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Abstract. This article is devoted to the dynamic analysis of slender initially curved structures con-
structed with fiber reinforced composite materials. There are many ways to manufacture a composite
material for uses in structural constructions, for example filament winding and resin transfer molding,
among others. Depending on the manufacturing process composite materials may have deviations with
respect to the calculated response (or deterministic response). These manufacturing aspects lead to uncer-
tainty in the structural response associated with constituent proportions or geometric parameters among
others. Another focus of uncertainty can be the mathematical model that represents the mechanics of the
slender structure. In many structural models, the type of hypotheses invoked reflect the most relevant
aspects of the physics of a structure, however in some circumstances these hypotheses are not enough,
and cannot represent properly the mechanics of the structure. Uncertainties should be considered in
a structural system in order to improve the predictability of a given modeling scheme. There are two
strategies to face the uncertainties in the dynamics of structures: The parametric probabilistic approach
and the non-parametric probabilistic approach. The first is related to quantify the uncertainty of given
parameters such as variation of the angles of fiber reinforcement, material constituents, etc. The second
is related to the uncertainty of the model which implies to consider uncertain the matrices of the whole
system. In this study a shear deformable model of composite curved thin walled beams is employed as
the mean model. The probabilistic model is constructed by adopting random variables for the uncertain
entities (parameters or matrices) of the model. The probability density functions of the random variables
are derived appealing to the Maximum Entropy Principle under given constraints. Once the probabilistic
model is discretized in the context of the finite element method, the Monte Carlo method is employed to
perform the simulations. Then the statistics of the simulations is evaluated and the parametric and non-
parametric approaches are compared. Finally recommendations are outlined in the conclusion section.
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1 INTRODUCTION

The employment of composite structures in different industrial devices is raising in the
present years due to the outstanding features that the composite materials can offer, for exam-
ple: high strength and stiffness properties together with a low weight, good corrosion resistance,
enhanced fatigue life, low thermal expansion properties among others (Barbero, 1999). Other
important feature of composite materials is the very low machining cost for complex structures
(Jones, 1999). Slender composites structures that can be analyzed by means of curved beam
models are present in many applications such as bridge segments, reinforcement of composite
pressure vessel, machine parts (e.g. leaf springs of sport car), among others.

Since the eighties many research activities have been focused in the development of the-
oretical and computational methods for the dynamic and static analysis of slender composite
structures, thin walled structures among them. Thus, the first consistent study dealing with
the thin-walled composite-orthotropic members, was due to Bauld and Tzeng (1984), who de-
veloped a beam theory to analyze fiber-reinforced members featuring open cross-sections with
symmetric laminates invoking Vlasov’s hypotheses. Bauchau (1985) incorporated some aspects
of shear flexibility in the analysis of thin-walled composite beams. The nineties brought a broad
range of contribution in the analysis of thin walled composite beams that covered new theories
for micro/macrostructures of composite materials, new modeling schemes including selective
warping and second order displacements, etc. The works of Librescu and Song (1992), Song
and Librescu (1993), Kim and White (1997) and Cesnik et al. (1996) are a few of the most rep-
resentative works in the modeling of composite beams with thin or thick walled cross-sections;
however most of them were devoted to closed cross-sections as basic models for the analysis of
helicopter blades. More recently Cortínez and Piovan (2002) developed a theory of thin walled
composite beams accounting for full shear flexibility, which means the consideration of shear
deformation due to bending as well as due to warping related to non-uniform torsion. Piovan
and Cortínez (2007a) extended the scopes and limits of the previous full shear flexible modeling
conception by incorporating elastic couplings and the evaluation of general dynamic problems.
In the work of Piovan and Cortínez (2007b) a curved thin walled composite beam theory was
introduced that contains all the previous models as particular cases.

The behavior of composite structures under typical service in civil, aeronautical, aero-spatial
or mechanical devices, is subjected to a number of factors that are stochastic in essence (Sri-
ramula and Chryssantopoulos, 2009). Many researchers have focused their attention in the
evaluation of the stochastic response of composite structures since the middles nineties Vick-
enroy and Wilde (1995); Salim et al. (1993). Moreover, there is a constant interest to quantify
the propagation of uncertainty in the mechanics of composite materials at the microscale level
(Sriramula and Chryssantopoulos, 2009) or for failure analysis (Pawar, 2011). The uncertainty
involved in the material properties of the composites can be considered as random fields accord-
ing to the works Mehrez et al. (2012b) and Mehrez et al. (2012a) among others. However, there
are other ways for studying the dynamic response due to uncertainties in composite structures,
for example by associating random variables to given entities that define a structural dynamic
model. Effectively, when the parameters, such as material properties or reinforcement angles,
are considered uncertain, this is called parametric probabilistic approach (PPA). However if
the model as a whole is uncertain, this is called systemic uncertainty. In order to analyze this
type of uncertainty there are various approaches, one of them is the so-called non-parametric
probabilistic approach (NPPA). The last one implies the introduction of random matrix vari-
ables. This approach was formulated by Soize (2003) and employed in a variety of structural
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problems (Sampaio and Cataldo, 2011; Ritto et al., 2008).
In this article, the aforementioned probabilistic approaches are applied in order to evaluate

