
NON-LINEAR DYNAMIC ANALYSIS OF REINFORCED CONCRETE 

SHELLS UNDER SEISMIC LOAD 

Jorge Palomino Tamayo
a
, Armado M. Awruch

b
 e Inácio Benvegnu Morsch

b
 

a
CEMACOM, Computational Mechanical Center, Engineering School, Federal University of Rio 

Grande do Sul, Av. Osvaldo Aranha, 99-3º Andar, 90035-190, Porto Alegre, RS, Brazil, 

lpt.jorge@gmail.com, http://www.ppgec.ufrgs.br/cemacom/ 

b
PPGEC, Department of Civil Engineering, Engineering School, Federal University of Rio Grande do 

Sul, Av. Osvaldo Aranha, 99-3º Andar, 90035-190, Porto Alegre, RS, Brazil, morsch@ufrgs.br, 

awruch@ufrgs.br  http://www6.ufrgs.br/engcivil/ppgec/ 

Key words: Reinforced concrete, Seismic load, Finite elements. 

Abstract. Details of a finite element non-linear dynamic analysis on a reinforced concrete (RC) 

containment shell of a nuclear power plant subjected to seismic load is presented in this work. A 

three-dimensional (3D) 20-noded brick finite element is used for spatial discretisation. The concrete 

in compression is modeled using a modified Drücker-Prager elasto-plastic constitutive law. This 

constitutive law includes the strain rate sensitive effect, which is considered to be suitable for 

transient loading. Cracking of concrete is modeled by using a smeared approach and the tension-

stiffening effect is considered by a strain-softening rule. A model based on fracture mechanics, using 

the concept of constant fracture energy release, is used to relate the strain softening effect to the 

element size in order to guaranty mesh independency in the numerical prediction. The reinforcement 

is also represented by a smeared approach and a classical elasto-plastic material model is adopted for 

reinforcing steel bars. Finally, results obtained with the present numerical model are compared with 

those obtained by other authors in terms of time history of displacements and cracking patterns.   
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1 INTRODUCTION 

Containment shells are one important component of nuclear power plants and are normally 

constructed from reinforced concrete (RC). Because these structures are necessary for the 

production of nuclear energy, special consideration must be taken in their analysis and design. 

These aspects are more relevant when seismic actions may occur in the region where the 

nuclear power plant was built. While these structures are invariably designed to remain elastic 

under normal service conditions, they may suffer distress under the action of unforeseen 

extreme loads (Manjuprasad et al., 2001). In this work, a numerical model based on the finite 

element method is presented for the analysis of RC shells under seismic actions. In this work  

20-noded brick finite elements are used to model the concrete where the reinforcing steel bars 

are considered to be smeared within each element and represented by membrane elements as 

shown in Figure 1. Concrete cracking, nonlinearity of concrete in compression, yielding of the 

steel bars in tension and compression and strain rate effects are considered properly in the 

present constitutive model. The numerical model has been validated in other works (see e.g. 

Tamayo et al., 2013), but seismic actions were not considered. Then, validation is done by 

comparing present results with those obtained by Liu (1985) in the case of time history of 

displacements  and also with those obtained in Cervera et al. (1988) in relation to cracking 

patterns for different time steps.  
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Figure 1: Local system: 20-noded brick element 

2 FINITE ELEMENT FORMULATION 

2.1 Finite element formulation and constitutive model of the 3D brick element 

The 20-node isoparametric quadratic brick element is used here to represent the concrete 

shell structure where the reinforcement bars are modeled using the smeared layer approach. 

The displacement field within the element is defined in terms of the shape functions and 

displacement values at the nodes.  Each nodal point has three degrees of freedom u , v  and w  

along the cartersian coordinates x , y  and z , respectively. Therefore, for each element the 

displacement vector is expressed in the following manner:  

    202020222111 ,,............,,,,, wvuwvuwvuU b  . (1) 

    The strain components vector, in terms of displacement components, is defined by: 
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or 

      bbb UB . (3) 

where kN  is the shape function of node k and  bB is the usual strain-displacement matrix. 

The  stress and strain components are related by the following expression:  

       b

T

xzyzxyzyxb D   . (4) 

where  D  is the material constitutive matrix in the global system. Equivalent nodal forces, at 

a given iteration i , are expressed in the following manner: 

       dVBP
i

b

V

T

b

i

b   (5) 

    The stiffness matrix for a concrete element of volume V  can be expressed as:  

        
V

b

i

et

T

b

i

b dVBDBK  (6) 

where  i

etD is the uncracked, cracked or elasto-plastic constitutive matrix for the concrete 

material and the elastic or elasto-plastic constitutive matrix for the steel reinforcement. A 

reduced integration rule of 8 points is found to be suitable to diminish shear locking effect. 

