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Abstract. The formulation of macroscopic poroelastic behavior of a jointed rock is investigated
within the framework of a micro-macro approach. Particular emphasis is given to the situation of
small joints (i.e., cracks) with pressurized saturating fluid. The joints are modeled as interfaces and
their behavior is modeled by means of generalized poroelastic state equations. Starting from Hill's
lemma extended for a jointed medium and extending the concept of strain concentration to relate the
joint displacement jump to macroscopic strain, the overall poroelastic constitutive equations for the
jointed rock are formulated. The analysis emphasizes the main differences and similarities of the
resulting behavior with respect to that characterizing ordinary porous media. It is shown that, unlike
ordinary porous media, conditions on the poroelastic parameters of joints are required for the
macroscopic drained stiffness to entirely define the poroelastic behavior. This is achieved, for
instance, if the joint network is characterized by a unique Biot coefficient. A micromechanical scheme
is then applied to derive analytically the homogenized poroelastic properties in two particular
situations: a rock with a network of parallel cracks and the situation of isotropically distributed
cracks. and Extension of the analysis to non-linear poroelasticity is finally outlined. Validation of the
model is made by comparison with finite element solutions based on the cohesive model for the joints.
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1 INTRODUCTION

It is well-known from observations made at diffaresgcales that rock masses generally
exhibit discontinuity surfaces of various sizes amtentations, commonly referred to as
joints. Since joints represent surfaces of weakrassg which sliding can occur and
preferential channels for fluid flow, their presenis a fundamental weak component for
stability and safety of many rock engineering dutes, such as dam foundations,
underground caverns, oil wells or toxic waste gjerfacilities. A comprehensive modeling of
a rock mass behavior should thus incorporate ahlelidescription of the hydromechanical
coupling that governs the joint deformation.

Strength, deformation and permeability coupling rotk joints have been widely
investigated during the previous decades, leadonghumerous experimental works and
models. Among the pioneering works, one may qubge dontributions due to Goodman
(1976) and Bandis et al. (1983). Representativereetes include references (Barton et al.,
1985; Ng and Small, 1997; Nguyen and SelvaduraB819lsson and Barton, 2001;
Indraratna and Ranjith, 2001; Boulon et al., 2@t et al., 2004), to cite a few.

Most of the hydromechanical models have, howewauded on the connection between
the joint aperture due to applied stresses angédhmeability. The effect of fluid pressure on
joint deformation have been either neglected ommoperly accounted for. Few models have
addressed the fully hydromechanical coupling irkrjoints (Ng and Small, 1997; Bart et al.,
2004; Maghous et al., 2013).

Conceived as a potential alternative to the discne¢thods in which the individual joints
and the rock matrix are handled separately, tmedgenization approach adopts a continuum
point view for the formulation of the constitutiveehavior of the jointed rock material
regarded as a homogenized medium. In this cordepdgcent paper by Maghous et al. (2013)
proposed a general micromechanics-based approgumiraelastic behavior of a jointed rock.
In this context, the purpose of this contributientd extend the formulation to the specific
case of parallel of randomly distributed short §jeirEmphasis shall be given to derive closed-
form expressions for the tensor of homogenizedneédhimoduli, as well as for the effective
Biot tensor and modulus. A primary objective of #ralysis is to highlight the effect of fluid
pressure in the interstitial space of rock sharitgon the overall poroelastic properties of the
rock mass. The accuracy of the micromechanicaligtied is assessed by comparison in a
simplified two-dimensional setting with finite elemt solutions based on the cohesive model.
It is convenient to emphasize that, in contrasthi classical model of cracks in which no
stresses are transferred across the cracks, tite gye in fact fractures that are able to transfer
normal as well as tangential stresses.
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2 MICROMECHANICS

Let Q denote the representative elementary volume (RE\)homogeneous rock matrix
cut by a discrete distribution of short joints=U« . Adjective ‘short’ refers to joints with
I

small extension when compared to the size of th¥.RE is emphasized short joints are in
fact microfractures (or microcrack) that are atldransfer stresses. It is also noted that the
concept of REV implies the scale separation betwteharacteristic length and those of
joints, namely the size of short joints.

