
PATH INSTABILITY OF STRONGLY COLLAPSING BUBBLES
DRIVING BY BI-FREQUENCY EXCITATION AT FINITE REYNOLDS

NUMBERS

Ludmila M. Rechimana,b and Fabián J. Bonettoa

aLaboratorio de Cavitación y Biotecnología. Instituto Balseiro-UNCu-CNEA-CONICET. Centro
Atómico Bariloche CP(R8402AGP), Río Negro, Argentina.

bDepartamento Mecánica Computacional. Centro Atómico Bariloche CP(R8402AGP), Río Negro,
Argentina.

Keywords: Bubble dynamics, SBSL, Path instability, History force, Window method.

Abstract. In this work we present a study of the path instability that may be developed by strongly
collapsing bubbles in highly viscous liquids. In particular we modify the driving pressure field by the
addition of a high frequency component in order to suppress the pseudo-orbits. The condition of spatially
fixed bubbles is necessary for an accurate experimental characterization of it. We investigate different
modes for the high frequency component. In the present work we show that the spatial stabilization of
the bubble could be obtained with different kind of harmonics. We also performed a sensibility analysis
of the solutions under different phases between the low and high frequency components of the pressure
field. Furthermore, we present a verification test to secure that the history force action cause the path
instability and we also made a validation of the model with experimental measurements of the bubble
radius driving with bi-harmonic and bi-frequency excitation showing a quite good agreement between
them.
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1 INTRODUCTION

The description of the behavior of dispersed bubbles immersed in different types of flows is
an absolute interesting field in several technological areas, for instance in: cyclonic separators
(van Eijkeren and Hoeijmakers(2010)), combustion of atomized fuel (Chung(1982)), tracers
in turbulent flows (Tchen(1947)), (Hinze (1975)), (Armenio and Fiorotto(2001)), simulation
of environmental flows (Loth and Dorgan(2009)), among others.
The dynamics of the translation of small dispersed spherical particles of fixed size in an un-
steady flow and at low Reynolds numbers is well described by the Basset-Boussinesq-Oseen
equation (BBOE) (Maxey and Riley(1983)). The BBOE equation considers the different hy-
drodynamic forces done by the fluid over the particles, and its resolution determine the trajec-
tories of the particles. This approach allows to track in a Lagrangian manner the tracers or
particles in unsteady flows. The hydrodynamic forces involved in the BBOE are: drag force,
added mass force, buoyant force and Basset force.
Many expressions have been formulated for the Basset force for particles with fixed radius in a
widely variety of flows (Yang and Leal(1991), Mei et al.(1994)). However, in the present work
we are interesting on implement a model to describe the full motion of bubbles with variable
radius due to its response to a pressure field imposed by ultrasound. In order to accomplish
this, we have used a model for the history force developed byMagnaudet and Legendre(1998)
which was elaborated for spherical bubbles with large volume variations.
The motivation of this problem is based on developing a numerical tool to study the possible
“path instability” that may present bubbles driving by ultrasound in the context of Sonolumi-
nescence study field (Rechiman et al.(2012b),Rechiman et al.(2013)).
The main issue within this field is the concentration of energy, and in order to rise this figure
of merit, a key fact is to obtain more violent collapses by modifying the pressure field applied
on the bubble.Holzfuss et al.(1998) proposed the bi-frequency excitation for it. With this type
of excitation they obtained an increment of 300% in the intensity of light emitted by a sonolu-
minescent bubble of air immersed in water in comparison withthe case of a single frequency
excitation.
Subsequent works show by means of experimental fittings thatthe hydrodynamic theory is
able to reproduce the experimental measurements of the temporal evolution of the radius of the
bubble where bi-harmonic excitation was used, (Hargreaves and Matula(2000)).
Moraga et al.(2000) used a pressure field composed by the fundamental frequencyand the10th

