system of momentum equations is obtained taking into account they
are discrete in space but continuous in time. The space discretization is performed here
considering the Bubnov-Galerkin method applied into the context of IsoGeometric analy-
sis, where the displacement variations associated with the variational form (see Equation
17) assume the role of weight functions. By integrating by parts the kinetic energy
variation presented in Equation 17 and considering the restrictions imposed on the dis-
placement variations δu at the time limits t0 and tf , the following expression is obtained:
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t∫

t0

(∫

Ω

ρδu · ü dΩ +
∫

Ω

δu · χu̇ dΩ −
∫

Ω

δǫ : σ dΩ +
∫

Ω

δu · b dΩ +
∫

Γ

δu · t dΓ
)

dt = 0

(19)

2.3 Spatial discretization – the IsoGeometric formulation using NURBS

In order to define the element concept in the context of IsoGeometric analysis, geom-
etry, velocities, displacements and displacement variations must be discretized with the
following expressions:

x(ξ, t) =
nnp
∑

a=1

Ra(ξ)xa u(ξ, t) =
nnp
∑

a=1

Ra(ξ)ua

ü(ξ, t) =
nnp
∑

a=1

Ra(ξ)üa δu(ξ, t) =
nnp
∑

a=1

Ra(ξ)δua

(20)

where Ra is the NURBS basis function related to control point a, which is defined as
function of the parametric coordinates (ξ, η, ζ), and nnp is the number of global control
points (basis functions). Knot vectors corresponding to the different directions in the
parametric space must be also specified defining the non-zero knot spans where elements
are then identified. A three-dimensional knot vector (Ξ, H, Z) may be written as follows:

Ξ(ξ) = {0, . . . , 0
︸ ︷︷ ︸

p+1

, ξp+1, . . . , ξsp−p−1, 1, . . . , 1
︸ ︷︷ ︸

p+1

}, with sp = n + p + 1

H(η) = {0, . . . , 0
︸ ︷︷ ︸

q+1

, ηq+1, . . . , ηsq−q−1, 1, . . . , 1
︸ ︷︷ ︸

q+1

}, with sq = m + q + 1

Z(ζ) = {0, . . . , 0
︸ ︷︷ ︸

r+1

, ζr+1, . . . , ζsr−r−1, 1, . . . , 1
︸ ︷︷ ︸

r+1

}, with sr = l + r + 1

(21)

where p, q and r are the polynomial degrees of the basis functions over the parametric
directions ξ, η and ζ respectively, and the corresponding numbers of basis functions are
specified by n + 1, m + 1 and l + 1, respectively, which are also associated with the
number of control points in the different directions of the physical space. Depending
on the geometric topology of the problem, the knot vector may be reduced to two- or
one-dimensional vectors, i.e., (Ξ, H) or (Ξ).

The NURBS basis functions for three-dimensional applications are defined by:

R
p,q,r
i,j,k (ξ, η, ζ) =

Ni,p (ξ) Nj,q (η) Nk,r (ζ) wi,j,k

n,m,l∑

î ,ĵ ,k̂ =0

Nî ,p (ξ) Nĵ ,q (η) Nk̂ ,r (ζ) wî ,ĵ ,k̂

(22)

where the subscripts i, j and k indicate the position of the control point in the index space
and the superscripts p, q and r define the polynomial degree of the basis functions. The
weight term wi,j,k is related to the weight associated with the control point defined by the
subindices i, j and k. Details on evaluation of functions may be found in Piegl and Tiller
(1997) and Cottrell et al. (2009).

The Cox-de Boor recursive formulation (Cox (1972); deBoor (1972)) is usually adopted
to evaluate B-spline basis functions, which are obtained considering a given one-dimensional
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knot vector Ξ(ξ) defined over the parametric space ξ, the number of control points defined
along the corresponding direction in the physical space and the polynomial order of the
corresponding basis functions. According to the Cox-de Boor formulation, the B-spline
basis functions may be expressed as:

Ni,0 (ξ) =







1 if ξi 6 ξ < ξi+1,

0 otherwise.

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ)

(23)

where p is the polynomial degree of the basis function N(ξ) and i is the knot index.
Equation (23) are straightforwardly extended to the basis functions associated with the
parametric directions η and ζ .