the uncertainty in the dynamic response of naturally curved composite thin walled beams. The
theory of the curved structure introduced by Piovan and Cortínez (2007b) and Piovan (2003)
for several problems of structural mechanics is employed here as the deterministic model or
the mean model. The solution of the dynamics equations is approximated in the context of the
finite element method. For the PPA case, the parameters corresponding to elastic properties are
considered uncertain. For the NPPA the stiffness matrix and the damping matrix are considered
uncertain. This is due to the evidence gathered in other work of the authors (Piovan et al., 2013)
in which the elastic properties, and hence the stiffness matrix, are the main focus of uncertainty
propagation in dynamics of composite thin walled straight beams. To construct the probabilistic
models, the probability density functions associated with the random variables are constructed
based on the Maximum Entropy Principle (Jaynes, 1957a,b). This principle uses the available
information of the uncertain entities to construct their probability density functions such that
the Entropy in the sense of Shannon (1948) is maximum. The use of this scheme allows the
maximum possible propagation of the uncertainty according to the available information about
the random variables.

The article is organized as follows: after the introductory section where the state-of-the-art
in modeling curved thin walled composite beams is summarized, the deterministic/mean model
and its finite element discretization are briefly described, then the probabilistic approach is
constructed. The parametric and the non-parametric approaches are described for this problem
and the subsequent section contains the computational studies, the analysis of the uncertainty
propagation in the dynamics of thin walled composite curved beams and finally concluding
remarks are outlined.

2 DETERMINISTIC MODEL

2.1 Brief description of the curved beam model

In Fig. 1 a basic sketch of the thin walled beam is shown, where it is possible to see the
reference points C and A. The principal reference point C is located at the geometric center
of the cross-section, where the x-direction is tangent to the curved axis of the beam while y
and z are the axes of the cross section, but not necessarily the principal axes of inertias. The
secondary reference system, located at A, is used to describe shell stresses and strains. The
curved axis of the beam, that has constant radius R, is contained in the plane Ξ. The curved
beam has an opening angle β and a circumferential length L = Rβ. The present curved beam
theory is based on the following assumptions (Piovan and Cortínez, 2007b):

1) The cross-section contour is rigid in its own plane.

2) The radius of curvature at any point of the shell is neglected. This implies to consider the
section shaped in a polygonal arrangement.

3) The warping function is normalized with respect to the principal reference point C.

4) A general laminate stacking sequence for composite material is considered.

5) The material density is considered constant along the beam.

6) Stress and strain components are defined according to the secondary reference system in A,
and the representative stresses are σxx, σxs and σxn.
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Figure 1: Sketch of the thin walled curved beam with the reference systems

7) The model is presented in the context of linear elasticity.

Figure 2: Sketch of the thin walled curved beam with the reference systems

Employing assumptions 1) to 7) one can derive the displacement field of the point B (Piovan
and Cortínez, 2007b), which can be presented as follows:

ŨP =


ux
uy
uz

 =


uxc − ωΦW

uyc
uzc

+

 0 −Φ3 Φ2

Φ3 0 −Φ1

−Φ2 Φ1 0


0
y
z

 , (1)

Where ΦW , Φ1, Φ2 and Φ3 are defined in terms of rotational and warping parameters as
follows:

Φ1 = φx, Φ2 = θy, Φ3 = θz −
uxc
R
, ΦW = θx +

θy
R

(2)

and uxc, uyc, uzc are the displacements of the reference center in x-, y-, and z- directions,
respectively. θz and θy are bending rotational parameters. φx is the twisting angle and θx is
a warping-intensity parameter. R is the radius of curvature of the beam. In Eq. (1) the cross-
sectional variables y(s) and z(s) of a generic point are related to the ones of the wall middle
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line Y (s) and Z(s) by means of Eq. (3) is the warping function normalized with respect to the
reference center. It is defined in Eq. (4)

y(s) = Y (s)− ndZ
ds
, z(s) = Z(s) + n

dY

ds
, (3)