harmonic to obtained stable and sonoluminescent air bubbles in water. By the adjustment of
the relative phase between the signals that composed the acoustic pressure field, they could
increment the intensity of light emitted by the bubble, and they also determined that with the bi-
frequency excitation a more efficient compression could be achieved respect to single frequency
case and without modifying the maximum radius.
With the purpose that the bubbles will be more stable againstshape perturbations and trying
to minimize the amount of vapor of the liquid present at main collapse, new working fluids
began to be used in the experiments. The main properties of the performed fluids are: low
vapor pressure and more viscous than water. Liquids with these characteristics are for instance
the concentrated sulfuric acid solutions (Didenko et al.(2000), Flannigan and Suslick(2005),
Hopkins et al.(2005)). However, in the region of interest in the phase space of the problem, it
was observed that bubbles did not were spatially stable and they described pseudo-orbits under
a single driving frequency. This state was coined “moving-SBSL” (m-SBSL). The existence of
this state makes the characterization of the bubbles more difficult, and in consequence this cause
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the inability of determine in an indirect manner the reachedtemperature of the inside bubble
contents. Besides, the bubbles move away from the central region of the resonator where the
applied acoustic pressure is higher.
Later, the experimental suppression of the spatial trajectories of bubbles immersed in a concen-
trated sulfuric acid solution was first made byUrteaga and Bonetto(2008) by adding a second
harmonic frequency to the acoustic field.
Recent investigations made byDellavale et al.(2012), Dellavale(2012), revealed that the bi-
harmonic excitation allows to trap and spatially stabilizebubbles in a highly viscous sulfuric
acid solution for a small amount of dissolved gas in the liquid equivalent to1 mbar (c∞

c0
≈

0.001). Under these conditions a boosting in the temperature of the inside bubbles contents was
accomplished, and the predicted temperature was∼ 70000 K. The remarkable fact of using
highly degassed solutions is that higher acoustic pressures could be applied on the bubble and
by means of the bi-frequency excitation the spatial trapping is possible.
In this context, the bi-harmonic excitation allows to enlarge the accessible cases able to experi-
mentally characterize where the energy concentration rises in the phase space (pba;R0). Because
of this, in the present work we made a deeper study within the acoustic cavitation field, in or-
der to study the presence of the path instability on bi-frequency driving bubbles, and show the
developed tool to investigate the mechanisms that allows tospatially stabilize bubbles.
The work is organized in the following manner: in Sec.(2) we describe the numerical model
that couples the radial dynamics and the translational motion of a single bubble immersed in an
acoustic pressure field imposed by ultrasound. In Sec.(3) we show a verification procedure and
a validation of the developed tool with experimental data. In Sec.(4) we show the numerical
results regarding the path stability of a single bubble driving by bi-harmonic excitation. Finally
in Sec.(5) we summarize our conclusions.

2 THE MODEL

In the present work we used the model presented inRechiman et al.(2012b), Rechiman et al.
(2013), to calculate the coupled radial and translational dynamics of a bubble. We deal with
the particular case of a bubble driving by an intense acoustic pressure field so that the radial
oscillations of the bubble are non-linear. The non-autonomous dynamical system that model
the problem can be sum up in the following manner:
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Ṫb = −[γ(R, Ṙ, Tb)− 1] 3R
2(t)Ṙ(t)
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The first equation of Eqs.(1) is the Rayleigh-Plesset-Keller equationKeller (1980) which de-
scribes the radial oscillations of the bubble. The second equation of Eqs.(1) is the energy
equation assuming a Van der Waals gas inside the bubble and uniform profiles of pressure and
temperature within the bubble. Finally, the third equationof Eqs.(1) is the translational equation
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of the bubble which takes into account the following forces acting on it: primary Bjerknes force
(~FBjerknes Leighton(1994)), added mass force (~Fam Landau and Lifshitz(1987)), steady-drag
force (~FDrag Batchelor(1967)), buoyant force (~Fboy Landau and Lifshitz(1987)) and history
force (~FHistory Magnaudet and Legendre(1998)). Further treatment of the history force kernel
approximation can be found inRechiman et al.(2012b), Rechiman(2013).
In the system represented by Eqs.(1), t is the time,R(t) is the radius of the bubble,̇R(t) is the
radial velocity of the bubble interface,̈R(t) is the radial acceleration of the bubble interface,
ρl is the liquid density,cl is the speed of sound in the liquid,σ is the surface tension,νl is the
kinematic viscosity of the liquid.Tb is the temperature of the gas contents inside the bubble,
γ(R, Ṙ, Tb) is the variable polytropic coefficient,χg(t) denotes the thermal diffusivity of the
gas,T0 is the ambient temperature andh is the Van der Waals hard core radius of the gas.r

is the radial coordinate,rb(t) =
√

x(t)2 + y(t)2 + z(t)2 is the distance from the center of the
bubble to the origin of coordinates, which is located in the middle of a spherical resonator,
x(t), y(t) andz(t) indicate the location of the center of the bubble in Cartesian coordinates,
~U(r, t) = ~Vb − ~ul(r, t) is the relative velocity between the bubble translational velocity and the
liquid velocity and~g is the gravity acceleration.θr(t) andθt(t) are the switches for the activation
or deactivation of the history force defined byToegel et al.(2006). pg(R(t)) is the pressure of
the gas contents inside the bubble andp(r, t) denotes the driving pressure field. The driving
pressure field in the present work is composed by two parts: a low frequency component, which
oscillates with the first eigenfrequency associated to a spherical resonator, and a high frequency
component, which can oscillates with a harmonic frequency of the fundamental or with a non-
harmonic frequency:

p(r, t) = p
∞
−

sin(k0r)

k0r
p0a sin(2πf0t)−

sin(knr)

knr
pna sin(2πnf0t + φ) (2)

