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Abstract. Time-dependent Advection-Diffusion-Reaction (ADR) etipias are used in areas such as
chemistry, physics and engineering. These areas inclughaichl reactions, population dynamics, flame
propagation, and the evolution of concentrations in emvirental and biological processes.

Each of the three phenomena (advection, diffusion, andicggcevolves in a different time scale,
thus the model shows a stiff behavior.

This equation is usually discretized along the spatiala@es using a grid, converting it into a large
sparse set of ordinary differential equations (ODES) thatloe then solved using numerical integration
methods that discretize the time variable.

An alternative way is the usage of Quantized State Syster8S)@ethods, a family of numerical
integration algorithms that replace the time discret@atbly the quantization of the state variables. Some
QSS algorithms can efficiently integrate sparse stiff O#sch makes them promising candidates for
the ADR problem.

In this article we study the use of QSS methods for ADR modetsisdiscretized with the Method
Of Lines. We compare the performance and the quality of thatisas obtained by these algorithms
with those of conventional methods, such as DASSL, Radaw@eRI.

Analyzing simulation times we show that, in most situatidhe second order linearly implicit QSS
method (LIQSS2) outperforms all the conventional algonghin more than one order of magnitude.
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1 INTRODUCTION

Advection-diffusion equations provide the basis for disog heat and mass transfer phe-
nomena as well as processes of continuum mechanics, wrephyisical quantity of interest
u(z,t) could be temperature in heat conduction or concentraticgonfe chemical substance.
It is well known that the advection-dominated diffusion Ipleom often develops sharp fronts
that are nearly shocks. Therefore, it is not easy to consameffective numerical method for
solving such a problem. Besides, there may also be a change in due to chemical reac-
tions, combining the three effects of advection, diffusamd chemical reaction, leading to the
advection-diffusion-reaction (ADR) equation.

Reactive multicomponent flows are studied in environmest&nces as well as in mechan-
ical engineering. In applications of practical intereee humber of unknowns may be large
such that fast and efficient methods are needed.

Moreover, it should be considered that the chemical reastiake place on very small time
scales compared to the long term effects considered fordbection-diffusion transport. Each
of the three phenomena (advection, diffusion, and reacéwalving in a different time scale.

Systems that exhibit simultaneous fast and slow dynamice aalled stiff
(Cellier and Kofman 200§. Due to numerical stability issues, these systems enftree
usage of implicit numerical integration algorithms whichvke a high computational cost,
particularly when the system dimension is large.

When we say that the advection-diffusion-reaction equatis advection-reaction-
dominated, means that the diffusivity is relatively smalinpared with the module of the ad-
vection field or the reaction coefficient, i.e. we will havgiPéclet number (Pe) and high
Damkdhler number. In physical terms, the Péclet numberessmts the ratio of convective
forces to diffusive forces, and is a non-dimensional quanAi larger Péclet number represents
an increasingly advection-dominated situation.

As for the numerical solution of the ADR equation, when tharReeases numerical solu-
tions produce low accuracy or suffer from instabilities.vadtion-Diffusion-Reaction problems
have been examined in the literature, with a wide range ofigorations encompassing vari-
able velocity fields, variable reaction coefficients, syeadd transient problems, in one, two
and three dimensiongdghn and SchmeyeP008 Theeraek et al.2011, Portapila and Power
2007 Caruso et a).2012.

The numerical solution of a partial differential equatid?DE) such as the ADR prob-
lem involves discretization in space and time coordinat®¥ghile some methods perform
the simultaneous discretization in space and time, sonfeigees discretize only in space
transforming the PDE into a set of ODEs that are then solvechioyerical integration
algorithms Cellier and Kofman 200§. The Method of Lines (MOL) $chiesser 1997
Cellier and Kofman2006 is one of thessemi-discretizatiotechniques.

The idea of the MOL is to use a grid over space and compute th&a@oin the grid nodes
replacing the partial derivatives by finite differenceseThsulting model is then a large sparse
set of ODEs where the state variables of a grid node are oldiereto the state variables of
some neighbor nodes.

The resulting ODE can be then simulated with numerical istiégn methods such as Eu-
ler's, Runge-Kutta Butcher 2005 Cellier and Kofman2006, DASSL (Brenan et al. 1995

1In the context of this work, the term stiffness is used in trethematical sense, where it is associated to the
presence of large and small eigenvalues in the Jacobiaixm@tris concept of stiffness is not related to that of
structural stiffness.
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Petzold 1983, which solve the equations performing a time discretiati

An alternative way to solve the ODE is given by the QSS meth@dgman 2006
Cellier and Kofman2006), that replace the time discretization by state quantratSS meth-
ods are efficient when dealing with discontinuous and spsystems, and there are Linearly
Implicit QSS (LIQSS) methoddMigoni et al, 2013 that are also able to tackle stiff systems.