The IsoGeometric model for the equation of motion given by Equation (19) can be
written as:

t∫

t0

nel⋃

e=1

(∫

Ω

ρδu · ü dΩ +
∫

Ω

δu · χu̇ dΩ −
∫

Ω

δǫ : σ dΩ +
∫

Ω

δu · b dΩ +
∫

Γ

δu · t dΓ
)

dt = 0

(24)

where Ωe and Γe are volume and boundary surface, respectively, corresponding to element
e in the physical mesh. Considering n + 1, m + 1 and l + 1 as the number of basis
functions related to the parametric directions ξ, η and ζ , respectively, and their respective
polynomial degrees denoted by p, q and r, element e is defined by determining the indices
at which the corresponding non-zero knot span begins in the index space, that is:

e ∈ [ξi, ξi+1] × [ηi, ηi+1] × [ζi, ζi+1] (25)

where p + 1 6 i 6 n, q + 1 6 j 6 m and r + 1 6 k 6 l. The total number of elements,
nel, in which the spatial field is discretized in the parametric domain is defined as

nel = (n − p + 1) · (m − q + 1) · (l − r + 1) (26)

By substituting the NURBS approximation related to the displacement field (see Equation
(20)) into the constitutive equation (see Equation (20)), an element level approximation of
the stress-strain relation, using Voigt notation, is obtained, where the strain components
in the corotational system are given by:

ǫ̂ = B̂ · û (27)

where B̂ and û are the symmetric part of the gradient operator and the displacements
field, respectively, which are evaluated referring to the current configuration of the body
in the corotational coordinate system. When infinitesimal displacements and rotations are
observed, Equation (27) is described in terms of the undeformed configuration of the body
(Ω0). Derivatives of the B-spline basis functions are represented in terms of B-spline lower
order bases owing to the recursive definition of the basis functions. Algorithms for numer-
ical evaluation of derivatives of B-spline basis functions may be found in Piegl and Tiller
(1997).
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Introducing the expansions shown in Equation (20) and the relationship given by Equa-
tion (27) into Equation (24), a matrix equation representing a system of algebraic equa-
tions is obtained for the equation of motion, which may be expressed as:

nel⋃

e=1

Meü +
nel⋃

e=1

Ceu̇ +
nel⋃

e=1

Keu =
nel⋃

e=1

f e
ext (28)

where Me and Ke are the element mass and element stiffness matrices, respectively, and
f e
ext is the force vector at element level. The matrix and vector dimensions associated

to Me and Ke, and f e
ext, are specified as (neq × neq × neq) and (neq), respectively, where

neq = nen × ndof , with ndof denoting the number of degrees of freedom at the control
point level. The union symbol indicates the assembling procedure to evaluate the global
system of equations, considering the element contributions given according to connectivity
relations established among the control points. The global stiffness matrix is always sparse
because the support of each basis function is highly localized.

In the geometrically nonlinear regime, the system of equations represented by Equation
(28) must be iteratively satisfied using the incremental approach (see Bathe (1996)),
since internal forces are given now as functions of the current configuration of the body.
The nonlinear equation of motion is obtained employing a linearization procedure given
by the Newton-Raphson method, where the residual vector is submitted to a Taylor
series expansion within the time interval [tn, tn+1]. Consequently, Equation (28) must be
rewritten as follows:

nel⋃

e=1

Meü +
nel⋃

e=1

Ceu̇ +
nel⋃

e=1

Ke
tan (ue) ∆u =

nel⋃

e=1

f e
ext −

nel⋃

e=1

f e
int (ue) (29)

where Ke
tan is the tangent stiffness matrix. At each iterative step, the tangent stiffness

matrix and the internal force vector are initially evaluated in the corotational coordinate
system with the following expressions:

K̂e
tan =

∫

Ω̂e
B̂t
(

Ĉmat + Ĉgeo
)

B̂ dΩ̂e; f̂ e
int =

∫

Ω̂e
B̂tσ̂ dΩ̂e (30)

where Ω̂e is referenced to the current configuration of element e in the corotational co-
ordinate system, Ĉ and σ̂ are stress tensors related to the Jaumann rate tensor and the
corotational Cauchy stress tensor, respectively, with both evaluated in the corotational
coordinate system. In order to solve the system of nonlinear equilibrium equations, the
tangent stiffness matrix and the internal force vector must be obtained in the global co-
ordinate system through an objective transformation from the corotational system, that
is:

Ke
tan = RtK̂e

tanR; f e
int = Rtf̂ e

int (31)

where R is the rotation matrix defined in the previous section.