In Eq.(2), p
∞

is the uniform static pressure, while the subindex “0” denotes the fundamental
model and “n” indicates the harmonic1. k0 = 2πf0

cl
andkn = 2πnf0

cl
are the wave numbers,r is

the radial distance between the center of the bubble and the center of the resonator,f0 andfn are
the driving frequencies,φ is the relative phase between the signals (is positive if theharmonic
signal is forward the fundamental signal).p0a andpna are the amplitudes of each component of
the pressure field in the resonator center, and these two parameters can be controlled in the ex-
periments. Is important to point out the difference between, the amplitudes of each component
of the pressure field at the resonator center (p0a andpna), from the amplitudes of the pressure
applied on the bubble at positionrb associated to each component, which we will indicate them
in the following manner:pbLFa = sin(k0rb)

k0rb
p0a andpbHF

a = sin(knrb)
knrb

pna . If the bubble is not far away
from the resonator center2, (pbLFa andpbHF

a ) are similar to (p0a andpna) respectively. With the
present model for the driving pressure field, it should be noticed that the spatial dependence of
the fundamental and harmonic components are strictly radial.
The system of equations Eqs.(1) was solved by using the Runge-Kutta 4.5 adaptive step size
algorithm, in which each integration step was determined bythe doubling-stepping method
Press et al.(1992). In this way we completely solved the three time scales involved in the
problem which are:

1 Harmonic frequency: is a frequency equivalent to an integernumber (n) of the fundamental frequency (f0).
The last means:fn = nf0. In the case of no-harmonic frequencies, the argument of thefunction sin() of the
second term isfNo Harm × t.

2 a distance shorter than2 mm for the range of parameters explored in the present work.
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• Time scale associated with the main collapse of the bubble (∼ nseg.)

• Time scale associated with the expansion of the bubble during the rarefaction phase of
the ultrasound (∼ µseg.)

• Time scale associated with the spatial trajectories of the bubble (∼ seg.)

The third equation of the system Eqs.(1) that governs the translational motion is an integrodif-
ferential equation. One possible method to solve it is to evaluate the integral term of the history
force model in each time step of the integration of the whole coupled system of equations given
by Eqs.(1). To evaluate the integral in each time step, 15 variables involved in the history force
integrand were stored:t, R(t), Ṙ(t), ux

l (r, t), u
y
l (r, t), u

z
l (r, t), u̇

x
l (r, t), u̇

y
l (r, t), u̇

z
l (r, t), ẋb(t),

ẏb(t), żb(t), ẍb(t), ÿb(t) y z̈b(t)
3.

The strict manner to make the integration of the history force, will be to store the whole evolu-
tion of the bubble from the very beginning of the simulation.However, this way of calculation
have several draw backs: the large amount of time required tomake the calculations in each
time step of integration of the complete system, the large amount of storage memory and the
model of the history force used in the present work is valid a finite time backwards as it was
indicated byMagnaudet and Legendre(1998).
In this sense, with the purpose of store a lower amount of dataand make the integration over a
shorter period of time, one possible method is to apply the“window method” in which a finite
truncated time interval is considered.
This method was developed in first place byDorgan and Loth(2007) to solve the integral of the
Basset force over particles of fixed size, denser than the host liquid and in a range in which the
fluid dynamic around the body could be described by a creepingflow motion. That work was
also extended byLoth and Dorgan(2009) for the study of bubbles, and optimize in precision and
time byvan Hinsberg et al.(2011), but all those works are orientated to the study of translating
bubbles with fixed size.
In the present work we implement the“window method”to solve the integral associated to the
history force model. The history force integral, which it issolved in each step of the integra-
tion of the complete system, was made by using the two-pointsNewton-Cotes closed formula
Press et al.(1992). This method was selected based on time computing restrictions, due to the
history force integral is mainly composed by two integrals one inside the other, one depending
onR(s) which is inside the integral overτ . Both integration ranges,s y τ , are the same and
correspond to the selected window size (indicated byN points).
Figure (1) shows the scheme of calculation of the system of equations given by Eqs.(1).