Concrete in compression is modeled using the associated theory of plasticity; a modified 

Drucker-Prager yield criterion (see Figure 2a), which was proposed by Cervera et al. [1], is 

used in this work. Due to nonlinear hardening behavior, this yield criterion defines an initial 

yield surface at an effective stress equal to 0 0.3 cf  (which is the beginning of the plastic 

deformation) and a limit surface separating a nonlinear state from a perfect elasto-plastic one, 

as it is shown in Figure 2b.  The yield criterion is defined as: 

   )(3)(
21

2

2

1

2

1 pomJIccIF    (7) 

where  1I  and 2J   are the first and the deviatoric second stress invariants, respectively. In 

addition, 0  is the effective stress which depends on the effective plastic deformation p , 

being this last parameter defined in terms of the plastic work developed by the material.  The 

constants c  and m  are evaluated from experimental test and are equal to 0.1775 and 1.355, 

respectively. The associated flow rule is defined as: 

 
   
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with the flow vector given by: 
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Figure 2: a) Bi-axial representation of constitutive model for concrete b) Uni-axial representation of constitutive 

model for concrete   

In Equation (8),  d  contains the components of the total strain, 
p

ijd  is a component of 

the plastic strain tensor,  eD  is the elastic constitutive matrix and H   is the hardening 

parameter established as the slope of the one-dimensional curve which defines the hardening 

rule. This curve known as “Madrid parabola” is defined by the following expression: 

   2/1
22)( pocpcpy EEH    (10) 

where cE  is the elastic modulus, o  represents the total strain at maximum compression stress 

cf . The elasto-plastic constitutive relation is expressed in the following differential form: 

        
      

     
  d

gDgH

DggD
DdDd

e

T

e

T

e

eet













  (11) 

where  etD  is the elasto-plastic constitutive matrix. Finally, the crushing condition is given 

by:  

   uJmIcIc 
21

2

2

1

2

1 3  (12) 

 

where 1I   and 2J   are the first and the deviatoric second strain invariants, respectively and 

u represents the ultimate deformation extrapolated from experimental test (it is taken here as 

0.0035). Earlier developments and studies suggest that a concrete model intended for transient 
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analysis should be rate and history dependent. To describe rate effects, the constitutive law, 

which was first introduced in Equation (7), can be rewritten as: 

 
























3302.0

510
0279.01)(





pood  (13) 

in which od  is now a yield function both of the strain history and the current strain rate  . 

The reader is referred to the work of Liu (1985) for a detailed explanation of this 

consideration. Otherwise, because the cracking tensile strain of concrete is almost invariable 

in dynamic loading, the cracking is governed by a maximum tensile strain criterion. Then, the 

response of concrete under tensile stresses is assumed to be linear elastic until the fracture 

surface is reached (see Figure 2a) and then, its behavior is characterized by an orthotropic 

material. Cracks are assumed to occur in planes perpendicular to the direction of the 

maximum tensile strain as soon as this strain reaches the specified concrete tensile strain ct . 

After cracking has occurred the elastic modulus and Poisson’s ratio are assumed to be zero in 

the perpendicular direction to the cracked plane, and a reduced shear modulus is employed. 

Due to bond effects, cracked concrete carries, between cracks, a certain amount of tensile 

force normal to the cracked plane. This effect is considered through a relationship between the 

strain and the stress normal to the cracking plane direction, as shown in Figure 3a.  

In Figure 3a tf  is the maximum tensile stress associated to the tensile strain ct  and the 

normal stress j  is determined from the current strain j as established in the following 

expression:  

 





)( ctj

ef t



  (14) 

where   is a softening parameter obtained from the concept of fracture energy of concrete 

fG . The use of the fracture energy guarantees that the numerical response will be independent 

of the finite element mesh (Cervera et al., 1988). The steel reinforcement is modeled as an 

one-dimensional elasto-plastic material with a constant elastic modulus sE and a tangential 

modulus sE  according to the bilinear stress-strain relation shown in Figure 3b. This relation is 

the same for tension and compression stresses and hysteretic loops are allowed to be formed. 

