Mecánica Computacional Vol. XXIII, pp. 3321-3331 G.Buscaglia, E.Dari, O.Zamonsky (Eds.) Bariloche, Argentina, November 2004

MODELIZADO DEL GENERADOR CENTRAL DE PATRONES EN ANIMALES CUADRÚPEDOS POR OSCILADORES ACOPLADOS CAÓTICOS

Castellini H.*, Cerdeira H.†y Romanelli L.†*

*Departamento de Física Facultad de Ciencias Exactas Ingeniería y Agrimensura Pellegrini 250, 2000 Rosario e-mail: hcaste@fceia.unr.edu.ar

> [†]International Centre of Theoretical Physics Trieste, Italia

> ^{†*}Instituto de Ciencias Universidad Nacional de General Sarmiento Roca 850, 1663 San Miguel e-mail:lili@ungs.edu.ar

Key Words: Chaos, Central Pattern Generator, Control, Symmetries.

Abstract. Actualmente, los biólogos asumen que el sistema nervioso animal contiene un conjunto de células especializadas llamado generador central de patrones (GCP), más aún, existe una gran variedad de GCP, cada uno orientado a una acción específica. El GCP locomotor, que controla el ritmo de andar (Animal Gaites) en mamíferos, ha cobrado una gran relevancia en los estudios Biomatemáticos y aplicaciones en Bioingeniería con la aparición de los GCP artificiales en robótica. En este trabajo se utilizan osciladores caóticos acoplados por el método de control de Pyragas como una solución simple a los inconvenientes de aparición de andares conjugados hallados en el modelo de Collins et al. Para tal fin se recurrió al uso de la sincronización directa mediante series temporales retardadas como función de acoplamiento. Al variar el tiempo de retardo entre 0 u.t. (unidades de tiempo) y 40 u.t. es posible generar la gama de andares animales en cuadrúpedos. Los resultados numéricos obtenidos sobre 10⁵ casos muestran la reproducción de la gran variedad de los andares animales esperados en cuadrúpedos, sin el inconveniente de los andares conjugados. Pero con el inconveniente de la aparición de ciertas simetrías espúreas para valores particulares del tiempo de retardo.

1. INTRODUCCIÓN

El análisis de andares de animales es una ciencia antigua, ya Aristóteles describe el caminar de un caballo en su tratado *De Incessu Animalium*.¹ Desde aquella época hasta la actual se avanzó sobre varios paradigmas. Un enfoque moderno representa al andar como patrones cíclicos generados por un arreglo de osciladores no lineales acoplados.¹

Se define como *ciclo* al intervalo entre apoyos del mismo pie durante el proceso de andar, siendo el factor de apoyo (β) de un pie, la fracción de ciclo por el cuál está en contacto con la superficie del terreno. Por simplicidad se asume que β es el mismo para todos los pies del animal. La *fase relativa* (ϕ) de un pie es definida como la fracción de ciclo entre el contacto con la superficie de un pie de referencia (en cuadrúpedos es el pie asociado a un miembro izquierdo) y el contacto del otro pie.² Evidentemente el pie de referencia tiene fase relativa cero. En este estudio la fase relativa juega un rol crucial para formular las simetrías, no así el factor de apoyo, por lo que no será tenido en cuenta. Los fenotipos mamíferos han evolucionado en dos tipos de andares (no ocurre lo mismo en los fenotipos de insectos, gusanos, etc.). El andar bípedo, donde las dos extremidades pueden estar fuera de fase (caminar ó correr) ó en fase (saltar). El andar cuadrúpedo, que involucra una mayor cantidad de variantes en función de su fase relativa. Los casos naturales clasificados son:³ Caminar, las extremidades se mueven desfasadas un cuarto de ciclo entre sí. Trote, las extremidades diagonales se mueven en fase, y dicho par está desfasado medio ciclo con respecto al otro. Paso, las extremidades delanteras y traseras están apareadas y se mueven desfasadas medio ciclo ambos pares. **Canter**, la extremidad delantera derecha (por ejemplo) y la izquierda trasera se mueven en fase, la frontal izquierda y la posterior derecha se mueven medio ciclo fuera de fase una con respecto de la otra y fuera de fase con respecto del par anterior (en caballos se halló la siguiente secuencia a medida que incrementa su velocidad *cami*nar, trote, canter, galope). Bound, las extremidades delanteras se mueven en fase, al igual que las traseras pero están medio ciclo desfasadas. Galope transversal, es similar al "bound", pero los pies delanteros y posteriores están fuera de fase, la extremidad izquierda posterior está un ciclo fuera de fase con la izquierda delantera, en cambio la derecha posterior está medio ciclo fuera de fase con la derecha delantera. Galope rotatorio, similar al galope transversal excepto que las extremidades izquierda y derecha tienen patrones intercambiados de tal forma que están desfasadas medio ciclo una con la otra. Pronk, las cuatro extremidades se mueven en fase y se asemeja al saltar de los bípedos, este andar aparece en los felinos pre-adolecentes.