Thus, LIQSS methods appear as promising candidates fagratteg the ODESs resulting
from the space discretization of Advection-Diffusion-R&an problems.

In this article we study the use of LIQSS methods in the sitmreof Advection-Diffusion-
Reaction problems semi—discretized with the MOL compaitsgerformance with that of clas-
sic algorithms such as DASSL and Runge—Kutta. The comparssperformed over different
sets of parameters and under different grid refinement dondi

The article is organized as follows. Sectidimtroduces the main concepts used in the rest
of the paper and describes some related work in the field. ,TBection3 briefly discusses
the implementation of the model in a QSS solver and Sectiehows the main results of
the the usage of QSS methods in Advection-Diffusion-Reaatnodels, making performance
comparisons with classical numerical integration methosally, Section5 concludes the
article and discusses some lines of future work.

2 BACKGROUND

In this section, we introduce the basic concepts that aredbed along the article.
We first describe the Advection-Diffusion-Reaction modksl discretizations for space and
time, and finally we explain the Quantization Based Integraiethods.

2.1 The Advection-Diffusion-Reaction Equation

Let u(z,t) be the concentration of some species in the space coordirstémet. Then,
the one dimensional Advection and Diffusiadyndsdorfer and VerweR003 process can be
described by the following PDE:

du(z,t) N Ou(x,t) _ dazu(:c,t) (1)

ot " ox 02
wherea andd are adimensional parameters expressing the amount of temtvand diffusion
respectively.
Taking into account that the species undergoes a chemiaetioa, we include a reaction
term following Zeldovich’s equatiorGilding and Kersner2001) as follows:
ou(z,t)  Ou(w,t) OPu(x,t) ) 5
5 +a e d e +r(u(z, ) —u(x,t)’) 2)
wherer is an adimensional parameter expressing the amount ofoeact
This is the model we shall work with along the rest of the &atic

2.2 Space Discretization - Method of Lines

A PDE like that of Eq.R) can be numerically solved using different approaches.

A popular technique to solve it is known as thkethod of Linesthat replaces the space
derivatives by finite difference approximatior@g(lier and Kofman2006. That way, the prob-
lem is converted into a set of ODEs which can be solved usinger@tional numerical integra-
tion algorithms.
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The replacement of space derivatives by finite differene@se seen asspatial discretiza-
tion, which is usually performed over a regular grid. For ins@rtbe use of first order finite
differences leads to replacements like

Qu(z,t) u(@ipr,t) —u(wit)  wipa(t) —u(?)

or Azx Ax

wherez; is the space position of theth grid point,Az is the grid width andy;(t) ~ u(x;, t).

The replacement of all space derivatives then leads to arsystpure ODEs. Naturally, this
discretization provokes what is know as ttensistency errgiwhich can be minimized with the
use of smaller grid widths or using higher order finite difiece approximations.

2.3 Classical Numerical Integration

After applying the Method of Lines, the original PDE becoraasODE of the form

(1) = £(x(1), 1) 3)

wherex(t) is the state vector.
Explicit single—step numerical algorithms transform Byi(to a difference equation of the
form:

X(tey1) = F(x(te), tr) (4)

In multi-step algorithms the right hand side of the previegsiations depends also on past
values of the state vectaf(t;,_1), x(t;_2), etc.

A limitation of explicit numerical integration algorithnms that their numerical solutions be-
come unstable as the step size- ¢, —1; grows. The simulation of stiff systems (i.e., systems
with simultaneous fast and slow dynamics)ajrer and Wannerl991;, Cellier and Kofman
2006 requires that the methods preserve numerical stabildgpendently of the step size,
a feature that can be only achieved by some implicit algor#hThese methods lead to approx-
imations of the form

F(x(te+1), x(tk), tr) = 0 )

wherex (¢, 1) is generally obtained through iterative procedures suc¢heaslewton iteration.
These methods, which in the case of multi-step algorithm dépend on past values of the
state, are callesitiff stable

The literature on numerical integration of ODEs containsnynaingle-step, multi-
step, explicit and implicit algorithms Hairer and Wanner 1991, Hairer etal, 1993
Cellier and Kofman2006.