2.4 Temporal integration – the Generalized-α method and Generalized Energy-

Momentum Method + ξ

The time interval during which the dynamic analysis is carried out [t0, tf ] is subdivided
into time steps ∆t = tn+1−tn in order to define the time step in the integration process for
implicit algorithms, where the incremental approach is adopted. The kinematic variables
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are assumed to be known at the beginning of every time step of the time integration and
the same variables are obtained at the end of the respective time step considering the
solution of the equation of motion, which is given in terms of displacement increments,
and time approximations provided by a specific method, such as the Newmark’s method.
Although the Newmark’s algorithm is unconditionally stable for linear problems, it may
be unstable in the nonlinear range. In this sense, the generalized-α method may be
utilized, where the equilibrium of the equation of motion is verified at an intermediate
point of the time increment instead of the end point employed by the classical Newmark
scheme.

It is assumed that dn+1 ≈ u (tn+1), vn+1 ≈ u̇ (tn+1) and an+1 ≈ ü (tn+1). At the begin-
ning of each incremental step the predictor phase is defined according to the Newmark’s
Formulas

di
n+1 = d̃n+1

vi
n+1 = ṽn+1

ai
n+1 = ãn+1

(32)

where

d̃n+1 = dn + ∆tvn +
(∆t)2

2
((1 − 2β) an + 2βãn+1) (33a)

ṽn+1 = vn + ∆t ((1 − γ) an + γãn+1) (33b)

The kinematic variables and residual of the governing equations are defined in the Gα

and GEMM+ξ by using the following functions

R
(

dn+αf
, vn+αf

, an+αm

)

= 0 (34a)

dn+αf
= dn + αf (dn+1 − dn) (34b)

vn+αf
= vn + αf (vn+1 − vn) (34c)

an+αm
= an + αm (an+1 − an) (34d)

with Newmark’s Formulas (34e)

The equilibrium, Equation (34a), must be satisfied at the intermediate level. Once

(dn, vn, an) is known,
(

dn+1, vn+1, an+1, dn+αf
, vn+αf

, an+αm

)

can be obtained, where αf ,
αm, γ and β are parameters that define the method, which are selected in order to achieve
second order accuracy and unconditional stability.

For second order linear differential equations with constant coefficients, Chung and Hulbert
(1993) demonstrated that second order accuracy and unconditional stability are obtained
with

γ =
1

2
− αf + αm (35a)

β =
1

4
(1 − αf + αm)2 (35b)

In order to obtain a numerical damping control over the high frequencies, αm and αf

must be defined as function of spectral radius ρ∞. Chung and Hulbert (1993) established
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that, for system with second order accuracy, one obtains

αm =
2 − ρc

∞

1 + ρc
∞

(36a)

αf =
1

1 + ρc
∞

(36b)

There is an additional dissipation parameter in the GEMM+ξ that displaces the internal
force of the intermediate level defined by Gα, from tn+αf

→ tn+α+ξ. This parameter,
Armero-Petocz parameter Armero and Petocz (1998) improves the stability.

ξ =
1 − ρ∞

2 + 2ρ∞

(37)

Assuming that the strain and stress tensors and all kinematical quantities are known
at the end of the last time increment t = tn, the solution at t = tn+1 should be computed
based on the converged solution at the previous time step. An algorithm describing all
the calculation steps performed by the present numerical model is found below

1. Predictor Phase:

select a predictor according to the Newmark’s formulas estimating
(

d0
n+1, v0

n+1, a0
n+1

)

(38)