The interested reader is referred to the work of Tamayo et al. (2012) for more details about 

this constitutive model. 
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Figure 3: a) Tension stiffening model b) Constitutive law for steel   

Mecánica Computacional Vol XXXII, págs. 913-926 (2013) 917

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



3 NUMERICAL ALGORITHM 

In order to introduce the implicit numerical algorithm for the solution of the nonlinear 

dynamic equation, it is necessary to describe the predictor and corrector form of the Newmark 

scheme for the integration of the semi-discrete system of governing equations. Typically at 

time station 
1nt  these equations take the following form:  

           11111 )(    Nnn

T

nn fddBvCaM   (15) 

where  M  and  C  are the mass and damping matrices, respectively while   1na ,  1nv  and  

  1nd  are the acceleration, velocity and displacement vectors, respectively. The tangential 

stiffness matrix  etK is related to the internal forces in the following manner:  

               ddBddBdK nn

T

nn

T

net )()( 11   (16) 

with 

        dBDBK ep

T

et  (17) 

   In the Newmark scheme the displacement and velocity at time 
1nt  can be expressed in the 

following form:  

       1

2

11

~
  nnn atdd   (18) 

       111
~

  nnn atvv   (19) 

with 

         1

2

1 )21(
~

  nnnn atvtdd   (20) 

      nnn atvv )1(~
1   (21) 

Note that nd ,  1nd  and   1nd  are the approximations to )( ntd , )( ntd  and )( ntd  and   and 

  are free parameters which control the accuracy and stability of the method.   1

~
nd  and 

  1
~

nv are the predictor values and    1nd  and   1nv are the corrector values. Initially the 

displacements  0d and velocities  0v are provided and the acceleration  0a  is obtained from 

the following expression: 

          0000 dKvCfaM e  (22) 

By using Equation (15) to Equation (21), an effective static problem is formed which is solved 

using a Newton Raphson scheme. This algorithm is summarized in the following manner: 

1. Set iteration counter  0i  

2. Begin predictor phase in which we set 

      nn

i

n ddd   11

~
 (23) 

      nn

i

n vvv   11
~  (24) 
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        )/(
~ 2

111 tdda n

i

n

i

n    (25)
         

3. Evaluate residual forces 

 
                   ddBvCaMf

i

n

i

n

Ti

n

i

nn

i

11111   (26) 

4. If required, form the effective stiffness matrix using the expression:  

 
        )()()( 1

2* i

nTT dKtCtMK    (27) 

5. Factorize, forward reduction and back substitute as required to solve 

 
     ii

dK .
*

 (28) 

6. Enter corrector phase in which we set 

      ii

n

i

n ddd  



 1

1

1  (29) 

         2

11

1

1 /
~

tdda n

i

n

i

n  



  (30) 

       1

1

1

1







 
i

nn

i

n atvv   (31)
         

7. If id and/or i  do not satisfy the convergence conditions then set 1 ii  and go to 

step 3, Otherwise continue. Set 

 
    1

11



 
i

nn dd  (32) 

     1

11



 
i

nn vv  (33) 

     1

11



 
i

nn aa  (34)
         

8. Set n = n+1, form    ddBCv nn

T

n )( 111   and begin the next time step.  

 

In this work, the containment shell is subjected to the action of the horizontal components 

of acceleration of an earthquake. The cost of a time history analysis increases linearly with the 

accelerogram duration. This has motivated the development of short duration accelerograms 

which are in some sense compatible with the design response spectrum. Here, the Johnson-

Epstein sinesweep analytical earthquake will be used as a prescribed horizontal acceleration 

history. A maximum acceleration level of 0.33g is prescribed. The sinesweep accelerogram 

which is equivalent to the El Centro accelerogram is shown in Figure 4 and its values are 

defined as: 

 

  )(sin()()( max tdtd g

g  
    

 (35) 

where 

  2/)(t  (36) 
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 NBtAtt )(  (37) 

 gd g .22.0max 
   

5.1  (38) 

 gd g .33.0max 
   

5.35.1    (39) 

 gd g ./16.2 5.1

max 
   

5.3  (40) 

where, )(td g
 is the ground acceleration time history, gd max

  is the maximum ground 

acceleration as a function of specific forcing frequency  , g  is the acceleration due to gravity 

and )(sin( t  is the variable frequency sinusoidal signal. The free parameters are defined as 

A=1.0, B=3.0 and N=3.0. When the containment shell is subjected to the earthquake 

acceleration, the generalized force on the right hand side of equation (26) is defined in the 

following manner: 

       tdIMf gn


1  (41) 

where  M  is the mass matrix and  I  is a vector indicating the direction of the earthquake 

excitation. 
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Figure 4: Sine sweep earthquake 

4 NUMERICAL EXAMPLE 

4.1 Non-linear dynamic response of the reinforced concrete containment shell 

The numerical model was used to carry out studies on the nonlinear dynamic response of 

an RC nuclear containment shell subjected to seismic excitation defined by the sine sweep 

earthquake function, previously shown in Figure 4. The geometry and the reinforcement 

details of the containment shell are shown in Figure 5 and the corresponding finite element 

mesh is shown in Figure 6. Material properties are listed in Table 1. 
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Figure 5: Geometry of reinforced concrete nuclear containment shell adapted from Manjuprasad et al. (2001) 

 

 

Figure 6: Nuclear containment structure under seismic loading: Finite element mesh 

Elastic modulus E c  = 300000 Elastic modulus E s = 2100000

Poisson   = 0.17 Hardening E s' = 0

Ultimate compressive strength f c  = 350 Yield stress  o = 4600

Ultimate tensile strain  t = 0.00018

Ultimate compressive strain  u = 0.0035

Fracture energy G F = 0.2

Concrete Steel

Material Properties (cm,Kg)

 

Table1: Material Properties. 