In this work, we shall focus on three particular methods: @&@icit embedded Runge Kutta
method of Dormand-Prince (DOPRD@rmand and Princel 980, the implicit RK method of
Radau5 Hairer and Wannerl991) and the popular solver DASSIPétzold 1982, based on
variable step and variable order series of Backward DiffeeeFormulae (BDF) algorithms
(Cellier and Kofman2009.

Variants of DOPRI, DASSL and Radau are the default solversadt ODE and Differential
Algebraic Equations (DAE) simulation tools.

2.4 Quantization State System Methods

Quantized State System (QSS) methods replace the timetiistion of classic numerical
integration algorithms by the quantization of the statealdes.

Copyright © 2013 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXXII, pags. 1103-1119 (2013) 1107

Given the ODE of EqJ), the first order Quantized State System method (QSS1)
(Kofman and Juncd001) approximates it by

x(t) = f(a(t), 1) (6)

Here,q is thequantized state vectolts entries are component-wise related with those of the
state vectok by the followinghysteretic quantization function

) = { SO 0 412 20, -

q;(t™) otherwise

whereA(Q); is calledquantumandg; (¢~ ) denotes the left-sided limit of; at timet.

It can be easily seen that(t) follows a piecewise constant trajectory that only changesrw
the difference betweeq} (t) andz;(t) becomes equal to the quantum. After each change in the
quantized variable, it results that(t) = z,(1).

The QSS1 method has the following features:

e In the solution, the quantized staig$t) follow piecewise constant trajectories.
e The state variables;(¢) follow piecewise linear trajectories.

e The state and quantized variables never differ more thangtitumACQ),. This
fact ensures stability and global error bound propertiésfrian and Junco2001
Cellier and Kofman2006.

e The quantumAQ); of each state variable can be chosen to be proportional tetéte
magnitude, leading to an intrinsic relative error contkKfiman 2009.

e Each step is local to a state variable(the one which reaches the quantum change), and
it only provokes evaluations of the state derivatives tixatieitly depend on it. This fact
implies that QSS1 performs intrinsic sparsity exploitatio

¢ If some state variables do not change significantly, they mat provoke any step or
evaluation at all. This feature reinforces the efficientrsppaexploitation.

e The fact that the state variables follow piecewise lineajettories makes very easy to
detect discontinuities. Moreover, after a discontinustgletected, its effects are not dif-
ferent to those of a normal step (because changgsare discontinuous). Thus, QSS1 is
very efficient to simulate discontinuous systeriksffnan 2004.

The main limitations of QSS1 are the following:

e It only performs a first order approximation, and a good aacyircannot be obtained
without a significant increment in the number of steps.

e Itis not suitable to simulate stiff systems. In this cases,appearence of fast oscillations
limits the step size due to stability issues.

The first limitation was solved with the introduction of heghorder QSS methods like QSS2
(Kofman 2002, where the quantized state follow piecewise linear ttajes, and QSS3
(Kofman 2006 where the quantized state follow piecewise paraboliettayies.
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Regarding stiff systems, a first order backward QSS meth@SE was introduced in
(Migoni et al, 2012. This method, in spite of being backward, was explicit doehte fol-
lowing property. In BQSS the next state value is always knawit should be; = AQ;. The
unknown is the time at which the state reaches it which carxpkcély computed.

In BQSS, the oscillations mentioned above dissapear anstéipesize is no longer limited
by stability concerns. That way, BQSS integrates with sisi@lps the fast variables and with
large steps the slow ones.

Unfortunately, BQSS cannot be extended to higher ordemaqpations. However, a family
of linearly implicit QSS methods (LIQSS) of order 1 to 3 wasaproposed inNligoni et al,
2013. LIQSS methods, like BQSS, are also explicit algorithms.

LIQSS methods have the same advantages of QSS methods egratehable to efficiently
handle many stiff systems, provided that the stiffness estduhe presence of large entries in
the main diagonal of the Jacobian matrix.

In the context of this work, the efficient sparsity expladatand the explicit treatment of
stiffness will provide the main advantages of LIQSS. In pre of diffusion, stiffness appears
without showing large entries anywhere in the Jacobianirmaird that will impose an impor-
tant limitation. Nevertheless, it must be considered tbatlie ADR equation the numerical
difficulties arise generally when the Péclet number in@saand consequently the advection
term dominates over diffusion.