2. Corrector Phase: loop over i = 0, . . . , imax

(a) evaluate
(

di
n+αf

, vi
n+αf

, ai
n+αm

)

di
n+αf

= (1 − αf) dn + αf di
n+1 (39a)

vi
n+αf

= (1 − αf) vn + αf vi
n+1 (39b)

ai
n+αm

= (1 − αm) an + αmai
n+1 (39c)

(b) Assembly the residual vector with variables at the intermediate level

dRi

ddn+1

∆d = −Ri
n+1 (40)

where

Ri
n+1 =R(di

n+αf
, vi

n+αf
, ai

n+αm
)

RGα i
n+1 =Mai

n+αm
+ Cvi

n+αf
+ NGα i

n+αf
− f ext

n+αf

R
GEMM+ξ i

n+1 =Mai
n+αm

+ Cvi
n+αf

+ N
GEMM+ξ i

n+αf +ξ − f ext
n+αf

(41)

N is the internal force vector and f ext
n+αf

= (1 − αf) f ext
n + αf f ext

n+1 is the ex-
ternal load vector evaluated at generalized intermediate point. The following
expression

dRi

ddn+1

=
dR

ddn+1

(di
n+αf

, vi
n+αf

, ai
n+αm

) (42)

is the total derivative ( dR

ddn+1

), which is presented in Equations (44) and (45).
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(c) with the solution of Equation (40), kinematic variables are updated

di+1
n+1 = di

n+1 + ∆d

vi+1
n+1 = vi

n+1 +
γ

β∆t
∆d

ai+1
n+1 = ai

n+1 +
1

β(∆t)2
∆d

(43)

3. Check convergence: If the criterion is not satisfied, return to step 1, with i = i+1.
Otherwise, go forward to the next time step.

The total derivative of Equation (42) is obtained as follow

dR

ddn+1

=
dR

ddn+αf

ddn+αf

ddn+1

+
dR

dvn+αf

dvn+αf

dvn+1

dvn+1

ddn+1

+
dR

dan+αm

dan+αm

dan+1

dan+1

ddn+1

(44)

and from Equations (33) and (38), one obtain

dR

ddn+1

=
αm

β(∆t)2
M +

γαf

β∆t
C + Ktan (45)

In Gα method the internal force and tangent stiffness matrix at generalized interme-
diate point are evaluated accordingly with the following expression:

NGα i
n+αf

= (1 − αf)
∫

Ω̂

B̂t (ûn) σ̂ (ûn) dΩ̂ + αf

∫

Ω̂

B̂t (ûn+1) σ̂ (ûn+1) dΩ̂ (46)

KGα tan
n+αf

=αf (Km + Kg)

=αf

∫

Ω̂

B̂t (ûn+1)
(

Ĉmat + Ĉgeo (ûn+1)
)

B̂ (ûn+1) dΩ̂
(47)

while in GEMM+ξ method the internal force and tangent stiffness matrix at generalized
intermediate point are evaluated accordingly with the following expression:

N
GEMM+ξ i

n+αf +ξ =
∫

Ω̂

B̂t(ûn+αf
) [(αf − ξ) σ̂ (ûn) + (αf + ξ) σ̂ (ûn+1)] dΩ̂ (48)

K
GEMM+ξ tan

n+αf +ξ = (αf + ξ) Km + αfKg

= (αf + ξ)
∫

Ω̂

B̂t(ûn+αf
)ĈmatB̂ (ûn+1) dΩ̂

+ αf

∫

Ω̂

B̂t(ûn+αf
)Ĉgeo(ûn+αf

)B̂(ûn+αf
) dΩ̂

≈ (αf + ξ)
∫

Ω̂

B̂t(ûn+αf
)ĈmatB̂(ûn+αf

) dΩ̂

+ αf

∫

Ω̂

B̂t(ûn+αf
)Ĉgeo(ûn+αf

)B̂(ûn+αf
) dΩ̂

(49)

It is important to notice that material contribution into tangent stiffness matrix is mod-
ified in order to get a symmetry matrix.