     This built-in reinforced concrete shell was studied earlier by Tamayo et al. (2013) under 

aircraft impact load. It is composed of cylindrical and spherical parts of constant thickness. 

The reinforcement, placed circumferentially and meridionally on the interior and exterior 

surfaces, consisted of bars of diameter 40 mm, spaced at 80 mm. A mesh of 650 20-noded 
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solid elements was used here (see Figure 6). For non-linear problems of reinforced concrete 

structures, the ratio of elastic fundamental period of vibration to the time step of integration 

( t ), i.e. T/ t  should be between 20 and 30 to keep the computational errors within 

acceptable limits. The elastic fundamental period of vibration (T) of the shell is 0.23 s. A time 

step of 01.0t  (T/23) with a total of 1020 steps was used for time step integration phase. 

The implicit Newmark algorithm with 25.0  and 50.0  is used. Firstly, a linear elastic 

analysis is performed. Figure 7 compares the horizontal displacement-time curves for point A 

obtained in the present work with those obtained in Liu (1985) where shell finite elements 

were used. Similar results for the same point are shown in Figure 8, but now for the nonlinear 

case where an ultimate concrete cracking strain of 0.00018 was defined. Comparisons of 

linear and nonlinear responses obtained in the present work are shown in Figure 9. As it can 

be seen in all these figures, presents results compared well with those obtained in Liu (1985).  
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Figure 7: Nuclear containment structure under seismic loading: Linear response at point A 
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Figure 8: Nuclear containment structure under seismic loading: Nonlinear response at point A 
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Figure 9: Nuclear containment structure under seismic loading: Comparison of linear and nonlinear response at 

point A 

  In Figure 10 and Figure 11 are shown the horizontal displacement-time curves for point B 

for the linear and nonlinear cases, respectively. As it can be seen, present results also compare 

well with those obtained in Liu (1985). Comparisons of linear and nonlinear responses 

obtained in the present work for this point are depicted in Figure 12. 
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Figure 10: Nuclear containment structure under seismic loading: Linear response at point B 
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Figure 11: Nuclear containment structure under seismic loading: Nonlinear response at point B 
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Figure 12: Nuclear containment structure under seismic loading: Comparison of linear and nonlinear response at 

point B 

     Finally, in Figure 13 is shown the spreading of the cracks obtained with the present 

numerical model for the nonlinear analysis performed for different times of analysis. In Figure 

14, the crack patterns obtained in Cervera et al. (1988), where only 40 20-noded solid finite 

elements were used, are also shown. As it is shown, both numerical models predict the 

progressively development of cracking from the left to the right side at the base of the nuclear 

containment.  

J.P. TAMAYO, A.M. AWRUCH, I.B. MORSCH924

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

t = 1.80 seg. 

 

t = 1.95 seg.  

 

t = 3.0 seg. 

 

Figure 13: Crack patterns at different times for concrete with a cracking strain of 0.00018 (Present work) 

 

 

Figure 14: Crack patterns at different times for concrete with a cracking strain of 0.00018 (Cervera et al. 1988) 

5 CONCLUSIONS 

In this work, a three-dimensional numerical model for the nonlinear dynamic analysis of a 

reinforced concrete containment shell under seismic load is presented. A 20-noded brick finite 

element is used to model the concrete part whereas reinforcing steel bars are modeled using 

incorporated membrane elements. The present example was previously analyzed by other 
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authors under aircraft impact (see e.g. Tamayo, 2013). Time-displacement histories for two 

different points on the shell were monitored when both linear and nonlinear analysis are 

performed. Validation of the model for seismic load was done by comparing present results 

with those obtained by Liu (1985) in relation of time history displacements and with those 

obtained by Cervera et al. (1988) for cracking patterns. 

As it can be seen from the time history curves for both studied points, the period of 

vibration is elongated and some dissipation due to nonlinear effects is evident. Also, the 

amplitude is smaller in the nonlinear analysis than in the linear case. Cracking affects the 

stiffness of the structure, thus changing its fundamental period. The response to a seismic 

excitation is greatly dependent on the dynamic characteristics of the structure, as the energy 

absorbed by the system depends both on the forcing and the natural frequencies.  
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