2.5 Implementation of QSS Methods

It was shown that the behavior of the QSS approximation of@gan be described as a
Discrete EVent System (DEVS)¢€igler et al, 2000. Thus, the easiest was of implementing
these algorithm is through their equivalents on a DEVS satih engine.

The whole family of QSS methods were implemented in PowerBiBérgero and Kofman
2011, a DEVS—-based simulation platform specially designecfat adapted to simulating hy-
brid systems based on QSS methods. In addition, the exQIB8 methods of orders 1 to 3
were also implemented in a DEVS library of Modeli&e({trame and Celliel2006§ and imple-
mentations of the first—order QSS methods can also be fou@®di+ (D’Abreu and Wainer
2005 and VLE Quesnel et al2007).

DEVS-based implementations of QSS methods are simple bytate not efficient. The
problem is that the DEVS simulation engines waste a largeuainaf the computational load
attending the DEVS simulation mechanism. This fact mogigdhe development of stand alone
QSS solvers.

A first approach to a stand—alone version of QSS1 to 3 was mmgaed in the Java—based
simulation toolOpen Source Physi¢Esquembrg2004), but that implementation was not more
efficient that that of PowerDEVS and it required the user tivjale the system structure infor-
mation needed by QSS methods.

Recently, the complete family of QSS methods was implentemea stand—alone QSS
solvercoded in plain C languagé-érnandez and Kofma2012. This solver improves Pow-
erDEVS simulation times in more than one order the magnjtadd can simulate models de-
scribed in a subset of the Modelica languagetzson and Engelsoi998, called;-Modelica
(Bergero et al.2012.

This is the solver we shall use in the rest of this article.
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2.6 Related Work

The goal of this article is to study the efficiency of QSS medthm the simulation of the
ADR PDE semi—discretized using the MOL.

To the best of the authors knowledge, this problem was neudiesl. However, there are
several works that study the same PDE problem in the confefassic numerical integration
algorithms, and there are some works that study the use ofrf@8&ods in the simulation of
other types of PDEs.

The combination of the MOL with classic numerical algorithrfor the ADR PDE
has been analyzed inMplke and Knoth 2000 Sommeijer et a).1998 Verwer et al, 2004
Kleefeld and Martin-Vaquer@013 Alvarez and Rojp2002 2004).

In all these works, the goal was to overcome the problem iegby the stiffness associated
to the reaction term, using variants of Runge-Kutta alton.

In (Savcenco et gl2007 Savcenco et al. study the use of multi-rate algorithms b s
ODE problems, including a case resulting from the semi+diszation of an advection—reaction
PDE. Multi-rate algorithms are somehow related to quatibnebased integration methods in
the sense that both use different time scales for differtate yariables.

The use of QSS methods in PDEs has not been yet studied in déptly et al. Muzy et al,
2011 showed the results of using QSS methods for a one dimengdfusion problem. Hy-
perbolic PDEs representing lossless transmission lines aso simulated in the context of
QSS methods inKofman, 2002 Migoni et al, 2012, including also a stiff load.

3 THE ADR MODEL IN A QSS SOLVER
In this section, we first explain the way we proceeded to dista the ADR model of ER)
using the MOL and then we show how we described in the QSS rstiieeresulting set of
ODEs.
3.1 ADR PDE Model
The ADR model we shall work with is described by the PDE
ou(z,t) ou(z,t) OPu(z,t)
=d
ot ta ox 0%x
The space domain is limited to the interdak = < 10 and we shall consider the following
boundary conditions

+r(u(z,t)” — u(z,1)*) (8)

Ou(z = 10,1t)

u(zr =0,t) =1; e

= 0; )
The initial condition is given by

(2.1 = 0) 1 if z <2 (10)
ulxr,t = = .
0 otherwise

3.2 MOL Discretization of the ADR Model

In order to discretize the problem with the MOL, we shall usegular grid of width

10
Ar=— (11)

whereN is the number of grid points.
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The advection term of EBJ % shall be replaced by a first order upwind finite difference:

ou U — Ui
o ~ Ax : (12)
fori = 1,---, N, wherew;(t) =~ u(x;,t) is thei—th state variable of the resulting ODE and

x; =1 - Az is thei—th grid point.
Taking into account the boundary condition of By &tx = 0, we have alsa, = 1.
We shall discretize the diffusion term replacing the exsirm;% by a second order centered
finite difference:
0*u

o

Uil — 22U + Ui

AL (13)

fori=1,--- , N —1.
For the last grid point, taking into account the symmetrioatder condition of Eq9) at
x = 10, we can replace