3 VERIFICATION AND VALIDATION OF THE NUMERICAL CODE

3.1 PATH INSTABILITY DUE TO THE ACTION OF THE HISTORY FORCE ON
THE BUBBLE

Toegel et al.(2006) shows that the history force is the reason of the existence of the path insta-
bility of bubbles immersed in highly viscous fluids. In orderto make a check of consistency,
we simulate the same case with and without the history force term in the model. We have con-
sidered an argon bubble in SA85 solution with an ambient radius ofR0 = 9.0µm, which is
driving by an acoustic pressure field which amplitude at the resonator center isp0a ≃ pba = 1.65
bar and oscillates atf0 = 30.0 kHz. Based on the experiments, this case is associated with a

3Here the subindex “l” indicates “liquid”, while “b” indicates “bubble”.
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Figure 1:Calculation scheme of the system of equations given by Eqs.(1).

bubble which is path unstable. The initial conditions for both states are:Ri = R0, Ṙi = 0.0m
s

,
T i
b = 293.15 K, xi = 0.1 mm, ẋi = 0.0m

s
, yi = −0.15 mm, ẏi = 0.0m

s
, zi = 0.0 mm,

żi = 0.0m
s

. In the case displayed in Figure (2A) in which we have not included the history force
in the model, it can be seen that the bubble moves to a levitation location above the origin of co-
ordinates but without describing pseudo-orbits. On the other hand, in Figure (2B) we show that
the inclusion of the history force term to the model cause theappearance of the path instability.
In all the simulated cases the trajectories are contained ina bidimensional subspace.

3.2 VALIDATION OF THE NUMERICAL CODE WITH EXPERIMENTAL DATA

We have shown that the hydrodynamic force responsible for the path instability of bubbles driv-
ing by a pressure field imposed by ultrasound oscillating in the non-linear regime immersed
in a highly viscous liquid, is the history force, (Toegel et al.(2006), Rechiman et al.(2013),
Rechiman(2013)). Typically, the experimental characterization of the radial dynamic of a bu-
bble requires that the bubble will be fixed in a spatial position. If this condition is accomplished,
the temporal evolution of the bubble radius can be measured,and by fittings with a suitable nu-
merical model, it can be determined the amplitude of the pressure applied on bubble wall, the
amount of non-condensible gas inside it and the temperaturereached by the bubble contents.
Three different method have been applied in order to get spatially stationary bubbles: I) keeping
the amplitude of the pressure field below a certain threshold, II) using strongly degassed liquid
and III) using multi-frequency excitation, harmonic in most of the cases. In particular, in the
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Figure 2: Influence of the history force acting on an argon bubble in SA85 which ambient radius isR0 = 9.0µm.
The bubble is driving by an acoustic pressure field which amplitude at the resonator center isp0a ≃ pba = 1.65
bar and oscillates at a frequency equal tof0 = 30.0 kHz. (A) Without including the history force term in the
translational equation. (B) Including the history force inthe model.

present work the suppression of the pseudo-orbits will be made by bi-frequency excitation, and
by strongly degassed liquid in combination with the bi-frequency excitation.
In Figure (3A) we show an experiment made byDellavale(2012), in which an argon bubble
immersed in a SA85 solution driving by a pressure field which oscillates at 30 kHz in a spherical
resonator, is in the m-SBSL state (moving Single Bubble SonoLuminescence). Figure (3B)
shows that the addition of7th harmonic to the driving pressure field cause the suppressionof
the pseudo-orbits4.

Figure 3: (A) Argon bubble moving in SA85 driving with the frequency associated with the first normal mode of a
spherical resonator (f0 = 29.2) kHz. (B) Spatially fixed bubble due to the addition of a second component to the
pressure field with a harmonic frequency (7f0). Both pictures were taken with a Nikon D50 camera, with a totally
open diaphragm and with an integration time of 1 secondDellavale(2012). The concentration of dissolved gas in
the liquid was equivalent to 16 mbar.

With the conditions of Figure (3B), the Figure (4) shows the measurements of the temporal
evolution of the radius. The measurements were made by usingthe “Mie scattering” technique
Urteaga(2008), Dellavale(2012), which allows to obtain arelativemeasurement5 of the radius
of the bubble as function of time. To illuminate the bubble anHe-Ne Melles Griot laser (nominal

4We refer to “path suppression of the bubble” in the sense thata little movement of the bubble can exist, but the
spatial scale is negligible or imperceptible for the measurements of the temporal evolution of the bubble radius.