Actualmente, los biólogos asumen que el sistema nervioso animal contiene una variedad de GCP,⁴ cada uno orientado a una acción específica. Por ejemplo el GCP locomotor controla el ritmo de andar en mamíferos.⁵ Un modelo matemático simplificado de GCP locomotor consiste en suponer la existencia de cuatro celdas acopladas con un oscilador periódico no lineal en cada celda.^{6,7} Bajo este punto de vista el andar de cuadrúpedos fue estudiado por varios investiga-dores^{8–10} que utilizaron distintos métodos, como ser: la teoría equivariante de bifurcaciones,⁷ simulaciones numéricas⁸ y curvas de respuesta de fase.¹¹ La idea de simetría fue introducida en la descripción del andar de cuadrúpedos por Hildebrand,¹⁰ Schöner *et al.*¹² Ellos estudiaron

¹En futuros párrafos se hará una descripción in extenso de este enfoque

los patrones rítmicos de andares usando modelos con simetría. Collins y Stewart fueron los primeros en utilizar el concepto de simetría en un arreglo de osciladores acoplados para modelar el GCP locomotor en cuadrúpedos.⁷ Un modelo de GCP para caracterizar la locomoción en cuadrúpedos consiste en una red de cuatro osciladores no lineales idénticos simétricamente acoplados bajo una topología en anillo.⁷ Cada oscilador representa alguna extremidad del animal que posteriormente será identificada. La estabilidad de las simetrías y su ruptura juegan un rol efectivo en la validación del modelo a utilizar. Golubisky *et al.*¹³ argumentaron que las simetrías presentes en el modelo de cuatro celdas acopladas no es el apropiado para los cuadrúpedos. La razón es que tanto el trote como el paso corresponden a soluciones conjugadas, es decir tienen la misma estabilidad y su elección depende de las condiciones iniciales. Pero, salvo entrenamiento humano, muchos cuadrúpedos se mueven con paso, pero no trotan (camellos) ó viceversa como en el caso de los caballos. En este trabajo se propuso usar un mecanismo de acople diferente al sugerido por Collins,⁷ con ello se pudo evitar la aparición de soluciones conjugadas en el modelo de cuatro osciladores.

El sistema de ecuaciones diferenciales ordinarias que caracteriza al GCP es:

$$\frac{dX_j}{dt} = f(X_j) + h_j(X_{j-1}, X_{j+1})$$
(1)

donde $j = 1 \dots$ módulo 4 es el índice que identifica a cada oscilador, $X_j \in \mathbb{R}^n$ es el vector de estado y $f : \mathbb{R}^n \to \mathbb{R}^n$ es un campo vectorial de velocidades no lineal, y $h_j : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ es el campo vectorial de acoplamientos. Se define como *simetría de red*¹³ a las permutaciones que preserva los acoplamientos. Es decir, una permutación σ de $\{1 \dots 4\}$ números sobre el espacio de las fases $X = (X_1, X_2, X_3, X_4) \in \mathbb{R}^{4n}$ es:

$$\sigma X = (X_{\sigma^{-1}(1)}, X_{\sigma^{-1}(2)}, X_{\sigma^{-1}(3)}, X_{\sigma^{-1}(4)})$$
(2)

luego σ es una simetría de red si:

$$F(\sigma X) = \sigma F(X). \tag{3}$$

donde se escribió de forma resumida $F(.) = f(.) + h_j(.)$. Luego, se deduce que la condición que debe cumplir el acoplamiento es:

$$h_j(\sigma X_{j-1}, \sigma X_{j+1}) = h_{\sigma(j)}(X_{j-1}, X_{j+1}).$$
(4)