*u UN—_1 — 2un + UN—_1
— ~ 14
x|,y Ax? (14)
Replacing Eqsi2)—(14) into Eq. 8) we get the following set of ODEs:
o (ug—u) (i1 — 2u; + ui1) 9 3
Ui =~ +d N +r(u; —uy) (15)
fori=1,---,N —1and
—UN_ 2un_q1 — 2
Uy = —a(uN Uy 1) + d( U1 — 2un) +r(udy —uy) (16)

Ax Ax?
3.3 The ADR Model in the QSS Solver

The ODE model of Egslf)—(16) can be described in the subset of Modelica language (
Modelica) of the QSS Solver as follows.

nodel adv_dif_reac
constant | nteger N=1000;
paraneter Real a=1;
paraneter Real d=le-4;
paraneter Real r=10;
paraneter Real L=10;
paraneter Real dx=L/N,

Real u[N;
initial algorithm
for i in 1:0.2+«N | oop
ufi]:=1;
end for;
equat i on

der (u[ 1] ) =-ax (u[ 1] - 1) / dx+d= (u[ 2] - 2+ u[ 1] +1) / (dx"2) +r*(u[ 1] ~2) *(1-u[ 1] ) ;
der (u[ NJ ) =-a* (u[ N| - u[ N- 1] ) / dx+d (u[ N- 1] - 2« u[ N +u[ N- 1] ) / (dx”2) +r * (u[ N| A2) = (1- u[ N|
).

’for i in 2:N-1 | oop
der(uf[i])=-ax(u[i]-u[i-1])/dx+ dx(u[i+1]-2*u[i]+ul[i-1])/(dx"2)+

re(uli]”2)*(1-ufi]);

end for;
end adv_dif_reac;

Notice that in this case, we used parameters: 1, d = 107%, r = 10 and performed
the discretization oveN = 1000 grid points. The solution for this parameter set, obtained
with LIQSS2, is shown in Fig- There,u[400] is the discretized version af(z = 4), u[600]

u(z = 6), etc.
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12
u[1000] ——
u[400] -------
u[600] -+
U[BOO] v

0.8

0.6

Concentration

0.4

0.2

Time (s)

Figure 1: Simulation results far= 1,d = 1-10~*,r = 10, N = 1000 points using LIQSS2 method.

4 RESULTS

In this section we compare the performance of different misakintegration methods on the
ADR problem semidiscretized with the MOL. For that purpdbe, resulting model of EqLE)
is simulated for different parameter settings using LIQI®XSSL, Radau5 and DOPRI.

DASSL results were computed using the Fortran code DASPKrites] in Brown et al,
1999.

DOPRI and Radau5 results were computed using the C++ implatien available at
Hairer's websitéhttp://www.unige.ch/~hairer/software.htmiritten by Blake Ashby.

LIQSS2 results were obtained with the stand alone QSS Solver

All the simulations were performed on the same Intel i7-3@B)40GHz computer under
a Linux Operating System (Ubuntu).

The error in all cases were computed comparing the resuhsefierence results obtained
using a very small error tolerance-(10~1°) with DOPRI.

We did not compute consistency errors due to the MOL spacedatization. We are only
interested in the ODE integration error.

In all scenarios we gave the numerical solver a relativedolee ofl-10~3 and an absolute
tolerance ofi - 1074

DASSL, DOPRI and Radau5 are variable step solvers that éld@step size in order to
meet the tolerance.

LIQSS2 can also be considered a variable step solver. Merethe step size is adapted
differently for each state variable.
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e Taking into account that the step size is not constant, wertéphe number of scalar
function evaluations in each case.

e The model was simulated up to= 10 second. Before that time, the model always
reaches an equilibrium condition.

4.1 First scenario — Variation of the grid sizeAx

In this first scenario we study the computational cost andrerfor different number of
points NV in the grid. The remaining parameters were fixee; 1,d = 1-10~%,r = 1000. The
resulting Péclet Number is/d = 10000.

Figure2 compares the CPU time of DASSL, DOPRI, Radau5 and LIQSS? gows while
Tablel summarizes the results together with the number of scatatifan evaluations.