5The intensity of light (I) scattered by the bubble and collected by the photomultiplier tube follows this law:
I(t) ∝ Rbubble(t)

2

Mecánica Computacional Vol XXXII, págs. 1463-1479 (2013) 1469

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



power 30 mW) was used, and the scattered light was collected in a special angle by using
a photomultiplier tube Oriel 77340, which has a characteristic response time ofFWHM =
2.1 ns. The fundamental driving frequency was similar to the one associated with the first
normal mode of the resonator (f0 = 29081 Hz), while the second frequency, was a harmonic
frequency from the fundamental (f7 = 7f0 = 203567 Hz). Is important to point out that in this
case the dissolved gas in the liquid was about 16 mbar. A concentration is considered “high” in
SA85 solution if it is larger than 10 mbar (Dellavale(2012)), in which a bubble driving by only
the fundamental frequency describes pseudo-orbits, and bythe addition of a certain harmonic
to the pressure field, the spatial fixing is possible (See Figure (3)B).
The selected parameters to characterize the bubble of Figure (4) and make the non-linear fitting
are:R0, pbLFa , pbHF

a andφ. We implement a code that allows to make multiple sweeps of the
fitting parameters to minimize theχ2 function. The figure of merit “χ2-function” is defined

as: χ2 =
∑N

j=1(
R

exp
j −Rmodel

j

δj
)2, whereN is the amount of experimental points,R

exp
j indicates

each experimental point of the measurement of the radius as function of time,δj is the standard
deviation associated to each experimental point andRmodel

j is the radius of the bubble calculated
by numerical integration.
Due to the fact that the translational dynamics does not cause mayor changes on the radial dy-
namics respect to the maximum radius, minimum radius and rebound structure, the fittings were
made by suppressing the translational dynamics and the spatial dependence from the numerical
model. This was made in order to reduce the computing times6.
Figure (4) shows that the fitting of the experimental data is quite goodbecause it is able to re-
produce the complex structure of the rebounds. This points out that the thermodynamical model
used in this work for the evolution of the gas inside the bubble is a suitable model. Moreover,
from the fitting it can be seen that the region in which the difference between the numerical
and experimental results are larger is during main collapse. In particular, it can be seen that the
experimental measurements obtained by using the “Mie scattering” technique does not reach
the minimum radius predicted by the adjustment of the Rayleigh-Plesset-Keller equation. The
same effect can be seen in experimental results obtained with the same technique reported by
Lofstedt et al.(1995), Barber and Putterman(1992), Gompf and Pecha(2000). According to
Brenner et al.(2002), the relation of proportionality between the intensity ofcollected light dis-
persed by the bubble and the square of the radius of the bubbleis not longer valid during main
collapse due to the refraction index of the inside bubble contents when is compressed, is un-
known. Furthermore, the size of the bubble on those instantsis of the same order of magnitude
than the light’s wavelength. In spite of this,Urteaga and Bonetto(2008) made experiments in
which they used another technique known as“fringe method” in order to measure the temporal
evolution of the bubble radius. By using this method the radius of the bubble is measured in an
absolute way and with higher accuracy, specially during main collapse. The results obtained by
this procedure validate the hydrodynamic theory (RPKE) to describe the radius of the bubble.
On the other hand, we also made fittings of an argon bubble in a SA85 solution but at a low
gas concentration of dissolved gas in the liquid. At a pressure of 6 mbar of dissolved gas

6The grid used to make the fitting calculations to adjust 4 parameters (R0, pbLF
a , pbHF

a , φ), are10×10×10×10,
which represent 10000 simulations. In the case in which we consider the translational dynamics in the calculations,
the steady state is reached after 5000 radial cycles, which are calculated in 10 hours. The last represent 100000
hours to make the calculations. By suppressing the translational dynamics to make the fittings, like it was made
in previous works reported in the literaturePuente(2005),Urteaga(2008), Dellavale(2012), the calculations to
compute the fitting takes 5 hours approximately in a laptop with an INTEL core i5 processor. By applying this
assumption, the model is reduced to consider a bubble immersed in an infinite liquid.
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Figure 4: Temporal evolution of the radius of an argon SL bubble immersed in SA85. The concentration
of dissolved gas in the liquid is approximately 30 mbar (c∞