L.F.R. ESPATH, A.L. BRAUN, A.M. AWRUCH46

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



2.5 Total energy, linear and angular momentum

There are some quantities that have a great importance in structural dynamics, such
as: total energy, linear and angular momentum, in order to judge the stability and con-
servative properties. The total energy E is composed as kinetic energy K and internal
strain energy U

E = K + U (50a)

K =
∫

Ω

ρu̇ · u̇ dΩ (50b)

E =
∫

Ω

σ : ǫ dΩ (50c)

The linear and angular momentum can be evaluated as

L =
∫

Ω

ρu̇ dΩ (51a)

J =
∫

Ω

ρu × u̇ dΩ (51b)

3 NUMERICAL APPLICATION

3.1 Flying toss rule

This problem was study by Kuhl and Ramm (1996), where different time-integration
schemes are employed to understand the numerical dissipation and its stability. A nu-
merical investigation of the plane movement of a toss rule is performed in this example,
where a geometrically nonlinear dynamic analysis is carried out. Geometry and boundary
conditions are shown in Figure 1a, load description for the present simulation is shown in
Figure 1b and material properties of the structure as well as the time step adopted in the
time integration procedure are found in Table 1. It is important to notice that distributed
loads are applied to the structure to produce the plane motion of the rule, which is free to
fly in the absence of displacement restrictions and gravity action. Computational param-
eters regarding the numerical analyses performed here are presented in Table 2. Number
and distribution (L, h, z) of elements over the physical space referring to the rule are again
given according to the continuity class, where the element configurations (16 × 1 × 1),
(21 × 1 × 1), (31 × 1 × 1) and (61 × 1 × 1) correspond to the continuity classes C1, C2,
C3 and C4, respectively. The adopted convergence criteria is 2 · 10−8.

The dynamic responses obtained from the numerical analyses performed here are shown
in Figures 3, 4 and 5 for Gα with consistent mass, in Figures 6, 7 and 8 for Gα with lumped
mass, in Figures 9, 10 and 11 for GEMM+ξ with consistent mass, in Figures 12, 13 and
14 for GEMM+ξ with lumped mass, which correspond to time histories referring to the
respective energy budget, linear and angular momentum.

The results shown here demonstrate again a sudden interruption of the time integration
process when a spectral radius equal to ρ∞ = 1.00 is considered (no numerical dissipa-
tion), independently of the continuity class utilized, for Gα method with consistent mass,
whereas for lumped mass the convergence is reached only for C1 and C2, and with the
increase of continuity the numerical instability is anticipated. In this sense, the influence
of the continuity class on the energy response was not identified for consistent mass. On
the other hand, stable solutions can be obtained even with small amounts of numerical
dissipation, i.e. ρ∞ = 0.99, where the total energy is perfectly maintained during the
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Table 1: Geometrical and load characteristics for the toss rule analysis

Young modulus - E
[
N/m2

]
2.06 · 1011

Poisson coefficient - ν 0.3
Specific mass - ρ

[
kg/m3

]
7.8 · 103

Damping coefficient - φ 0.0
Time step - ∆t [s] 1.0 · 10−4

time interval of the numerical analysis. The same behavior was observed for the com-
ponents of the angular and linear momentum. For analyses carried out with GEMM+ξ

with consistent and lumped mass is achieved a stable analysis and with conserving en-
ergy and momentum. The range of stable spectral radius obtained with the IsoGeomet-
ric model is slightly wider that that presented by the finite element model proposed by
Braun and Awruch (2008). The energy responses obtained here are in agreement with the
numerical predictions presented by Kuhl and Ramm (1999). In Kuhl and Ramm (1999)
is evidenced that Gα is not stable and cannot conserve the energy-momentum.

The motion referring to the toss rule can be visualized in Figure 2, where a sequence of
deformed configurations obtained with the algorithm proposed is shown for Gα method.
One can observe that the inertial motion is developed after the initial load is removed.
Structural displacements take place on a plane in accordance with the load configuration
prescribed initially. In Figure 2a is presented successive configurations from t = 0.0 to
t = 0.1 with ∆t = 0.001, while in Figure 2b is presented successive configurations from
t = 0.0 to t = 0.03 with ∆t = 0.0001 for Gα method, for continuity class C4 and C1,
respectively.