The rock matrix fills the domai® \ w, where symbol stands for the set difference. Note

that strains and stresses within the rock mediuen dafined on the rock matrix domain
Q\wonly, and not on the whole REV. Throughout the gpgagymbol (.) denotes the

volume average over the rock matrix:
1
HyE=—_ .dVv 1
< > |QO| J-Q\w ( )

2.1 Hill's lemma for the jointed rock
The loading applied to the REV is defined by hommegeis strain type boundary
conditions on the boundady :
&=L oxoeo )

whereD represents the macroscopic strain. Hill's lemnaa@sdn the situation of a jointed

medium (e.g., Maghous et al., 2008)

(0):0=(g:0)+ 2], 118 s e

for any statically admissible stress fields and any kinematically admissible displacement
field £. Tensore represents the Iineariz_ed strain associated visglatement and [¢] is
the displacement jump at the joint interface. la #bove equation,T is the stress vector
acting upon the joint.

The strain average rule relating the macroscop&irsto the local strains writes

Q:<g>+ﬁjw (€10 n ds (4)

where n=n, along @ and symbo[EJ stands for the symmetric part of dyadic product:

(g 5 \_/j =(uv; +v,u;)/ 2. Identity (4) physically means that the macrosi;c(xlraing IS
i
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the sum of two contributions, namely that of rocltnx strains and that of displacement
jump along the joints.

0Q

Figure 1: REV of a jointed rock and loading coiufis.

2.2 Formulation of the poroelastic state equations

We consider the situation where the connected joativork is saturated by a fluid at
pressurg, which is assumed to be uniform in the REV. Thekrmatrix is assumed to be

linearly elastic with fourth-order stiffness tensof: g=c*¢ inQ\w. A poroelastic

formulation is adopted for the behavior of joimtsarder to account for the effect of the fluid
pressure on the relationship between the stressorveacting on the joint and the
corresponding relative displacement. The poroelattite equations for the joints are written
in the following form (Bart et al., 2004; Maghousa¢, 2013)

T=gh=k[+T"
alongw=Ua (withn=n, alongy (5)
p=L+agm i
m S.
where
k=k', a=a , m=m , T°=-qg,pn alongy (6)

where I: is the stiffness of jointy, relating the stress vector to the displacemamipj in
drained conditionsp = 0. Scalara; has the significance of a Biot coefficient for joent
modeled as a generalized porous medium. This ntéanshe displacement jun{g] which

represents the joint deformation is controlled bg effective stress vectar+apn. As

regards the second state equation in (5) of thw,direlates the joint pore change per unit
joint surfacep to the fluid pressurpand the joint displacement jurffj. Scalar m
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represents the Biot modulus for joiap. Physical interpretation as well as identificatio

procedures of the above parameters from appropabégatory tests are outlined in Bart et al.
(2004).
The loading is now characterized by two paramete&s)ely the macroscopic stre@ and

the fluid pressur@. The solution inQ\w to this problem defined by the loading mode

(Q , p) and denoted by (P), is defined by the stress fieldnd the displacement fielfl that

are related by the state equations of the medionstituentsg =c* ¢ in Q\w and (5).

Due to the linearity of the material behavior, theperposition principle can be used to
decompose problem (P) into two elementary probléPi3 and (P2) respectively defined by

the IoadingS(Q, p =O) and (Q:O , p) as shown in Figure 2. (P1) corresponds to the dry

case analyzed in sectid®y whereas (P2) corresponds to pressurized joinivargt and

prevented macroscopic strain.
Let us designate by , £ and g the displacement, strain and stress fields inRE&

corresponding to problem i(jFor i D{l, 2} . The fields solution to problem (P) can simpéy b
obtained aSé :§1 +§2’ £ :£1 +£2 and g :gl +g2'

¢=0nx ¢=Lnx

¢ £=0

[
+

(P) (P1) (P2)
Figure 2: Decomposition of problem (P) into twerakntary problems (P1) and (P2).
In problem (P1) corresponding to the dry case, displacement in the rock matrix is

related to the macroscopic strain through the Feartler tensorA classically referred to as
strain concentration tensogl(g):AQ():Q. Similarly, we define by anticipation thé'2

order tensorg”, which represents the concentration tensor fontrenal displacement jump,

by
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[£]1mh=a" Q along w (7)