ω(s, n) = ωp(s) + ωs(s, n). (4)

In Eq. (4), ωp(s) is the primary or contour warping function whereas ωs(s, n) is the secondary
or thickness warping. These entities are given by:

ωp(s) =

∫
s

[r(s) + ψ(s)] ds−DC , ωs(s, n) = −nl(s), (5)

where the functions r(s), l(s), ψ(s) and DC are defined in the following form (see Fig. 2):

r(s) = Z(s)
dY

ds
− Y (s)

dZ

ds
, l(s) = Y (s)

dY

ds
+ Z(s)

dZ

ds
,

ψ(s) =
1

Ā66(s)

[ ∫
s
r(s)ds∮

S
1

Ā66(s)
ds

]
, DC =

∮
S

[r(s) + ψ(s)] Ā11(s)ds∮
S
Ā11(s)ds

.
(6)

The functions Ā11 and Ā66 are normal and tangential elastic properties of composite lam-
inates (Piovan and Cortínez, 2007a) which can vary along the section middle line. ψ(s) is
function related to the torsional shear flow and DC is a constant to normalize the warping func-
tion with respect to the reference system C (Cortínez and Piovan, 2002; Piovan and Cortínez,
2007b). In open sections, ψ(s) = 0, then Eq. (6) is valid for closed sections as well as for open
sections. The warping function described in Eq. (4), has an analogous form to the ones defined
by Song and Librescu (1993) or ? for closed sections and straight beams.

The displacement-strain relations can be obtained by substituting Eq. (1) in the well-known
expressions of linear strain components. As it was shown by Piovan and Cortínez (2007b) the
shell strains can be written as:

ẼP = GkD̃, (7)

where:

Ẽ
T

P = {εxx, γxs, γxn, κxx, κxs} ,
D̃
T

= {εD1, εD2, εD3, εD4, εD5, εD6, εD7, εD8} ,
(8)

Gk =


1 Z −Y −ωp 0 0 0 0

0 0 0 0 dY/ds
dZ/ds r(s) + ψ(s) −ψ(s)

0 0 0 0 −dZ/ds
dY/ds l(s) 0

0 −dY/ds
dZ/ds −l(s) 0 0 0 0

0 0 0 0 0 0 1 −2

 . (9)

In Eq. (8), εxx, γxs and γxn are the strain components and κxx, κxs are the curvatures of
the shell that conforms the wall of the cross-section. These strain components are measured
according to the wall reference system in A. The entities εDi, i = 1, ..., 8 may be regarded
as generalized deformations. In this context εD1 is the axial deformation, εD2 and εD3 are
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bending deformations, εD3 is the deformation due to non-uniform warping, εD5 and εD6 are the
bending shear deformations, εD7 is the warping shear deformation and finally εD8 is the pure
torsion shear deformation. These generalized deformations, which are collected in vector D̃,
are defined in the following form:

D̃ = GDU Ũ, (10)

where GDU is a matrix operator and Ũ is the vector of kinematic variables which are defined in
following forms, in which ∂x(�) is the spatial derivative operator.

GDU =



∂x(�) 1/R 0 0 0 0 0
0 0 0 0 ∂x(�) −1/R 0

−∂x(�)/R 0 ∂x(�) 0 0 0 0
0 0 0 0 −∂x(�)/R 0 ∂x(�)
0 ∂x(�) −1 0 0 0 0
0 0 0 ∂x(�) 1 0 0
0 0 0 0 0 ∂x(�) −1
0 0 0 0 1/R ∂x(�) 0


, (11)

Ũ
T

= {uxc, uyc, θz, uzc, θy, φx, θx} . (12)

The principle of virtual works can be condensed in the following form:

WT =

∫
L

(
δD̃

T
Q̃
)
dx+

∫
L

δŨ
T

Mm
¨̃Udx−

∫
L

δŨ
T

P̃Xdx+ δŨ
T

B̃X

∣∣∣x=L

x=0
= 0, (13)

where the force vector Q̃ is defined as follows:

Q̃
T

= {Qx,My,Mz, B,Qy, Qz, Tw, Tsv} , (14)

whereas for the sake of fluid and clear reading, the matrix of mass coefficients Mm, the vec-
tor P̃X of external forces and the vector B̃X of natural boundaries conditions are detailed in
Appendix A. Qx, My, Mz, and B identify the axial force, the bending moment in y-direction,
the bending moment in z-direction, and the bi-moment, respectively; whereas Qy, Qz, Tw, and
Tsv correspond to the shear force in y-direction, the shear force in z-direction, the twisting
moment due to warping and the twisting moment due to pure torsion, respectively. These in-
ternal/generalized forces can be written in terms of the shell-forces as (Piovan and Cortínez,
2007a):