It is presented in Table 4 the numerical dissipation at the end of each analysis over each
spectral radius and continuity class. It is observed that there is not a dependency between
the conservation of the total energy, linear, angular momentum and the continuity class.
On other hand, the stability shows a different behavior with respect to the first example.
For Gα with consistent mass, there is not a dependency between the stability and the
continuity class. While for Gα with lumped mass seems that the instability is postponed
when the continuity class is reduced.

In Kuhl and Ramm (1996); Kuhl and Crisfield (1999); Kuhl and Ramm (1999) a para-
metric study is carried out in function of spectral radius for several time integration meth-
ods, such as, Constrained Energy-Momentum Method Kuhl and Ramm (1996), Energy-
Momentum Method, Generalized Energy-Momentum Method Kuhl and Ramm (1999),
Modified Energy-Momentum Method and Generalized-α Method. For any time integra-
tor scheme is possible to see a deterioration of the solution in terms of energy budget and
momentum conservation with the increase of the spectral radius.

It was observed that the convergence rate of this analysis is about 1.9 and 2.1 for force
and displacement convergence, respectively, in Gα method, while in GEMM+ξ method
is observed a convergence rate about 1.7 and 1.9 for force and displacement convergence,
respectively. The convergence itself present indifferent in front of consistent and lumped
mass.
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Table 2: Computational parameters employed in the toss rule analysis

Control mesh (L, h, z) Continuity class Spectral radius - ρ∞ Degrees (p, q, r)

Gα consistent mass

66 × 3 × 2 C1 0.50; 0.95; 0.99; 1.00 5, 2, 1
66 × 3 × 2 C2 0.50; 0.95; 0.99; 1.00 5, 2, 1
66 × 3 × 2 C3 0.50; 0.95; 0.99; 1.00 5, 2, 1
66 × 3 × 2 C4 0.50; 0.95; 0.99; 1.00 5, 2, 1

Gα lumped mass

66 × 3 × 2 C1 1.00 5, 2, 1
66 × 3 × 2 C2 1.00 5, 2, 1
66 × 3 × 2 C3 1.00 5, 2, 1
66 × 3 × 2 C4 1.00 5, 2, 1

GEMM+ξ consistent mass

66 × 3 × 2 C1 1.00 5, 2, 1
66 × 3 × 2 C2 1.00 5, 2, 1
66 × 3 × 2 C3 1.00 5, 2, 1
66 × 3 × 2 C4 1.00 5, 2, 1

GEMM+ξ lumped mass

66 × 3 × 2 C1 1.00 5, 2, 1
66 × 3 × 2 C2 1.00 5, 2, 1
66 × 3 × 2 C3 1.00 5, 2, 1
66 × 3 × 2 C4 1.00 5, 2, 1

L

L/3

h

w

q(t)

q(t)

q(t)

(a) Geometry and boundary conditions
time

load 

0.002 0.004

40x10³

(b) Load q(t)

Figure 1: Geometry and boundary conditions of the toss rule.
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Table 3: Convergence and failure time.

ρ∞ C1 C2 C3 C4

Gα consistent mass

0.50 conv. conv. conv. conv.
0.95 conv. conv. conv. conv.
0.99 conv. conv. conv. fail at tf = 0.9040s
1.00 fail at tf = 0.5340s fail at tf = 0.7260s fail at tf = 0.4935s fail at tf = 0.5375s

Gα lumped mass

1.00 conv. conv. fail at tf = 0.7775s fail at tf = 0.6115s

GEMM+ξ consistent mass

1.00 conv. conv. conv. conv.

GEMM+ξ lumped mass

1.00 conv. conv. conv. conv.

Table 4: Maximum level of the dissipation at the end of each analysis.

ρ∞ C1 C2 C3 C4

Gα consistent mass

0.50 1 · 10−1% 1 · 10−1% 1 · 10−1% 1 · 10−1%
0.95 2 · 10−4% 2 · 10−4% 2 · 10−4% 1 · 10−4%
0.99 8 · 10−4% 1 · 10−4% 8 · 10−4% 3 · 10−3%
1.00 0% 0% 0% 0%

Gα lumped mass

1.00 0.44% 0.42% 0.32% 0.39%

GEMM+ξ consistent mass

1.00 4 · 10−3% 3 · 10−3% ↑ 1 · 10−2% ↑ 8 · 10−2%

GEMM+ξ lumped mass

1.00 0.45% 0.42% 0.37% 0.17%

↑ implies in the growing of the total energy.