A classical reasoning in linear elastic homogemratZaoui, 2002) shows that
z =(gy=crm:L] with  Chm™=(c%:A) (8)

C™™ is the elastic tensor of effective drained moduli.
In problem (P2), 2, =(g,) represents the macroscopic stress associated jovith

interstitial fluid pressur@ which is required to prevent the appearance ofraagroscopic
strain. Evaluationz2 stems from ther application of Hill's lemma (3)csessively to the

couples (g':gz, 5":{1) and (g'zgl, {':{2). It is readily obtained after some

mathematical manipulations (see Maghous et al.3R201

=-pB  with Ezﬁhai‘n ds (9)

The first macroscopic state equation results frapegposition of (8) and (9)

=c™:[]-pB (10)

2 =

2 =2 +
= =1

M

Similarly to ordinary porous media, the macroscogitain Q is controlled in
poroelasticity by an effective Biot stress+ pB. The tensoB defined in Eq. (9) can be

interpreted as the tensor of Biot coefficients the jointed medium. The anisotropy
introduced by the joint orientation is capturedtigh that of the normal concentration tensor

n

a.

For an ordinary porous medium, the classical mtatiip B = 1: ]I—(1—¢1)<c5_1:(C"°m )

where @ is the porosity of the medium (Dormieux et al.0@)) shows that the macroscopic

Biot tensor is entirely defined once the macroscapnsorC™" of drained elastic moduli is
determined.
Regarding the jointed medium, it follows from (8)) and (8) that

_ s, ~hom
|Q|j_ dS = 1: (I-(A))=1 (11 hC ) (11)
Assuming in what follows that all the joints hawe tsame Biot coefficient, i.&li a, =a,
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introducing definition (9) of tensor into the aleoequation provides the following identity

I —c5'1:<c“°m) 12]

oo
I
Q

=

which extends to the case of a jointed medium tasseal relationship relating the tensor
of Biot coefficients to the elastic tensors of gowrous medium and solid matrix.

The complete formulation of the overall poroelasighavior for the jointed medium is
achieved by providing the second macroscopic gqtmtion. The second state equation for
the macroscopic poroelastic behavior classicaligtes the pore volume change to the fluid
pressurg and the macroscopic stra@. In the considered case, the pore volume change is

exclusively due to the joint volume change. Therdagian porosity change is therefore
defined as:

1 1 p
o=—[ ¢ ds=— (—+a[é]l]l1j ds (13)
Q| L} Q| L, m

where the second state equation in (5) has beeh use
Referring to the decompositio§:§l+§2, it is shown in Maghous et al. (2013) that the

second state equation reads

=P +g] (14)
M = =
where the macroscopic Biot modult is given by
1 _ 1 [ s\L
o _Z‘SHW}'(C) B (15)

S :@Lq dS being the specific area of joiag .

Relationships (12) and (15) show that the ovenalpprtiesM and B are entirely known

once the macroscopic tensBf°" of drained elastic moduli is determined. Theseti@iahips
extend to the situation of jointed rock medium dessical relationships providing the Biot
tensor and Biot modulus as functions of solid masiasticity c®and dry porous medium
elasticity C"™.
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3 THE CASE OF A ROCK MEDIUM WITH SHORT PARALLEL JOINT S

3.1 Mori-Tanaka estimates

In this section, we consider situation of a rockhwshort joints (i.e., cracks with load
transfer). From a geometrical viewpoint, the joiate represented by oblate spheroids with
attached orthonormal frarr(eg 0 r_1) (see Fig. 3). The radius of the oblateaisand the half

opening isc. The aspect ratioX =c/a of such a penny-shaped crack is subjected to the
condition X «<1. In the continuum micromechanics approach empldyerein, a crack
represents an inhomogeneity embedded within thie maatrix. The rock matrix stiffness and
joint stiffness are assumed to take the followioignf

c®=3k°J+ 2u° K k=k,nOn+ k (tOt+ tOt) (16)
where k* is the bulk modulus ands is the shear modulus of rock matrix, wheréasand
k. denote respectively the normal stiffness andrssifness of the joint. The fourth-order
tensord and K are defined asJ=3101landK=1-7J.