Por otro lado en los sistemas de estudio es

$$h_j(X_{j-1}, X_{j+1}) = g_{j-1}(X_{j-1}) + g_{j+1}(X_{j+1}).$$
(5)

Si se define con [i, j] a la acción de permutar $X_i(.)$ por $X_j(.)^2$, como puede apreciarse en la **Tabla-1** Collins y Stewart⁷ propusieron una tipificación en una topología de cuatro celdas acopladas.

²Se refiere a la acción de permutar las celdas y sus acoplamientos asociados

Tipo	Simetrías	Restricciones
1	$\{ [1,4]; [2,3]; [1,2]; [4,3]; [1,3]; [2,4] \}$	$g_1(.) = g_2(.) = g_3(.) = g_4(.)$
2	{ [1,2]; [2,3]; [1,4]; [4,3] }	$g_1(.) = g_3(.) $ y
		$g_2(.) = g_4(.)$
3	{ [1,2]; [2,3]; [1,4]; [4,3] }	$g_1(.) = g_3(.) = u(.) + g(.)$ y
		$g_2(.) = g_4(.) = 0$
4	{ [1,2]; [4,3] }	$g_2(.) = g_4(.)$
5	{ [2,4]; [4,3] }	$g_2(.) = g_4(.) = 0, g_1(.) = u(.) + g(.)$ y
		$g_3(.) = w(.) + g(.)$

H. Castellini, H. Cerdeira, L. Romanelli

Cuadro 1: Caracterización de las simetrías de red, cabe observar que en los Tipos 4 y 5 no son idénticos los cuatro osciladores en cada celda, solo son idénticos de a pares $f_1(.) = f_2(.)$ y $f_3(.) = f_4(.)$ donde $f_i(.)$ es el campo vectorial de velocidades para cada celda en la ecuación 1. La función g(.) permite relacionar dichos pares en los Tipos 3 y 5.

En este trabajo se usará una red Tipo-2 para modelar el GCP de cuadrúpedos.

Otro tipo de simetría es la *simetría de cambio de fase*.¹³ Suponiendo que X(t) es una solución periódica con período mínimo (ciclo) **T**, y γ es una simetría, (ij), de permutar X_i por X_j , luego $\gamma X(t)$ será otra solución periódica y por condiciones de unicidad, las trayectorias $\{X(t)\}_t$ y $\{\gamma X(t)\}_t$ deben coincidir. Entonces la única solución es la existencia de un desfasaje θ tal que $\gamma X_j(t) = X_j(t + \theta)$. El par (γ, θ) es una simetría espacio temporal donde θ es un *cambio de fase*.

Por último se define como *andar primario*¹³ a los andares que son modelados por señales de salida provenientes de cada oscilador con idéntica forma de onda, pero con diferente fase.

Como convención se asocia el índice de cada oscilador en la ecuación (1) a una extremidad de la siguiente forma: j = 1 inferior izquierda, j = 2 superior izquierda, j = 3 superior derecha y j = 4 inferior derecha. Luego en la **Tabla-2** puede verse las simetrías de andar primario en cuadrúpedos caracterizados por redes Tipo-2.⁷

En este trabajo, se usa una convención diferente, por lo tanto no coinciden las simetrías dadas en la **Tabla 2** respecto a las propuestas por Collins *et al.*⁷

2. MODELO DE GCP USADO

En este trabajo se usa en cada celda un oscilador de Rösler (ver ec. 6) acoplado por el método de control de Pyragas¹⁴ con condiciones elegidas al azar para cada ensayo.