c0
= 0.030). The bubble is spatially stabilized

by the bi-frequency excitation composed by the fundamentalmode and the7th harmonic: f0 = 29081 Hz ,
f7 = 7f0 = 203567 Hz. (Blue dots) Experimental measurements made by using the“Mie scattering” technique.
The measurements were obtained with a photomultiplier tubeOriel 77340 with a response time FWHM = 2.1ns.
The dotted points are the result of the averaging of 10 measurements. (Red solid line) Non-linear fitting. The best
parameters obtained by theχ2 minimization procedure are:R0 = (10.7 ± 0.1)µm, pbLF

a = (1.34 ± 0.02) bar,
pbHF
a = (1.19 ± 0.02) bar, φ = (1.80 ± 0.01) rad. (Green dots) Indicates the difference between the radius

predicted by the model and the corresponding experimental data.

in the liquid, which is a highly degassed case, the bubble cannot be spatially trapped in the
experiments (Dellavale(2012)). Because of this, an addition of a second component to the
pressure field is needed in order to confine and stabilize the bubble under study.
Figure (5A) shows the experimental data associated with the temporalevolution of the radius of
a bubble driving by bi-harmonic excitation composed by the fundamental mode at a frequency
f0 = 29075 Hz and the4th harmonic. It can be seen that the present model fits quite goodthe
experimental data and capture the rebound phase in an accurate manner.
We have also made fittings of experimental data of an argon bubble in SA85 but driving by bi-
frequency excitation (not harmonic). In this case the dissolved gas in the liquid was equivalent
to 10 mbar, while the fundamental driving frequency isf0 = 29116 Hz and the not harmonic
frequency isfNoHarm. = 15 kHz. In Figure (5B) it is shown the result of the fitting. It can be
seen that the model is able to reproduce theperiod-doublingthat is evident from the observation
of experimental data for the mention kind of excitation.

4 NUMERICAL RESULTS FOR BI-FREQUENCY DRIVING BUBBLES

4.1 HARMONIC MODE EFFECT

In this section we show simulations made with the complete model for the experimental case
displayed in Figure (4), and we analyze the effect of using different modes in orderto get
spatially stationary bubbles.

Mecánica Computacional Vol XXXII, págs. 1463-1479 (2013) 1471

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



−5 0 5 10 15 20 25 30 35 40 45
−10

0

10

20

30

40

50

R
 [

µ
 m

]

A

−5 0 5 10 15 20 25 30 35 40 45
−10

0

10

20

30

40

50

R
 [

µ
 m

]

t [µ s]

B

Figure 5: Temporal evolution of an argon bubble in SA85. (A) SL bubble under driving by a bi-harmonic excitation
f0 = 29075 Hz and4f0. The fitted parameters are:R0 = (4.9 ± 0.1)µm, pbLF

a = (1.50 ± 0.02) bar, pbHF
a =

(0.92 ± 0.02) bar,φ = (−4.66 ± 0.01) rad. The concentration of gas dissolved in the liquid was equivalent to 6
mbar (c∞

c0
= 0.006).(B) Bubble driving by bi-frequency excitationf0 = 29116 Hz yfNoArm. = 15 kHz. The fitted

parameters are:R0 = (6.3± 0.1)µm, pbLF
a = (1.48 ± 0.02) bar, pbHF

a = (0.19± 0.02) bar,φ = (1.57± 0.01)
rad. The concentration of gas dissolved in the liquid was equivalent to 10 mbar (c∞

c0
= 0.010). The reference time

t = 0, corresponds to the zero crossing with positive slope of theacoustic pressure in the fundamental mode. (Blue
dots) Experimental data measured with the “Mie scattering”technique. (Red line) Non-linear fitting. (Green dots)
Difference between the model and the experimental data.

In the sequence shown by Figure (6A-I) is displayed the path of an argon bubble in the ex-
perimental case of Figure (4). For the simulations we used the following input parameters,
which are the results of the numerical fitting of experimental data: R0 = (10.7 ± 0.1)µm,
pbLFa = (1.34 ± 0.02) bar,φ = (1.80 ± 0.01) rad. At the beginning of the sequence, the bu-
bble was only driving by the fundamental frequency, and gradually the amplitude of the high
frequency component rises up to a valuepbHF

a = (1.19 ± 0.02) bar. Is relevant to point out
from the observations of the simulations that the mean levitation position is quite near the ori-
gin of coordinates, and in consequence (p0a ∼ pbLFa andp7a ∼ pbHF