Q̃ =

∫
S

GT
k ÑPds, (15)

where ÑP is the vector of shell stress resultants or shell forces and moments defined according
to (Barbero, 1999; Jones, 1999):

Ñ
T

P =

∫
S
{σxx, σxs, σxn, nσxx, nσxs} dn. (16)

The differential equations of motion and corresponding boundary conditions are derived by
applying variational procedures in Eq. (13). The differential equations of motion can be useful
for some numerical methods, e.g. power series method or differential quadrature. While in the
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present article the finite element method is employed, the derivation of differential equations
is not necessary. The interested readers may follow in the technical literature authors’ articles
(Piovan and Cortínez, 2007b; Piovan, 2003) devoted to evaluate the differential equations of the
thin-walled curved beam model applied to a number of specific structural problems.

2.2 Constitutive equations in terms of internal forces and generalized strains

In order to obtain the relationship between beam stress resultants and generalized deforma-
tions εDi, one has to select the constitutive laws for a composite shell and employ constitutive
hypotheses (Piovan and Cortínez, 2007a) of the shell stress resultants in terms of the shell
strains. The shell stress resultants can be expressed in terms of the generalized deformations
defined in Eq. (10) in the following matrix form:

ÑP = MCẼP , (17)

where MC is the matrix of modified shell stiffness, which depends on the type of constitutive
hypotheses involved (Piovan, 2003) and can be expressed in the following form:

MC =


Ā11 Ā16 0 B̄11 B̄16

Ā66 0 B̄∗16 B̄66

Ā∗55 0 0
sym D̄11 D̄16

D̄66

 . (18)

Due to the lack of space the coefficients Ā11, B̄11, D̄11, etc, are not described in the present
article, however the interested reader can found them in the works of Piovan and Cortínez
(2007b) or Piovan (2003).

Substituting Eq. (17) into Eq. (15) the beam stress resultants can be obtained in terms of
generalized strains:

Q̃ = MkD̃, (19)

where:

Mk =

∫
S

GT
k MCGkds. (20)

The matrix Mk of cross-sectional stiffness coefficients, leads to constitutive elastic coupling
or not, depending on the stacking sequence of the laminates in a given cross-section. The
interested reader can follows extended explanation about elastic constitutive coupling in the
books of Barbero (1999) and Jones (1999). Moreover for beam applications the explanation of
the constitutive coupling can be followed in the works of Piovan and Cortínez (2007b) and Kim
and White (1997) among others.

2.3 Finite element approach

A quartic order iso-parametric finite element of five nodes with seven degree of freedom
per node is employed to solve the motion equations. The formulation of the finite element ap-
proach for this type of curved structural member has been introduced in the works of Piovan and
Cortínez (2007b) and Piovan (2003), where the interested reader can find detailed explanations.
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Thus, the finite element equation of the assembled system can be written in the conventional
form as:

KW̄ + CRD
˙̄W + M ¨̄W = F̄, (21)

where K and M are the global matrices of elastic stiffness and mass, respectively; whereas
W̄, ¨̄W and F̄ are the global vectors of nodal displacements, nodal accelerations and nodal
forces, respectively. CRD is the global matrix of structural damping, calculated according to
the Rayleigh’s definition as:

CRD = η1M + η2K. (22)

The coefficients η1 and η2 in Eq. (22) are computed by using the damping coefficients, ξ1

and ξ2, according to the common methodology presented in the bibliography related to finite
element procedures (Bathe, 1996).

The response in the frequency domain of the linear dynamic system given by Eq. (21) can
be written as:

Ŵ (ω) =
[
−ω2M + iωCRD + K

]−1 F̂ (ω) , (23)

where Ŵ and F̂ are the Fourier transform of the displacement vector and force vector, respec-
tively; whereas ω is the circular frequency measured in [rad/sec].

3 DESCRIPTION OF THE PROBABILISTIC MODEL

The probabilistic model is constructed selecting parameters or matrices and associating the
corresponding random variables based on the available information. Whether it is used PPA or
NPPA, the probabilistic approach is constructed from the finite element equation of the deter-
ministic model. The construction of the probability density functions of the random variables
is quite sensitive in stochastic analysis and they should be deduced according to the given in-
formation (normally scarce) about the uncertain parameters. The Maximum Entropy Principle
is a good strategy to select the probabilistic model despite the lack of experimental data. Thus,
the Maximum Entropy Principle allows to derive the probability density functions of the ran-
dom variables guaranteeing consistence with the available information and the physics of the
problem.