Dicho oscilador caótico es el único que ha mostrado evidencia de mantener un andar primario, en cambio tanto el oscilador de Van der Pool,⁷ como el de Showalter,¹⁵ si bien bajo ciertas condiciones simula el envío de pulsos nerviosos, bajo el método de sincronización usado no muestra igualdad de forma de onda en las señales de salida. Este no es un detalle menor pues simplifica mucho el diseño electrónico cuando la forma de onda de cada oscilador simula un andar primario. Esta condición, igualdad de formas de onda de salida, es importante en el comando digital de extremidades mecánicas.¹⁶

Andar	Simetrías	Grupo	
Detenido	$(I, heta) \; (lpha, heta) \; (eta, heta) \; (lphaeta, heta)$	$D_2 \times S^1$	
Pronk	(I,0)~(lpha,0)~(eta,0)~(lphaeta,0)	D_2	
Paso	$(I,0)$ $(lpha,rac{1}{2})$ $(eta,rac{1}{2})$ $(lphaeta,0)$	$ ilde{D}_2^D$	
Bound	$(I,0) \; (lpha, ar{0}) \; (eta, ar{1}{2}) \; (lphaeta, ar{1}{2})$	$ ilde{D}_2^F$	
Trote	$(I,0)$ $(lpha,rac{1}{2})$ $(eta,ar{0})$ $(lphaeta,rac{1}{2})$	$ ilde{D}_2^L$	
Galope Rotatorio	$(I,0)$ $(eta,rac{1}{2})$	$ ilde{Z}_2^L$	
Galope Transversal	$(I,0)$ $(\alpha\beta,\frac{1}{2})$	$ ilde{Z}_2^F$	
Canter	$(I,0)$ $ ilde{I}$	I	

H. Castellini, H. Cerdeira, L. Romanelli

Cuadro 2: Donde $\alpha = (12)(34)$, $\beta = (13)(24)$, $\alpha\beta = (14)(23)$ y S^1 se refiere a todo grupo cíclico de cambio de fase módulo uno. *D* representa a los subgrupos diedrales y *Z* a los subgrupos cíclicos. El tilde indica la existencia de una simetría de cambio de fase. La notación $\frac{1}{2}$ representa un desfasaje de medio ciclo.

$$\begin{cases} \frac{dx}{dt} = -(y+x) \\ \frac{dy}{dt} = x+0, 2y \\ \frac{dz}{dt} = 0, 2+z(x-c) \end{cases}$$
(6)

Utilizando un mecanismo de sincronización directa,¹⁷ la variable maestra es y y las variables esclavas son x, z. Se utiliza una serie temporal de índice limitado para obtener el valor de la realimentación desfasada. En consecuencia de esto la función de acoplamiento es de la forma:

$$h_i(X_i, X_{i+1}, X_{i-1}) = k_i \left(y_{i-1}(t-\tau) - y_i(t) \right) + g_i \left(y_{i+1}(t-\tau) - y_i(t) \right)$$
(7)

donde g_i y k_i son constantes. Las condiciones de simetría asociadas a la red Tipo-2 limitan el rango de valores que deben tener las constantes k_i y g_i , en este caso se debe cumplir $g_1 = k_2$, $g_2 = k_3$, $g_3 = k_4$, $g_4 = k_1$, $k_1 = k_2$ y $k_4 = k_3$. El valor del retardo $\tau \in \mathbb{N}$ y la constante *c* del oscilador de Rösler (ver ec. 6), juegan un rol importante en los patrones de las funciones de onda obtenidas.

Se toma como salida de cada oscilador al valor de la variable $x_i(t)$, afectado por la función umbral

$$Q(x) = \begin{cases} 0 & \text{si } x > 2,0\\ 1 & \text{si } x \le 2,0 \end{cases}$$
(8)

Esto define una aplicación del espacio de las fases al espacio de las matrices binarias de dimensión 2x2. Por conveniencia al valor 1 se le asocia al estado *extremidad apoyada* en cambio al estado 0 se le asocia el estado *extremidad en movimiento no apoyada*. Finalmente la representación matricial del GCP es de ahora en más

$$\mathbf{C} = \begin{pmatrix} \text{Delantera Izquierda} & \text{Delantera Derecha} \\ \text{Trasera Izquierda} & \text{Trasera Derecha} \\ 3325 \end{pmatrix}$$