100000

LIQSS2 ——
DASSL ------- A
Dopri
Radau
10000 2
1000 P
m
£
(9]
E 100
[
>
o
o
10
1 o
0.1
10 100 1000 10000

Grid Size (N)

Figure 2: CPU time(ms) vsV (number of points in the grid) with = 1,d = 1 - 10~*, 7 = 1000

LIQSS2 DASSL DOPRI Radau5
N time fun. eval. time fun. eval. time fun. eval. time fun. eval.
10 9.04-10"T [ 5.99-10% | 3.85-10Y | 8.47-10° | 1.00-10T | 1.88-10° | 2.00- 10" | 1.02-10%
50 3.45- 100 2.79-10% | 1.93-10T | 1.02-10° | 4.00-10T | 1.06-10°% | 2.00-10T | 1.74-10°
100 6.62-109 | 5.38-10% | 5.11-10T | 3.29-10° | 6.00-10T | 2.45-10° | 5.00-10T | 5.02-10°
200 1.48 . 101 1.17-10° | 1.10-10% | 8.85-10° | 1.20-10% | 5.17-10° | 1.50-10% | 1.57 - 10°
500 2.73-10% | 3.16-10° | 3.33-10% | 2.61-10°% | 3.70-10%7 | 1.73-10" | 6.10-10% | 6.06 - 10°
1000 4.66 - 10T 6.05-10° | 7.41-10% | 5.64-10% | 7.00-10% | 3.54-107 | 1.29-10° | 1.23-107
10000 | 7.49-103 1.07 - 10 1.54-10% | 1.08- 10 1.50-10% | 7.41-10% | 3.97-10% | 4.04 - 103

Table 1: CPU time(ms) and number of function evaluationslftferent values ofV (number of points in the grid)
witha =1,d =1-10"%,r = 1000

Here LIQSS2 outperforms the other methods in all cases.cBidtiat up taV = 1000, the
CPU time grows sub—linearly with the si2é in LIQSS2. At the pointV = 1000 LIQSS2 is
15 times faster than DOPRI and DASSL, and 27 times faster Raalau.

Copyright © 2013 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXXII, pags. 1103-1119 (2013) 1113

However, atV = 10000 the diffusion term at Eql(5) becomes relevant, sinekis divided
by Az? while a is only divided byAz. This situation leads to a type of structural stiffness
that is not properly handled by LIQSS methodididoni et al, 2013, and its performance is
impoverished.

Although the presence of the reaction term makes the probtéimthe explicit algorithm
DOPRI is still able to simulate it in a reasonable time. It aectf performs several function
evaluations, but its low cost per step gives it a similar @aniance to that of DASSL.

It must be mentioned that DASPK and Radau5 codes in use aabkufor large scale
models. Moreover, they exploit the knowledge of the tridiagl structure of the Jacobian
matrix for this particular case. Otherwise, their compotad! cost would grow cubically with

N.
LIQSS2 DASSL DOPRI Radau5
N Max. Avg. Max. Avg. Max. Avg. Max. Avg.
10 59-10-2 [ 28-1073 [ 74-10-1T [ 79-10-% [ 3.9-10=3 | 87-10-% | 2.5-10=3 | 2.7-10°F
50 84-10"2 [ 81-107% [ 70-10°1T [ 6.8-10-% [ 22-10=2 | 1.9-103 | 3.5-103 | 6.7-10°F

100 1.2-10°F [ 1.7-10* [ 66-1001 [ 6.1-107% | 3.8-1072 | 25-1073 | 9.1-102 | 2.9-10°5
200 1.6-10°T [ 1.8-10% [ 75-10°T [ 7.6-107% | 9.8-10=2 | 3.0-103 | 3.0-10"3 | 1.3-10°°
500 1.8-10°T | 1.1-1073 [ 53-10°T [ 40-107% [ 39-102 | 38-1073 | 1.7-10"2 | 1.4-10~°
1000 | 21-107T [ 1.3-107% [ 34-1072 | 24-107° | 581072 | 48-10"2 | 49-10~2 | 3.3-10°°
10000 | 5.9-10° % | 81-100% | 1.0-10° | 14-103 [ 1.9-10°f [ 66-10°3 | 3.0-10° L | 1.3-10 %

Table 2: Max. and Avg. Error for different values &f(number of points in the grid) with = 1,d = 1-107%,r =
1000

Table2 shows the maximum and mean absolute errors committed byfteesdt algorithms.
The average errors of LIQSS2, DASSL and DOPRI are similat thay are consistent with the
tolerance settings.

Radau, however, is about two orders of magnitude more aecurhis is because the imple-
mentation is over-conservative about the error tolerance.

The maximum absolute error is high for all algorithms (exdepRadau). The reason is that
the solution is a traveling wave with a large slope. Figuriustrates the solution for = 10.
Forr = 1000 the solution look like a traveling step. Thus, a very smalbein the wave speed
provokes a very large error in the valueigiwhen the wave passes through thth point of the
grid.