(a) ρ∞ = 0.95 e C4 (b) ρ∞ = 0.95 e C4

Figure 2: Successive configurations: Gα.
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(d) ρ∞ = 1.00, C4

Figure 3: Energy of toss rule; Gα with consistent mass.
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(d) ρ∞ = 1.00, C4

Figure 4: Linear momentum of toss rule, L; Gα with consistent mass.
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Figure 5: Angular momentum of toss rule, J; Gα with consistent mass.
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(b) ρ∞ = 1.00, C2
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(c) ρ∞ = 1.00, C3
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Figure 6: Energy of toss rule; Gα with lumped mass.
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Figure 7: Linear momentum of toss rule, L; Gα with lumped mass.
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Figure 8: Angular momentum of toss rule, J; Gα with lumped mass.
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Figure 9: Energy of toss rule; GEMM+ξ with consistent mass.
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Figure 10: Linear momentum of toss rule, L; GEMM+ξ with consistent mass.
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Figure 11: Angular momentum of toss rule, J; GEMM+ξ with consistent mass.
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Figure 12: Energy of toss rule; GEMM+ξ with lumped mass.
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Figure 13: Linear momentum of toss rule, L; GEMM+ξ with lumped mass.
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Figure 14: Angular momentum of toss rule, J; GEMM+ξ with lumped mass.
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3.2 “Snap-Through” of cylindrical shell

The snap-through phenomenon occurring in a hinge-supported cylindrical shell sub-
ject to a concentrated load is investigated here. Geometry and boundary conditions are
shown in Figure 15a, load description for the present simulation are shown in Figure 15b
and material properties of the structure as well as the time step adopted in the time
integration procedure are found in Table 5. Information on computational parameters
utilized in the parametric studies carried out here are summarized in Table 6. Number
and distribution (L, w, h) of elements over the physical space referring to the cylindrical
shell are given as follows: the continuity class C1 corresponds to the continuity class em-
ployed over the shell surface, where the element configuration (8 × 8) is adopted. The
computational mesh related to the continuity class C4 presents (4 × 4) elements over the
shell surface. Along the shell thickness, two elements of C0 continuity are used in both
meshes, such that the control points associated with the middle surface of the cylindrical
shell become interpolatory and the boundary conditions corresponding to hinge supports
can be appropriately imposed.

Figures 17, 19 present results in term of energies for Gα method and GEMM+ξ method
with consistent mass, respectively. Figures 18, 20 present the dynamic responses which
are given in terms of vertical displacements measured at the position where the load is
applied. In addition, the displacement response is also evaluated at the middle point on
the free edge of the cylindrical shell.

One can observe that the continuity class has a minor influence on the dynamic re-
sponses obtained here. On the other hand, the effects induced by the spectral radius
are clearly noted, since the displacements are continuously increasing for ρ∞ = 0.90 and
ρ∞ = 0.95. A stable solution is obtained for ρ∞ = 0.50 for Gα method, although nu-
merical damping can be also observed. For GEMM+ξ a stable solution is obtained for
ρ∞ = 0.95, however an excessive amount of numerical dissipation is observed. Neverthe-
less, the amount of numerical damping must be carefully controlled in order to obtain
accurate results.

In Figure 21a, results obtained in this work are compared with numerical predictions ob-
tained by Kuhl and Ramm (1999) and the commercial package ABAQUS (explicit solver),
while in Figure 21b it is compared with Balah and Al-Ghamedy (2005); Kuhl and Ramm
(1996). In Figure 21c is compared Gα and GEMM+ξ methods. The present results
correspond to the numerical analysis performed considering a spectral radius and and
continuity class of ρ∞ = 0.50, C4 and ρ∞ = 0.95, C4 for Gα and GEMM+ξ methods. A
good agreement can be observed, except for the solution presented by Kuhl and Ramm
(1999), where the higher modes are not present and the energy is concentrated on the
lower modes.