Luego el andar no es más que una concatenación de representaciones matriciales del GCP locomotor. Por ejemplo la siguiente secuencia periódica corresponde al *pronk*

$$\left\{ \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right) ; \left(\begin{array}{rrr} 0 & 0 \\ 0 & 0 \end{array}\right) \right\}$$

Esto permite visualizar mejor las simetrías del andar primario, aunque se pierde noción de los intervalos de tiempos entre patrones. Esto último es de suma importancia para una aplicación en robótica pues no sólo condiciona la respuesta de los actuadores, sino que la inercia de los sistemas mecánicos pueden producir inestabilidades indeseadas en el andar. Por eso además del análisis de patrones se evaluó el tiempo de cada patrón en la secuencia periódica, pero a diferencia de lo que ocurre cuando en cada celda hay un oscilador armónico³ en nuestro caso, por ser cada oscilador caótico, el intervalo de tiempo es una variable aleatoria con media y varianza calculable. Una herramienta nueva para evaluar el intervalo de tiempo en el andar humano es el *Detrended Fluctuation Analysis* (DFA).^{18–20} Que permite caracterizar procesos estocásticos en apariencia similares.

De ahora en más se usará los siguientes modelos *ad hoc* que se llamarán: **SA** a la condición $k_1 = k_3 = 0,1$ y $k_2 = k_4 = 0,001$; y **SB** a $k_1 = k_3 = 0,1$ y $k_2 = k_4 = -0,001$. Una de las razones para la elección de estos valor es, la presunción que existe una fuerte coordinación de extremidades asociadas a cada hemisferio, en cambio existe una pobre correlación entre extremidades asociadas a hemisferios cerebrales diferentes. ⁴ La otra es, que en los valores propuestos los resultados obtenidos en las simulaciones, son en una gran proporción coincidentes a los hechos empíricos

3. RESULTADOS NUMÉRICOS

Independientemente del tipo de elección de acoplamientos, **SA** ó **SB**, aparece un comportamiento en función del retardo de tiempo, τ^5 , bastante robusto ante variaciones del parámetro c en la ec. 6. A medida que se incrementa el retardo (partiendo de $\tau = 0$) aparece un pasaje de caos \rightarrow oscilaciones armónicas \rightarrow punto estacionario estable \rightarrow bifurcación de Hopf primaria \rightarrow bifurcación de Hopf secundaria \rightarrow caos. El comportamiento caótico fue ratificado estudiando los máximos exponentes de Lyapunov por medio del paquete TISEAN.²¹

En la figura-1 se puede observar el comportamiento del máximo exponente de Lyapunov, λ en función del retardo. La meseta corresponde a valores de $\lambda = 0$, lo cuál indica una oscilación armónica, en cambio para el resto de los valores de retardo toma un valor $\lambda > 0$. Esto corresponde a la presencia de un comportamiento caótico del sistema. Si bien esto parece poco relevante a la hora de evaluar las simetrías, no lo es respecto al tiempo que dura cada patrón, pues una inestabilidad en los tiempos puede ser nociva para un andar regular. Y es menester

³En que cada intervalo de tiempo es un valor definido

⁴Cabe recordar que los subíndices asociados a los acoplamientos guardan relación con la convención sobre las extremidades que se ha mencionado antes en el párrafo I

⁵En este caso definimos como τ al desplazamiento de las componentes en la serie temporal de datos. Esto corresponde a un número entero cuyo valor por unidad es de 0.05 u.t.

Figura 1: Máximo exponente de Lyapunov, λ obtenido de una serie temporal de valores de salidas sobre una celda del anillo. Se utilizó el algoritmo de Aurell *et al.* provisto por el paquete de cálculo TISEAN.²¹

conocer para que valores de retardo el intervalo de tiempos que dura cada patrón se torna inestable. En general, tanto para $\tau < 6$ como para $\tau > 48$ los intervalos de tiempos tienen varianza elevada, por lo que se limitará el intervalo de retardo al intervalo $6 \le \tau \le 48$.