In order to derive the probability density functions of the random variables, the Maximum
Entropy Principle is proposed in the following form:

p
(opt)
V = arg max

pV ∈P
S (pV ) (24)

where p(opt)
V is the optimal probability density function such that S(p

(opt)
V ) ≥ S(pV ),∀pV ∈ P,

and S is the measure of entropy whereas P is a set of admissible probability density functions
satisfying the known data of the random variables and the physical constraints. The measure of
the entropy S is defined as ?:

S (pV ) = −
∫
S

pV ln (pV ) dv (25)

where S is the support of the probability distributions of the random variables taken into ac-
count in the optimization procedure.
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Once the random variables are appropriately defined then the stochastic finite element equa-
tion can be written, through Eq. (23), in the following form:

Ŵ (ω) =
[
−ω2M + iωCRD + K

]−1 F̂ (ω) . (26)

Notice that in Eq. (26) the math-blackboard typeface indicates stochastic entities, thus the
stiffness matrix K is stochastic because random variables (scalars or matrices) are employed in
its construction, and the damping matrix CRD is stochastic through the stochastic nature of K
in Eq. (22), hence Ŵ is stochastic.

The Monte Carlo method is used the simulate the stochastic dynamics. This strategy leads to
the calculation of a deterministic system for each realization of the random variables employed.
The convergence of the stochastic response Ŵ can be calculated with the following function:

conv (NMS) =

√√√√ 1

NMS

NMS∑
j=1

∫
Ω

∥∥∥Ŵj (ω)− Ŵ (ω)
∥∥∥2

dω, (27)

where NMS is the number of Monte Carlo samplings and Ω is the frequency band of analysis.
Clearly, Ŵ is the response of the stochastic model and Ŵ the response of the mean model or
deterministic model.

Due to the enormous calculation time involved in this type of studies, in Eq. (23) and/or
Eq. (26) a modal decomposition is used in the calculation of the spectral range of interest.
With this type of scheme the amount of time saved could be 10 to 20 times the conventional
calculation time.

3.1 Parametric approach

The stochastic model according to the PPA is constructed selecting two sets of uncertain
parameters and associating random variables to them. One set for the orientation angles of the
fiber reinforcement in the layers of each panel and other set for basic elastic properties of the
material. In the present problem random variables Vi, i = 1, 2...NP and Vi, i = NP +1, ..., NP +
6 are introduced such that they represent the angles of NP different plies in a cross-sectional
laminate and the basic elastic properties of the material (i.e. elastic moduli: E11, E22 = E33,
G12 = G13 and G23, Poisson coefficients: ν12 = ν13 and ν23), respectively.

The available information to obtain the probability density functions is related to some in-
formation extracted from the technical literature (Sriramula and Chryssantopoulos, 2009). The
following conditions are invoked in order to construct the probability density functions with the
Maximum Entropy Principle:

• The random variables associated with material properties are positive and defined in
bounded supports.

• The random variables associated with the reinforcement angles have bounded supports
whose upper and lower limits are distant ∆α from the expected value V i.

• The expected values are E{Vi} = V i, i = 1, ...NP + 6, i.e. those corresponding to the
deterministic model.

• The variance of the random variable has to be kept finite in order to satisfy the physical
consistence of the problem.
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• There is no information about the correlation between random variables.

Consequently, according to the aforementioned background, the probability density func-
tions of the random variables Vi can be written as:

pVi (vi) = S[LVi ,UVi ]
(vi)

1

2∆α

, i = 1, ..., NP (28)

pVi (vi) = S[LVi ,UVi ]
(vi)

1

2
√

3V iδVi
, i = NP + 1, ..., NP + 6 (29)

where S[LVi ,UVi ]
(vi) is the generic support function, whereas LVi and UVi are the lower and

upper bounds of the random variable Vi. ∆α is a gap measured in angular units (radians or de-
grees), whereas δVi is the coefficient of variation. The Matlab function unifrnd(V i −∆α, V i + ∆α)
can be used to generate realizations of the random variables Vi, i = 1, 2...NP . The Matlab
function unifrnd

(
V i

(
1− δVi

√
3
)
, V i

(
1 + δVi

√
3
))

can be used to generate realizations of the
random variables Vi, i = NP + 1, ..., NP + 6.