We consider the situation of a homogeneous rock patrallel cracks defined by the same

radius a and crack aspect ratitb. The volume fraction of cracks present in the in@dis
denoted byf :

f =gngx (17)

where £ = N a® is the crack density parameter of the considemtdo$ parallel cracks

introduced by Budiansky and O’Connel (1976), being the number of cracks by unit
volume.

| —+

Figure 3: Joint as oblate spheroid.

Using a Mori-Tanaka scheme, the estimate of thsaieof drained modulC ™" reads:
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-1

I+ (I+P: (cs—cj))_l) (18)

X -0

C"™™=lim (c5+f<cj:(]I+]I”:(<cs—<cj))_1):

where P=P(X,n) is the Hill tensor associated with the considaretk family. It depends
on the aspect ratid of the oblate spheroid and its orientation The components of the Hill

tensor of an oblate spheroid can be found in Haokkbd@see for instance Nemat-Nasser and
Horii 1993; Mura, 1997). Tensar' is related to the crack stiffness

c'=3Xa(k,-4/3k) I+ 2Xak K 119
Assuming that all the joints have same poroelemtixperties(lé, a, m) , the Mori-Tanaka

estimate of the Biot tensor reads

[[vs]
1

a lim f1:(I+P: (c*~c')) :(]I+f (1+P: (cs—ccj))_l)_l (20)

whereas the estimate of Biot modulMsis deduced from that d using (15).

The non-zero components of the Mori-Tanaka estina@™™ are

K, +m(1+16/3¢ )k, (I-«,)

3k, + 3k, (1-k, )+ 4rre
K, + 1k (1- k)

3k, + 3k, (-« )+ 4rte

K, + 1k, +8/3¢)(1-«,)

c:1111 = 02222 (3k5 + 4 S)

Caass = (3K® +41°)

Ci1,=C,, = (3K* —2u 21
1122 2211 ( )3/( +37TK (1‘/( )+ 47T€ ( )
Kk, +1k,(1-K,)
Cias = Cosp= (3K —21° - L -
1133 = Cagzo= ( H )3K +377K, (I K, )+ 471E
A, + 11 (- k) (1+ %) s
C,303=Csy5=2 C..=
2323 3131 /J 4/( +16/37e (- K, T (B 2/ )& 1) 1212 = H
where the non-dimensional parametgys x, and «, are defined by
=K Ska o ka o B gy
3ks+4,Us 3(S+ 4;(13 3(s+ 41 3s+ 413
The non-zero component of tens@ are
BB, =4ae (413K, -k, - 8/9(k,§ . B, = &y e (23)

3k, + 3k, (1-Kk )+ de 3,+ 31k, (b K, W 41e

and the Biot modulus estimate can therefore bduckd from that OE
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Tla : (CS)—l

- - ;E (24)
m =

1
M
3.2 Comparison with finite element solutions in 2D seihg

This section intends to assess the accuracy ahtbmechanical predictions obtained in
the case of parallel joints by comparison withténélement solutions based on the cohesive
model (Needleman, 1987) that has been implementadgimplified 2D-plane strain setting.

L
$, =0,0,=0
% D)
2L
% L e
(@] - =
<—2a—> e U=llene |

— 2 2
2L —a—

é :|_|22L , 0,=0 ¢ :|—th , 0,,=0

= = _ s $ =L, L
|;|:|:L2§ZD§2 51 ° 52 0 Q_ZDQ &UE& l_L

- _ 0,=0
g,=0 o, = 12

oD (d) (c)
o ANNANNNVN o & =0

g,,=0

Figure 4: Geometry and loading of jointed mediga):elementary cell; (b) to (d) macroscopic stitates and
associated boundary conditions.