3.1. Acople SA

Para 6 $\leq \tau \leq$ 13 el patrón de andar periódico obtenido fue

$$\left\{ \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right) ; \left(\begin{array}{rrr} 0 & 0 \\ 0 & 0 \end{array}\right) \right\}$$

es trivial deducir que corresponde al caso de *pronk* y corresponde a la simetría D_2 .

En cambio para $\tau = 14$ deja de ser estable el ciclo límite y aparece un punto foco estable produciendo que el sistema tienda en forma asintótica a un punto estacionario. Esto produce

como única secuencia de andar el patrón

$$\left\{ \left(\begin{array}{rr} 1 & 1 \\ 1 & 1 \end{array}\right) \right\}$$

lo cual corresponde al caso de simetría $D_2 \times S^1$, es decir al andar *detenido*, pues todos los miembros están apoyados independientemente del tiempo transcurrido. Cabe destacar que el sistema recupera su estado caótico si se anula el acoplamiento a partir de un instante de tiempo posterior al alcanzar el punto estacionario.

Para $\tau = 34$ dicho punto estacionario deja de ser estable y se torna en un foco inestable, cuyas órbitas convergen a un único ciclo límite diferente del primero observado. El patrón encontrado para $34 \le \tau \le 48$ fue

$$\left\{ \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) ; \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) ; \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) ; \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array}\right) \right\}$$

Este posee simetría \tilde{D}_2^L la cual corresponde al andar *trote*. En este tipo de patrón, cada avance involucra el apoyo de las cuatro extremidades. Esto último, se observa en cuadrúpedos cuyo peso corporal es elevado como son jirafas, elefantes y búfalos, en cambio no se observa en caballos, perros y otros cuadrúpedos.⁷

No se encontraron otros patrones para este tipo de acoplamiento en la gama de valores caóticos de *c* estudiados.

3.2. Acople SB

Nuevamente para $6 \le \tau \le 13$ el sistema caótico acoplado oscila en un ciclo límite estable, que en este caso produce un patrón de andar

$$\left\{ \left(\begin{array}{rrr} 1 & 1 \\ 0 & 0 \end{array}\right); \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right); \left(\begin{array}{rrr} 0 & 0 \\ 1 & 1 \end{array}\right); \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right) \right\}$$

el cual posee simetría \tilde{D}_2^F , esto corresponde al andar *bound*. Es necesario hacer una salvedad, el verdadero andar *bound* como el observado en la ardilla siberiana⁷ involucra el no apoyar las cuatro extremidades. En cambio en este patrón se apoyan las cuatro extremidades para poder generar un avance por lo tanto no existe como tal en la naturaleza. Como se trabaja en el espacio de las matrices booleanas, este inconveniente se resuelve aplicando el operador negación a cada uno de los elementos de la matriz.

Como lo ocurrido en el acoplamiento SA, para valores de retardo comprendidos entre $14 \le \tau \le 32$ el sistema acoplado tiene un punto estacionario estable y deja de ser estable el ciclo límite. Esto concuerda con el andar *detenido*.

Para $\tau = 33$ el punto estacionario deja de ser estable, y aparece un ciclo límite estable en el sistema acoplado produciendo el patrón

$$\left\{ \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right); \left(\begin{array}{rrr} 1 & 0 \\ 1 & 0 \end{array}\right); \left(\begin{array}{rrr} 1 & 1 \\ 1 & 1 \end{array}\right); \left(\begin{array}{rrr} 0 & 1 \\ 0 & 1 \end{array}\right) \right\}$$

$$3328$$

Este tiene simetría \tilde{D}_2^D la cual corresponde al andar *paso*. Pero como en la situación anterior en el trote de un caballo nunca se apoyan los cuatro miembros, aplicando el operador negación se obtiene el patrón de andar deseado.