3.2 Non-parametric approach

Under this conception, the matrices of the system are considered uncertain. In particular,
there is evidence (Piovan et al., 2013) that the uncertainty in elastic properties is more sensitive
than the uncertainty in mass properties in the dynamics of beams constructed with composite
materials. Consequently, the construction of the probability density function of the random
stiffness matrix K is performed in this section. The procedure explained in the subsequent lines
follows the concepts and ideas elaborated in the works of Soize (2001, 2003, 2005).

In order to construct the random matrix K, it is necessary that the mean value (or the de-
terministic one) of the positive-definite matrix K could be written according to the Cholesky-
decomposition, that is: K = LT

KLK, where LK is an upper triangular matrix. Hence the random
matrix K can be written as follows:

K = LT
KGLK (30)

where G is a random matrix that has the following constraints:

• Positive-definiteness.

• The mean value is the identity matrix: E {G} = I.

• The mean square value of its inverse is finite, i.e E
{
‖G−1‖2

F

}
< +∞; this assures that

the response of the system is a second-order random variable.

Then using the Maximum Entropy Principle the probability density function of G can be
written as (Soize, 2001):

pG (G) = SM+(R) (G)CG det (G)(n+1) 1−δ2
2δ2 exp

{
−n+ 1

2δ2
tr (G)

}
(31)
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where SM+(R) (G) is the support of the random variable, n is the dimension of the random
matrix G, the dispersion parameter δ and CG are given as follows:

δ =

√
1

n
E
{
‖G− I‖2

F

}
, CG =

(2π)(n−n
2)/4 (n+1

2δ2

)(n+n2)/(2δ2)∏n
j=1 Γ

(
n+1
2δ2

+ 1−j
2

) (32)

The dispersion parameter is such that 0 < δ <
√

(n+ 1)/(n+ 5).
Thus, for each realization of the random matrix K, the matrix G is built by means of a

Cholesky decomposition, i.e. G = LTL, where L is an upper triangular positive-definite ran-
dom matrix subjected to the following constraints:

• The random variables {Ljk, j ≤ k} are independent.

• For j < k, the real-valued random variable Ljk = σVjk, in which σ = δ
√
n+ 1 and Vjk

is a real-valued random variable with zero mean and unit variance.

• For j = k the real-valued random variable Ljk = σ
√

2Vj , in which Vj is a real-valued
gamma random variable with probability density function:

pVj (v) = SR+ (v)
v(n+1

2δ2
− 1−j

2 )

Γ
(
n+1
2δ2

+ 1−j
2

) exp (v) (33)

As it is possible to infer, the random variables Vjk, j 6= k and Vjk, j = k can be generated
by a normal distribution and a gamma distribution respectively. In fact they can be generated
in the Monte Carlo simulation procedure by means of the Matlab functions normrnd(0, 1) and
gamrnd(α, β), with α =

(
n+1
2δ2

+ 1−j
2

)
and β = 1.

4 COMPUTATIONAL STUDIES

In this section a study is carried out related to the propagation of uncertainties due to mate-
rial properties and/or constructive aspects of composite laminates, in the dynamic response of
curved thin-walled composite beams. For this study a clamped-free beam (length L = 6.0 m,
radius R = 6.0 m) with rectangular cross-section is employed. The following Fig. 3 shows the
rectangular cross-section with the secondary reference systems associated to each panel. More-
over it is possible to see the excitation due to an impulsive unitary force located at x, y, z =
L, b/2, h/2 and oriented with ψ = 45o. he web height and flange width are h = 0.6 m,
b = 0.3 m, whereas the thickness of all laminates is e = 0.03 m. Each laminate is composed
by 8 laminas of equal thickness. The material of the beams is graphite-epoxy (AS4/3501-6)
whose properties are: E11 = 144 GPa, E22 = E33 = 9.68 GPa, G12 = G13 = 4.14 GPa,
G23 = 3.45 GPa, ν12 = ν13 = 0.3, ν23 = 0.5, and the density ρ = 1389 Kg/m3. Although the
damping coefficients could be uncertain, in this study they assume fixed values ξ1 = 0.05 and
ξ2 = 0.05 in order to facilitate the analysis of uncertainty connected with elastic properties and
the modeling itself.

The stacking sequences to be used are described in Table 1, in which the acronyms CUS and
CAS stand for "Circumferential Uniform Stiffness" and "Circumferential Asymmetric Stiff-
ness". These acronyms were introduced by Rehfield et al. (1990) to identify the type of lam-
ination scheme for rectangular cross-sections. The CUS laminate involves elastic constitutive
coupling between twisting moments and axial force as well as both shear forces and both bend-
ing moments, whereas the CAS laminate involves elastic constitutive coupling between bending
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Figure 3: Rectangular cross-section with reference systems

moments and twisting moments together with coupling of the axial force with both shear forces
(Piovan and Cortínez, 2007a; Piovan, 2003; Rehfield et al., 1990).