It was observed that the convergence rate of this analysis is about 1.5 and 2.0 for force
and displacement convergence, respectively, in Gα method, while in GEMM+ξ method
is observed a convergence rate about 1.7 and 2.0 for force and displacement convergence,
respectively.

In Figure 22 is shown the dissipation evolution along the time. It is important to note
that there is an increase in the numerical dissipation (i.e. the external work is greater
than total energy), when the analysis is dominated by lower frequencies, in the simulations
carried out with GEMM+ξ method. Nevertheless, it is stable, while for Gα the instability
is notorious.
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Figure 15: Geometry and boundary conditions of cylindrical shell.
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Figure 16: Successive configurations: Gα.
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Figure 17: Energy of cylindrical shell; Gα consistent mass.
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Figure 18: Displacement at point load location of cylindrical shell; Gα consistent mass.
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Figure 19: Energy of cylindrical shell; GEMM+ξ consistent mass.
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Figure 20: Displacement at point load location of cylindrical shell; GEMM+ξ consistent
mass.

Mecánica Computacional Vol XXXII, págs. 33-62 (2013) 57

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0  0.05  0.1  0.15  0.2  0.25  0.3

D
is

pl
ac

em
en

t

time

GNUall
Kuhl and Ramm (1999)

Abaqus

(a) comparison 1

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0  0.05  0.1  0.15  0.2  0.25  0.3

D
is

pl
ac

em
en

t

time

GNUall
Kuhl and Ramm (1996)

Balah and Al-Ghamedy (2005)

(b) comparison 2

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 0  0.05  0.1  0.15  0.2  0.25  0.3

D
is

pl
ac

em
en

t

time

GNUall-Galpha
GNUall-GEMM+xi

(c) comparison 3

Figure 21: Comparisons of vertical displacement of the middle point.
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Figure 22: Dissipation in Gα vs dissipation in GEMM+ξ.
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Table 5: Geometrical and load characteristics for the cylindrical shell analysis

Young modulus - E
[
N/m2

]
2.0 · 1011

Poisson coefficient - ν 0.25
Specific mass - ρ

[
kg/m3

]
1.0 · 104

Damping coefficient - φ 0.0
Time step - ∆t [s] 5.0 · 10−4

Table 6: Computational parameters employed in the cylindrical shell analysis

Control mesh (L, h, z) Continuity class Spectral radius - ρ∞ Degrees (p, q, r)

Gα consistent mass

18 × 18 × 5 C1 0.50; 0.90; 0.95 5, 5, 2
13 × 13 × 5 C4 0.50; 0.90; 0.95 5, 5, 2

GEMM+ξ consistent mass

18 × 18 × 5 C1 0.90; 0.95 5, 5, 2
13 × 13 × 5 C4 0.90; 0.95 5, 5, 2

Table 7: Convergence and failure time.

ρ∞ C1 C4

Gα consistent mass

0.50 conv. conv.
0.90 conv. fail at tf = 0.2934s
0.95 fail at tf = 0.2952s fail at tf = 0.2910s

GEMM+ξ consistent mass

1.00 conv. conv.

Table 8: Maximum level of the dissipation at the end of each analysis.

ρ∞ C1 C4

Gα consistent mass

0.50 51% 47%
0.90 7% 8%
0.95 1% 1%

GEMM+ξ consistent mass

0.90 64% 57%
0.95 46% 46%

↑ implies in the growing of the total energy.
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4 CONCLUSIONS

The improvement provided by the NURBS basis functions has a great impact over the
conserving energy-momentum budget and numerical stability. Also, the deterioration of
solution implied by the lumped mass is indistinguishable from the consistent mass.

Although the GEMM+ξ method present a better stability with respect to Gα method,
the energy budget obtained with the GEMM+ξ method shows a very slight oscillation,
even for the consistent mass.

In Kuhl and Ramm (1996); Kuhl and Crisfield (1999); Kuhl and Ramm (1999) the Gα

method is presented as a dissipative and unstable time integrator, and the numerical
stability and the energy-momentum conserving are related only to the time integrator. In
the analyses carried out here is evident that the basis of the spatial discretization is so
important as the integrator. Actually, the continuity class has a major role in the stability
and energy-momentum conserving.
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