4.2 Second scenario — Variation of the grid sizé\x without diffusion

In the second scenario we study the computational cost figreint number of points in the
grid N without diffusion term { = 0), i.e., a pure advection—reaction problem. The remaining
parameters were fixed: = 1, = 1000. Errors are not reported as they are similar to those of
the first scenario.

Figure3 compares the CPU time of DASSL, Radau5, DOPRI and LIQSS2e Bdumma-
rizes the results together with the number of scalar funatialuations.

The results here are similar to those with= 1 - 107, except that now LIQSS2 does not
experience any problem asgrows. The absence of diffusion confines the stiffness tothia
diagonal of the Jacobian matrix, a case that LIQSS2 hanudllaveéry efficient way.

Consequently, wheV = 10000, LIQSS2 is abouB0 times faster than DOPRS8 times
faster than DASSL anfl8 times faster than Radau.
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Figure 3: CPU time (ms) v& (number of points in the grid) with = 1,d = 0, = 1000

LIQSS2 DASSL DOPRI Radau5
N time fun. eval. time fun. eval. time fun. eval. time fun. eval.
10 854-10 1 | 6.14-10% | 3.78-10° | 8.47-10% | 2.00- 10T | 1.88-10° | 1.00- 10T | 1.02-10%
50 1.46-10° | 2.81-10* | 1.61-10" | 1.02-10° | 3.00-10T | 1.06-10% | 3.00-10T | 1.74-10°
100 8.30-10° | 5.92-10% | 4.49-10T | 3.12-10° | 6.00- 10T | 2.46-10° | 6.00- 10T | 5.02-10°
200 1.28 - 10t 1.04-105 | 9.79-101 | 870-10° | 1.20-102% | 5.16-10% | 1.50-102% | 1.57-10%
500 2.33-10% | 2.70-10° | 3.17-10%2 | 2.74-10° | 3.40-10% | 1.65-107 | 5.80- 102 | 6.06 - 10°
1000 4.23 107 5.49-10° | 7.44-10% | 5.90-10% | 6.70-10% | 3.54-107 | 1.17-10° | 1.19-107
10000 | 3.99-10% | 6.58-10% | 1.51-10% | 1.04-10% | 1.19-10% | 6.43-10% | 3.93-10% | 4.23-10°%

Table 3: CPU time(ms) and number of function evaluationglitberent values ofV (number of points in the grid)
witha =1,d = 0,7 = 1000

4.3 Third scenario — Variation of reaction term r

Now we consider the variation of with the remaining parameters fixed at= 1,d =
1-107%, N = 1000 points.

Figure4 compares the CPU time of DASSL, Radau5, DOPRI and LIQSS2jasws. Table
4 summarizes the results together with the number of scatatifan evaluations. Errors are not
reported as they are similar to those of the first scenario.

In this scenario LIQSS2 shows a noticeable advantage ogehéother methods as its perfor-
mance is not affected at all by the growth of the reaction terridvhenr grows the problem
becomes more stiff, but this stiffness is due to a large entitye main diagonal of the Jacobian
matrix, which is efficiently handled by LIQSS2.

However, the other methods have problems. DOPRI, beindaixlas its step size limited
by the stability region which is reduced linearly with Thus, the computational cost grows
linearly withr.

DASSL and Radau do not have stability issues, but the growth iacreases the non—
linearity of the problem and the Newton iteration requires@steps to converge.
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Figure 4. CPU time (ms) vs:with a = 1,d = 1- 10~ N = 1000 points
LIQSS2 DASSL DOPRI Radau5
r time fun. eval. time fun. eval. time fun. eval. time fun. eval.
100 3.35-10 | 5.93-10° | 3.53-102 | 1.94-10° | 1.10- 102 | 5.38-10% | 5.80-10% | 5.50-10°
500 4.34-10 | 5.45-10° | 4.79-10% | 3.68-10° | 3.10-10% | 1.61-107 | 9.90-10% | 9.18-10°