a ). It can also be seen that
the pseudo-orbits are suppressed whenp7a rises, as well as the mean levitation approaches to the
center (Rechiman et al.(2013)). This last effect could be explained based on the fact thatthe
addition of a second component to the pressure field cause larger gradients. Larger spatial gra-
dients of the pressure field implies that the averaged Bjerknes force in a radial period is more
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intense in the case of a bi-harmonic driving bubble (spatially stable) respect to the case of a
bubble driving by only the fundamental mode (moving bubble). On the other hand, the suppres-
sion of the pseudo-orbit is caused due to the maximum value ofthe added mass, which occurs
at main collapse, diminishes. An important parameter to calculate in this kind of problem is the
compression ratio, which for a bubble driving by only the fundamental mode isRmax

Rmin
= 20.6,

while for the bubble driving by the fundamental mode an the7th harmonic isRmax

Rmin
= 25.5.

Figure 6: Simulated path of an argon bubble in SA85 solution with the same conditions of the experimental case
shown in Figure (4). The characteristic parameters are:f0 = 29081 Hz, f7 = 203567 Hz, R0 = 10.7µm,
pbLF
a = 1.34 bar. The sequence starts with a bubble driving by only the fundamental mode, and gradually the

amplitude of the high frequency component of the pressure field rises. The initial conditions for the complete
model are:Ri = R0, Ṙi = 0.0m

s
, T i

b = Tliq, xi = 0.10 mm,ẋi = 0.0m
s

, yi = −0.15 mm,ẏi = 0.0m
s

,zi = 0.0
mm, żi = 0.0m

s
. (A) Bubble driving by only the fundamental modep7a = 0.00 bar. (B) p7a = 0.15 bar. (C)

p7a = 0.30 bar. (D) p7a = 0.45 bar. (E)p7a = 0.50 bar. (F) p7a = 0.55 bar. (G)p7a = 0.60 bar. (H) p7a = 1.05 bar.
(I) p7a = 1.19 bar.

In Figure (7) is displayed the sequence in which the amplitude of the second component of the
pressure field given by the4th mode rises. It can be seen that the model predicts that a nearly
stationary bubble could be obtained but in a mean levitationposition shifted from the pressure
antinode (7I). In Figure (8) is shown the same sequence but using the5th mode, which also al-
lows to obtain spatially fixed bubbles but in a nearest position from the resonator center (8I). In
Figure (9) is shown the sequence using the6th mode, in which a similar behavior than in Figure
(7I) is obtained. From this series of simulations it can be seenthe high sensibility of the trajec-
tories with the chosen mode for the high frequency componentof the pressure field. The builded
numerical tool allows to complement the kind of experimentsdone byDellavale et al.(2012),
Dellavale(2012), in which a sophisticated control system of the multi-frequency pressure field
acting inside the resonator was developed.
It is worth to mention that in all presented cases, we have computed the shape instabilities along

Mecánica Computacional Vol XXXII, págs. 1463-1479 (2013) 1473

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



the whole path to verify if the breakage of the bubble occurs.We have followed the scheme
implemented byRechiman et al.(2012a), but for periodically driving bubbles. The simulations
presented in this work were found to be parametrically and Rayleigh-Taylor stable.

Figure 7: Simulated path of an argon bubble in SA85 solution with the same conditions of the experimental case
shown in Figure (4), but using the4th mode as a second component of the pressure field. The characteristic
parameters are:f0 = 29081 Hz, f4 = 116324 Hz,R0 = 10.7µm, pbLF

a = 1.34 bar. The sequence starts with
a bubble driving by only the fundamental mode, and graduallythe amplitude of the high frequency component of
the pressure field rises. The initial conditions for the complete model are:Ri = R0, Ṙi = 0.0m

s
, T i

b = Tliq,
xi = 0.10 mm,ẋi = 0.0m

s
, yi = −0.15 mm,ẏi = 0.0m

s
,zi = 0.0 mm,żi = 0.0m

s
. (A) Bubble driving by only the

fundamental modep4a = 0.00 bar. (B)p4a = 0.15 bar. (C)p4a = 0.30 bar. (D) p4a = 0.45 bar. (E)p4a = 0.50 bar.
(F) p4a = 0.55 bar. (G)p4a = 0.60 bar. (H) p4a = 1.05 bar. (I) p4a = 1.19 bar.