Cross- Laminate Angle
section Name orientation
� CUS(α) left and right panels: {(α, α)4}

upper and lower panels: {(α, α)4}
CAS(α) upper and right panels: {(α, α)4}

lower and left panels: {(−α,−α)4}
Table 1: Lamination schemes for the cross-sections.

The stochastic analysis is mainly concerned with the evaluation of the uncertainty propaga-
tion in the frequency response function of the composite beam subjected to a unit force F used
to perturb the structure. The force is located at the free end of the beam (x = L) according to
Fig 3. The response is observed at the free end, and it is evaluated by means of the following
frequency response function:

HF (ω) =

∥∥∥ÛP (ω)
∥∥∥

F̂ (ω)
. (34)

In Eq. (34),
∥∥∥ÛP

∥∥∥ is the norm of the Fourier transform of the displacement vector of the

point (calculated according to Eq. (1)) where the force is applied (see Fig 3) and F̂ is the
Fourier transform of the force applied at the beam’s end. Moreover, other frequency response
functions are introduced for specific comparative purposes, that is:

H1 (ω) =
ûyc (ω)

F̂y (ω)
, H2 (ω) =

ûzc (ω)

F̂z (ω)
, H3 (ω) =

φ̂x (ω)

T̂x (ω)
, (35)

where ûyc, ûzc and φ̂x are the Fourier transforms of lateral displacement, vertical displacement
and twisting angle, respectively, whereas F̂y, F̂z and T̂x are the Fourier transforms of the com-
ponents of force F and the associated twisting moment. For this problem, the displacements
are calculated at the free end.

M.T. PIOVAN, R. SAMPAIO740

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Models of twelve finite elements of five nodes are used for the deterministic and stochastic
calculations (i.e. models of 336 degree of freedom). This number of elements is enough to
assure Piovan (2003) a precision of more than 99% up to the eighth natural frequency. Moreover
a modal decomposition, with up to 24 modal coordinates, has been employed in order to reduce
the calculation procedure.

For the PPA, four random variables are selected for the orientation angles of the fibre rein-
forcement according to the common stacking sequences employed in the construction of com-
posite structures. These random variables have the following expected values: E{V1} = 0o,
E{V2} = 15o, E{V3} = 45o and E{V4} = 90o, with ∆α = 20. On the other hand the expected
values of random variables Vi, i = 5, ..., 10 correspond to the nominal values of the elastic prop-
erties indicated above. The elastic random variables can have dispersion parameters contained
in δi ∈ [0.04, 0.12], i = 5, ..., 10 (Sriramula and Chryssantopoulos, 2009; Piovan et al., 2013).
In the case of the NPPA it is important to identify the limits of the dispersion parameter that
according to section 3.2 it should be: 0 < δK <

√
(336 + 1)/(336 + 5) = 0.9927. With the

scope of analyzing the effect of the uncertainty related to the whole model, the following set of
dispersion parameters δB ∈ [0.35, 0.50, 0.65, 0.80, 0.95] is used in the simulations.

The Fig 4 shows an example of the convergence of the Monte Carlo simulations by studying
the evolution of the function conv (NMS) with respect to the number of simulations in the whole
range of the 500 realizations. In these cases it is employed a cross-section with a CAS(45)
lamination sequence such that ∆α = 2o and δi = 0.1, i = 1, ..., NP + 6 for the PPA and
δK = 0.8 for the NPPA. It can be seen that with nearly 250 simulations, the conv (NMS) function
reaches an acceptable level convergence. The convergence analysis has been performed in every
simulation giving similar results.

0 100 200 300 400 500
6.5

7

7.5

8

8.5

9

9.5

10

10.5
x 10

−5

Frecuency [Hz]

C
on

v(
N

S
)

0 100 200 300 400 500
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4
x 10

−5

Frecuency [Hz]

C
on

v(
N

S
)

(a) (b)
Figure 4: Convergence of the Monte Carlo simulations for CAS(45). (a) PPA with ∆α = 2 and δi = 0.1, (b)
NPPA with δK = 0.8.