We consider a simplified morphology for the jointedck referring to a periodic
distribution of joints. In the plan®x x,, the corresponding elementary cell (see Fig. da) |

square of side2L with the rock matrix surrounding a central joifitength 2a. The loading
of the elementary cell is defined by three elenmntanacroscopic strain states:
g =Du elde, Q :Dzz e,0e, and Q :Dm (e,.0e,+e,0€e,). Owing to the periodicity

Copyright © 2013 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecénica Computacional Vol XXXII, pags. 439-452 (2013) 449

and symmetries of the problem, only a quarter & ¢tementary cel{xlzo,xzz 0} 5

considered, with the boundary conditions depicteBigs. 4b, 4c and 4d (Suquet, 1987).

The rock matrix is modeled by standard 2D finiteneénts and the joint by cohesive
elements. A regular mesh of the elementary celbisting in 20x 20 bilinear quadrangular
elements is used for the numerical simulations. jduet is divided into linear cohesive
elements of sizé./ 20.

For comparison purposes, micromechanical predistlmased on the Mori-Tanaka scheme

have been derived representing each joint beingurbynfinitely long cylinder parallel to
direction Ox, and having an elliptic cross-section in the pla»ex, with vanishing aspect

ratio.
1,20 v 1,2 7
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L ] 1 -
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Figure 5: Effective elastic moduli of a rock wiffarallel joints as functions of joint length: Mdranaka
estimates versus finite element results.
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The results of the finite element simulations tbgetwith the Mori-Tanaka estimates are
plotted in Fig. 5. The numerical simulations haeei performed considering the following
model data: L=0.5m, al{0.Im,0.2m,0.3¢}, AN =1, k®=20GPa, u°=12GPa,

k, =50GPa/m, k =20GPa/m. This preliminary analysis indicate that a goodeagent
between numerical simulations and the analyticiéineges, more specifically for components
CXl and C¥%. For increasing joint length, the discrepancy obese for componentC)sy,
that stands for the elastic modulus in the directimthogonal to joints suggests that the
periodic morphology is no longer accurate to maaeldomly distributed parallel joints. In
these figuresE® denotes the Young modulus of rock matrix.

4 THE CASE OF A ROCK WITH ISOTROPIC DISTRIBUTION OF S HORT
JOINTS

We consider now the case of a rock with randomépt(opic) oriented short joints.
Geometrically, the joints are represented by obsgkeroids with the same radias and
aspect ratioX =c/a. The orientation of each oblate inclusion in 82 space is defined by
two spherical angular coordinatés][0,77] and ¢ [J[0, 277]. Keeping the same notations as in

section 3, the Mori-Tanaka estimate of macroscelastic tensor therefore reads

hom_ i s . el S 1. - 1)

crr=lim (c +cl: (I+P: (c* ) j.(11+(11+19>.(c c')) j (25)
where symbol@ denotes the integral over the spherical angulardinates&(1[0, 77] and
¢ [0, 2m]:

Qo =["do[" 4’:‘ X Q(e,¢)¥d¢ (26)

At the macroscopic level, the effective mediumlasgcally isotropic. Hence,

(Chomz 3k homJ + 2/1 homK 762

The homogenized bulk and shear drained moduli reads

kS ILIS
khom — : hom _ 28
A7k® | 4 H 6k, + 4K, + Ik, (3¢, + K ) (28)
—=—F ¢ 1+ 167k, €
K, +ak, [y 15( 3k, +k,) (4, + 9K, &K ,)
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where parameters,, «,, k;and «,are defined in (22).
The Biot tensorB =b""land Biot modulus read

prom = Arra € 1 _mla Arra’® €

e s ST —Et—o ; (25)
Ame+ 3k, 0 1K® + dak, /K M m 4rrk*e + 31k, 10+ 4ak,

5 CONCLUSIONS

In the present paper, micromechanics-based potmettate equations for rocks with fluid
saturated joint network have been derived. Theédation extends the classical mechanical
model for microcracks to account for normal andyartial stresses across the joints. It has
been proved that, provided the joints exhibit thene Biot coefficient, the determination of
poroelastic properties reduces to that of drairlastie stiffness. The results are promising in
view of numerical implementation in the contexiadinite element tool devised for analyzing
stresses and strains in jointed rock structures.
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