A diferencia del acoplamiento **SA**, en el acoplamiento **SB** el andar no es estructuralmente estable para otros valores del retardo. Para $\tau = 34$ hasta $\tau = 37$ el andar cambia a otro patrón periódico

$$\left\{ \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right); \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right); \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right); \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right); \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right); \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right) \right\}$$

Este patrón posee las siguiente simetrías $Q = \{(I, 0) (\alpha, \frac{2}{3}) (\beta, \frac{2}{3})\}$. Esto no coincide con ningún grupo de los clasificado para el andar primario observado en la naturaleza, por lo que no es un andar correspondiente a ningún cuadrúpedo y pasaría a ser un andar artificial. Para $\tau = 38$ el sistema genera nuevamente un andar tipo *trote*.

4. ANÁLISIS PRELIMINAR

En la siguiente tabla se ha efectuado un resumen de los resultados hallados

Modelo	Retardo τ	Simetría	α	$\sigma(t)$ en u.t.	$\mu(t)$ en u.t.	Andar
SA	$6 \le \tau \le 13$	D_2	$0,6 \le \alpha < 1$	0,1 - 0,02	6 - 9	pronk
SA	$14 \le \tau \le 33$	$D_2 \times S^1$	N.D.	0	0	detenido
SA	$34 \le \tau \le 48$	$ ilde{D}_2^L$	$\alpha \approx 1,5$	0,03 - 0,25	4 - 5,2	trote
SB	$6 \le \tau 13$	$ ilde{D}_2^F$	$0,6 \le \alpha < 1$	0,2 - 0,013	6 - 9	bound
SB	$14 \le \tau \le 32$	$D_2 \times S^1$	N.D.	0	0	detenido
SB	$\tau = 33$	$ ilde{D}_2^D$	lpha pprox 0,3	0.37	4	paso
SB	$34 \le \tau \le 37$	Q	$\alpha \approx 1,5$	0,07 - 1,4	4 - 5,2	-
SB	$38 \le \tau \le 48$	$ ilde{D}_2^L$	$\alpha \approx 1,5$	1,48 - 1,36	5,2 - 5,5	trote

Donde $\sigma(t)$ es el rango de desvío de las series temporales *tiempo de paso* y $\mu(t)$ es el rango de esperanza de las mismas. α es la pendiente en la zona periódica¹⁹ cuando se aplica DFA a la serie temporal de tiempos de paso. Esta pendiente toma un valor no determinado (**N.D.**), como ocurre cuando $14 \le \tau \le 32$, ya que en este caso el tiempo de paso es nulo por representar la situación *animal detenido*.

Los valores de α para $6 \le \tau \le 13$ indica la presencia de comportamiento persistente diferente a comportamiento estocástico.⁶ Esto da la pauta de un comportamiento complejo similar al observado en el andar de animales bípedos (no existe evidencia en cuadrúpedos). Salvo para

⁶Ya que la correlación es análoga a $C(\tau) \sim \tau^{-2+2\alpha}$ diferente al valor $\alpha = 0.5$ que indica la presencia de estocasticidad, lo cuál corresponde a $C(\tau) \sim e^{-\frac{\tau}{\tau_0}}$.

 $\tau = 33$ en el modelo **SB**, el valor de α y el análisis del grafo $F(n)^{18}$ indica que la serie de tiempos no es análoga a la integración del ruido blanco, sino que tiene un comportamiento cíclico pero diferente a una evolución sinusoidal⁷ sino más próximo a $u(t) = A\left(\frac{t}{K} - \left[\frac{t}{K}\right]\right)$ donde A y K son constantes. Más aún existe una similaridad débil según los resultados del **DFA**. Este tipo de comportamiento no ha sido observado en ningún animal vivo. Por otro lado para $\tau = 33$ se observa una situación particular de anticorrelación ($0 < \alpha < 0.5$) que solo ocurre para ese valor de retardo. Este comportamiento llamativo tampoco es observado en animales vivos.