4.2 PHASE EFFECT

In the present section we show the sensibility of the solution with the phase between the signal
associated with the high frequency component and the signalassociated with the fundamental
frequency component. We considered as a base case, the previous situation in which anR0 =
(10.7±0.1)µm argon bubble immersed in SA85 highly gassed solution (∼ 30mbarc∞

c0
= 0.030)

driving by f0 = 29081 Hz, pbLFa = (1.34 ± 0.02) bar describe pseudo-orbits (Figure6A) and
by means of the addition of the7th harmonic, the path is suppress (Figure6I -Figure 10). In
the last case the additional parameters are:f7 = 7f0 = 203567 Hz, pbHF

a = (1.19 ± 0.02) bar,
φ = (1.80± 0.01) rad.
In Figure (11) we show the solutions of the simulations made with the same input parameters
than in Figure10 but for different (φ) phases. It can be seen that the bubble no longer remains
in a spatially fixed location like in the particular case ofφ = 1.80 rad, and a widely variety
of trajectories are obtained which indicates that the solution is highly sensible with the chosen
phase.
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Figure 8: Simulated path of an argon bubble in SA85 solution with the same conditions of the experimental case
shown in Figure (4), but using the5th mode as a second component of the pressure field. The characteristic
parameters are:f0 = 29081 Hz, f5 = 145405 Hz,R0 = 10.7µm, pbLF

a = 1.34 bar. The sequence starts with
a bubble driving by only the fundamental mode, and graduallythe amplitude of the high frequency component of
the pressure field rises. The initial conditions for the complete model are:Ri = R0, Ṙi = 0.0m

s
, T i

b = Tliq,
xi = 0.10 mm,ẋi = 0.0m

s
, yi = −0.15 mm,ẏi = 0.0m

s
,zi = 0.0 mm,żi = 0.0m

s
. (A) Bubble driving by only the

fundamental modep5a = 0.00 bar. (B)p5a = 0.15 bar. (C)p5a = 0.30 bar. (D) p5a = 0.45 bar. (E)p5a = 0.50 bar.
(F) p5a = 0.55 bar. (G)p5a = 0.60 bar. (H) p5a = 1.05 bar. (I) p5a = 1.19 bar.

5 CONCLUSIONS

In the present work we have shown a validation of the numerical code with experimental data
for spatially fixed bubbles. We have made non-linear fittingsof an argon SL bubble driving
by bi-harmonic and bi-frequency excitation. In particular, we have fitted experimental data of a
stable argon bubble driving by the fundamental and the7th harmonic. In this case, the liquid was
highly gassed, then the spatial confinement and fixing could be attainable due to the addition of
the second harmonic. It was shown that the numerical model correctly predicts the spatial fixing
of the bubble in agreement with experimental observations.We have also made a fitting of a
stable argon bubble driving by the fundamental and the4th harmonic but in a highly degassed
sulfuric acid solution. In this case the trapping of the bubble is not possible without a second
harmonic in the pressure field. In order to explore further driving pressure fields, we have also
fitted experimental data of an argon bubble driving by bi-frequency excitation (not-harmonic).
In all cases, a quite good agreement between the numerical model and the experimental data
was shown during most of duration of the radial period of the bubble except at main collapse
due to the intrinsic nature of the experimental method used to measure the temporal evolution
of the bubble radius.
We have shown the sensibility of the computed solutions withthe chosen mode and the phase.
The numerical simulations made allow us to determined that the addition of the5th harmonic
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Figure 9: Simulated path of an argon bubble in SA85 solution with the same conditions of the experimental case
shown in Figure (4), but using the6th mode as a second component of the pressure field. The characteristic
parameters are:f0 = 29081 Hz, f6 = 174486 Hz,R0 = 10.7µm, pbLF

a = 1.34 bar. The sequence starts with
a bubble driving by only the fundamental mode, and graduallythe amplitude of the high frequency component of
the pressure field rises. The initial conditions for the complete model are:Ri = R0, Ṙi = 0.0m

s
, T i

b = Tliq,
xi = 0.10 mm,ẋi = 0.0m

s
, yi = −0.15 mm,ẏi = 0.0m

s
,zi = 0.0 mm,żi = 0.0m

s
. (A) Bubble driving by only the

fundamental modep6a = 0.00 bar. (B)p6a = 0.15 bar. (C)p6a = 0.30 bar. (D) p6a = 0.45 bar. (E)p6a = 0.50 bar.
(F) p6a = 0.55 bar. (G)p6a = 0.60 bar. (H) p6a = 1.05 bar. (I) p6a = 1.19 bar.

to the pressure field is able to trap and stabilize the bubble in the center of the resonator in
agreement with previous experimental results reported byUrteaga and Bonetto(2008).
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