In Fig. 5 one can see a comparison of the simulation carried out for a curved composite
thin walled beam with CAS(15). In simulation with the PPA the dispersion coefficient was
δi = 0.1 for all the elastic properties assumed uncertain, whereas the bounds of dispersion in
the angle reinforcement were ±20. In the simulation with the NPPA, a dispersion parameter
δK = 0.50 has been used. Each figure shows the deterministic response, the mean of the
stochastic response and the upper and lower 98% confidence interval. For this particular case
there are no relevant differences between both approaches that can be observed. In Fig. 6 one
can see the FRF of the most representative kinematic variables of the CAS(15) configuration.
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As it is possible to see the elastic coupling is present in every mode.
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Figure 5: FRF’s Comparison of simulations for CAS(15). (a) PPA with ∆α = 2 and δi = 0.1, (b) NPPA with
δK = 0.50.
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Figure 6: FRF’s for the CAS(15) stacking sequence

Fig. 7(a) shows the FRFs of the kinematic variables in the cases of a CAS(45) stacking se-
quence. Fig 7(b) shows the FRFs of the point where the load is acting. In this figure one can see
the comparison of the confidence intervals and the stochastic mean for dispersion parameters
δK = 0.65 and δK = 0.95 in the NPPA simulation procedure. Also it is depicted the determin-
istic response when one employs a variation in the constitutive relationships by including or
neglecting the shear deformability due to shell thickness. As it is possible to see the uncertainty
in the model related to both constitutive approaches of shear can be captured with the NPPA.

In Fig. 8 one can see the FRF in the point where the load is acting but in this case, the NPPA is
employing tanking into account uncertainty in the stiffness matrix as well as in the mass matrix.
This could be the case of the hygroscopic effect and its influence in the incorporation of mass in
the composite structure. Although there are constitutive alternatives (Jones, 1999; Piovan and
Cortínez, 2007a) to tackle this problem, it assumes idealized behavior of the material. Thus,
Fig. 8 was constructed with dispersion parameters δM = δK = 0.65. Notice that the influence
of mass uncertainty can be sensitive in the upper modes.
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Figure 7: FRF’s for CAS(45). (a) Kinematic variables: uyc, uzc and φx (b) Comparison of many alternatives with
NPPA.
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Figure 8: FRF’s for the CAS(45) with uncertanty in the stiffness matrix and mass matrix

5 CONCLUSIONS

A preliminary study about the quantification of uncertainty and its propagation in the tran-
sient dynamics of curved thin walled composite beams has been carried out. Two possible
approaches have been evaluated: the parametric probabilistic approach and the non-parametric
probabilistic approach. The last one allows the analysis of uncertainties in the model as a whole.

Despite the differences between both approaches the following points should be remarked:

• The propagation of uncertainty in the transient dynamic response of composite curved
beams is strongly influenced by the elastic coupling inherent to the lamination scheme:
the more elastic coupling (e.g. CAS laminiation) the larger uncertainty propagation.

• The predictability decreases as the frequency increases for both approaches.

• The non-parametric probabilistic approach can face uncertainties in the modeling theories
for example the type of shear flexibility theory employed or the effect of mass added by
hygroscopic effects, for example.

• The dispersion parameter δK of the random matrices should be determined with other
tools, for example with experimental methodologies.
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As final details, composite structures have notable features of uncertainty as observed in the
previous sections. The PPA and NPAA involved in the analytic topics of this work have been
useful tools to quantify the uncertainty and to explore its propagation in the transient dynamics
of the curved thin-walled composite beams. Nevertheless, there are other concerns associated
with the uncertainty of the model and the parameters themselves that was not analyzed, for
example, the elastic properties may be correlated random variables and their influence should
be quantified. However these matters would be part of further extensions to the present article.
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APPENDIX A

The vector of external forces P̃X and the matrix of mass coefficients Mm can be calculated
in the following form:

P̃X =

∫
A

[
X̄x X̄y X̄z

]
Gm

dydz

F
, (36)

Mm =

∫
A

ρ (y, z) GT
mGm

dydz

F
, (37)

where X̄x, X̄y and X̄z are general volume forces, whereas:

Gm =

 1 + y/R 0 −y 0 z − ω/R 0 −ω
0 1 0 0 0 −z 0
0 0 0 1 0 y 0

 , (38)
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The vector of natural boundary conditions B̃X can be written in the subsequent form:

B̃X =



−Q̄x + M̄z/R +Qx −Mz/R
−Q̄y +Qy

−M̄z +Mz

−Q̄z +Qz

−M̄y + B̄/R +My −B/R
−T̄sv − T̄w + Tsv + Tw

−B̄ +B


, (39)

where Q̄x, Q̄y, Q̄z, M̄y, M̄z, T̄w and T̄sv are prescribed forces and moments applied at the
boundaries.
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