5. CONCLUSIONES

El empleo del método de sincronización directa Pyragas (ver ec. 7) es una forma novedosa de acoplamiento entre celdas para redes Tipo-2, usada como modelo de GCP. Siendo de importancia el haber podido evitar la indeseable aparición de soluciones conjugadas. En cambio, aparecen patrones no naturales para valores en el retardo en el acoplamiento **SB**. Esto no es un grave problema en una aplicación a robótica, pero es otro hecho indeseable si esto intenta modelar el GCP locomotor de los cuadrúpedos. Por otro lado no fue posible observar el andar *canter*, ni tampoco el *galope transversal*, por lo cual este tipo de red no es adecuada para un modelo general de GCP locomotor natural. Sin embargo por su simpleza, es útil considerar-la como alternativa a los GCP artificiales usados en robots. Pero de la tabla anterior se puede apreciar que el valor medio de tiempos de paso varia con el retardo. Esto no es deseable, pues redundaría en pasos irregulares. Sin embargo la eficiencia, eff = $\frac{\sigma(\tau)}{\mu(\tau)}$, para un dado retardo es siempre eff < 0,28 esto muestra una mediana estabilidad.

REFERENCIAS

- [1] A. Peek and E. Foster. *Parts of Animals, Movements of Animals, Progression of Animals.* Harvard University Press, (1936).
- [2] J. Gray. Animal Locomotion. Weidenfeld and Nicolson, (1968).
- [3] R. Alexander. The gaits of biped and quadrupedal animals. *Int. J. Robot Res.*, **3**, 49–59 (1984).
- [4] S. Rossignol A. Cohen and S. Grillner. *Neural Control of Rhythmic Movements in Vertebrates.* Wiley New York, (1988).
- [5] A. Dagg. Gaits in mammals. *Mammal Rev.*, **3**, 135–154 (1973).
- [6] L. Glass and R. Young. Structure and dynamics of neuronal network oscillator. *Brain Res.*, 179, 207–218 (1979).
- [7] J. Collins and I. Stewart. Coupled nonlinear oscillators and the symmetries of animal gaits. *J. Nonlin. Sci.*, 3, 345–369 (1993).
- [8] R. Alexander and J. Goldspink. *Mechanics and Energetics of Animal Locomotion*. Chapman and Hall, (1977).
- [9] M. Hildebrand. Analysis of the symmetrical gaits tetrapods. *Folia Biotheoretica*, **4**, 10–22 (1964).

 $^{^{7}\}alpha = 2$ para el caso de señales sinusoidales

- [10] M. Hildelbrand. Symmetrical gaits of horses. Science, 150, 701–708 (1965).
- [11] C. Butera C. Canvier and J. Byrne. Phase response characteristics of model neurons determine which patters are expressed in a ring circuit model of gait generation. *Biol. Cybern.*, 68, 1–14 (1997).
- [12] W. Yiang G. Schoöner and J. Kelso. A synergetic theory of quadrupedal gaits and gait transitions. J. Theor. Biol., 142, 359–391 (1990).
- [13] M. Golubistsky and P. Luciano. Models of central pattern generators for quadruped locomotion. J. Math. Biol., 42, 291–326 (2001).
- [14] K. Pyragas. Continous control of chaos by self-controlling feedback. *Phy. Lett.*, **170** (1992).
- [15] K. Scott V. Petrov and K. Showalter. Mixed-mode oscillations in chemical systems. J. Chem. Phys., 97, 6191–6198 (1992).
- [16] M. Hartman M. Lewis and A. Cohen. An in silicio cetral pattern generator: silicon oscillator, couplig, entrainment and physical computation. In *Report Iguana Robotics Inc.*, (2002).
- [17] G. Malescio. Synchronization of chaotic systems by continous control. *Phys. Rev. E.*, 53, 2949–2953 (1996).
- [18] P. Carpena K. Hu, Ch. Ivanov and H. stanley. Effect of trends on detrended fluctuation analysis. *Phys. Rev. E.*, **64**, 1–19 (2001).
- [19] K. Peng J. Hausdorff and L. Goldberger. Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. *Am. Physiol. Soc.*, **10**, 1040–1047 (1999).
- [20] E. Stanley C. Peng, S. Buldyrev and L. Goldberger. Mosaic organization of dna nucleotides. *Phys. Rev. E.*, **49**, 1685–1689 (1994).
- [21] R. Hegger and H. Kantz. Practical implementation of nonlinear time series methods: The tisean package, (1998).