1000 4.66- 10" | 6.05-10° | 7.41-10% | 5.64-10° | 7.00-10% | 3.54-107 | 1.29-10% | 1.23-107
2000 4.49-101 | 6.51-10° | 1.05-10% | 1.00-107 | 1.21-10% | 6.37-107 | 2.51-103 | 2.41-107
5000 5.08- 10 | 6.84-10° | 1.50-10% | 1.71-107 | 2.60-10% | 1.41-10 3.58-10% | 3.52-107
10000 | 5.25-10T | 7.04-10° | 1.75-10% | 2.14-107 | 5.25-10% | 2.78-10% | 4.39-103 | 4.49-107
100000 | 5.64-10T | 7.68-10° | 3.29-10% | 5.12-107 | 4.68-10% | 2.71-10% | 8.93-10° | 9.43.107

Table 4: CPU time(ms) and number of function evaluationslfferent values of witha = 1,d = 1-1074, N =
1000 points

In consequence, in the last case analyzed-(100000), LIQSS2 is about0 times faster
than DASSL,160 times faster than Radau af8l0 times faster than DOPRI.

4.4 Fourth scenario — Variation of diffusion term d

In the last scenario we study the computational cost foedbffit diffusion termg with the
remaining parameters fixed with values= 1, N = 1000 points, r = 1000. Errors are similar
to those of the first scenario so they are not reported.

Figure5 shows the computational costs for different diffusion tedvhile Table5 summa-
rizes the results together with the number of scalar funaialuations.

For low values ofd, LIQSS2 again outperforms the other methods. However,asditfusion
term grows, LIQSS2 performance is soon degraded. The reafsthis is the appearance of
stiffness which is not reflected at the main diagonal of tle@Bmn matrix. These stiff cases are
not correctly handled by LIQSS algorithms, as it is analyiredigoni et al, 2013.
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Figure 5: CPU time(ms) comparison for different magnitudiediffusiond - « = 1, N = 1000 points,r = 1000

LIQSS2 DASSL DOPRI Radau5
time fun. eval. time fun. eval. time fun. eval. time fun. eval.
-10~7 [ 3.89-10T | 5.22-10° | 8.07-10% | 6.11-10° | 6.90-102% | 3.54-107 | 1.24-103 | 1.19-107
-1076 | 4.27-10T | 5.48-10° | 7.47-10% | 5.45-10% | 6.90-10% | 3.54-107 | 1.26-10% | 1.19-107
-10~° | 4.18-10T | 5.62-10° | 7.73-10% | 5.77-10% | 6.90-10% | 3.54-107 | 1.26-10% | 1.20- 107
-10=% | 4.66-101 | 6.05-10° | 7.41-10% | 5.64-10% | 7.00-102 | 3.54-107 | 1.29-103 | 1.23-107
-10~3 | 5.23-10% | 6.07-10° | 7.39-10% | 5.26-10° | 7.00-10% | 3.63-107 | 1.81-10° | 1.59- 107
-10=2 [ 6.25-10T | 8.68-10° | 5.38-10% | 4.04-10° | 6.20-10% | 3.16-107 | 9.40-10% | 9.00 - 10°
-10~T [ 3.79-10°% | 6.19-107 | 3.15-10% | 2.46-10% | 1.82-10° | 9.45-107 | 4.90-10% | 4.76 - 10°

[l Ml Ml Ml Bl e e e

Table 5: CPU time(ms) and number of function evaluationglffierentd - « = 1, N = 1000 points,r = 1000

5 CONCLUSIONS

In this work we studied the application of Quantization Bhsgegration methods for semi—
discretized Advection-Diffusion-Reaction (ADR) problem

We compared the second order Linearly Implicit QSS (LIQS8&)hod against widely used
classic numerical integration methods such as DASSL, RaddWDOPRI.

We conclude that:

e LIQSS2 is a better option than classic numerical integratieethods when the relation
between the advection and the diffusion is large (i.e. ddgclet Numbers).

e Provided that the diffusion term is small, LIQSS2 shows amgasing advantage over the
other methods as the si2égrows as it scales sub-linearly with the grid refinement.

e Contrary to classic methods, LIQSS2 performance is nottgteby the growth of the
reaction termr.

e In most cases, LIQSS2 performed at least 10 times fasterclhasic solvers.

Taking into account these remarks, we corroborated thaB8Bis a good alternative to inte-
grate ADR equations.
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However, this work was limited to a special case of a one dsimgral ADR equation, with
particular initial states and border conditions, and sésurétized with the MOL using first
order finite differences.

Future work should corroborate these results on a more glec@ntext, considering:

e More sophisticated models, including two and three dimaradiproblems with realistic
initial states and boundary conditions, such as environahgeochemistry, groundwater
and pollution.

e The use of different space discretization methods, suclvasdary integral methods or
meshless methods.

e The usage of the MOL with higher order finite differences.
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