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Abstract. In this work we present a study of the path instability thatyrba developed by strongly
collapsing bubbles in highly viscous liquids. In partiaulee modify the driving pressure field by the
addition of a high frequency component in order to supptes@seudo-orbits. The condition of spatially
fixed bubbles is necessary for an accurate experimentahcieaization of it. We investigate different
modes for the high frequency component. In the present werkhow that the spatial stabilization of
the bubble could be obtained with different kind of harmenid/e also performed a sensibility analysis
of the solutions under different phases between the low aytdfrequency components of the pressure
field. Furthermore, we present a verification test to seduwasethe history force action cause the path
instability and we also made a validation of the model witpaexrimental measurements of the bubble
radius driving with bi-harmonic and bi-frequency excibatishowing a quite good agreement between
them.
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1 INTRODUCTION

The description of the behavior of dispersed bubbles imetens different types of flows is
an absolute interesting field in several technologicalsaria instance in: cyclonic separators
(van Eijkeren and Hoeijmakef2010), combustion of atomized fueChung(1982), tracers

in turbulent flows Tchen(1947), (Hinze (1975), (Armenio and Fiorottq2001)), simulation
of environmental flowsl{oth and Dorgar{2009), among others.

The dynamics of the translation of small dispersed sphiepiadicles of fixed size in an un-
steady flow and at low Reynolds numbers is well described byBifisset-Boussinesg-Oseen
equation (BBOE) Maxey and Riley(1983). The BBOE equation considers the different hy-
drodynamic forces done by the fluid over the particles, andeisolution determine the trajec-
tories of the particles. This approach allows to track in graagian manner the tracers or
particles in unsteady flows. The hydrodynamic forces ine#dlin the BBOE are: drag force,
added mass force, buoyant force and Basset force.

Many expressions have been formulated for the Basset forgeafticles with fixed radius in a
widely variety of flows {Yang and Lea(1991), Mei et al.(1994). However, in the present work
we are interesting on implement a model to describe the folion of bubbles with variable
radius due to its response to a pressure field imposed bysoltnal. In order to accomplish
this, we have used a model for the history force developadégnaudet and Legend(2998
which was elaborated for spherical bubbles with large v@wariations.

The motivation of this problem is based on developing a nisaktool to study the possible
“path instability” that may present bubbles driving by akound in the context of Sonolumi-
nescence study fieldRechiman et al2012h,Rechiman et ali2013).

The main issue within this field is the concentration of egeand in order to rise this figure
of merit, a key fact is to obtain more violent collapses by g the pressure field applied
on the bubbleHolzfuss et al(1998 proposed the bi-frequency excitation for it. With thiséyp
of excitation they obtained an increment of 300% in the isiigrof light emitted by a sonolu-
minescent bubble of air immersed in water in comparison Wiehcase of a single frequency
excitation.

Subsequent works show by means of experimental fittingsthieatiydrodynamic theory is
able to reproduce the experimental measurements of theotairgyvolution of the radius of the
bubble where bi-harmonic excitation was usetargreaves and Matul2000).

Moraga et al(2000 used a pressure field composed by the fundamental freqaeaicthel 0"
harmonic to obtained stable and sonoluminescent air babblevater. By the adjustment of
the relative phase between the signals that composed thestacpressure field, they could
increment the intensity of light emitted by the bubble, ametalso determined that with the bi-
frequency excitation a more efficient compression coulddbéesed respect to single frequency
case and without modifying the maximum radius.

With the purpose that the bubbles will be more stable agaimspe perturbations and trying
to minimize the amount of vapor of the liquid present at matlapse, new working fluids
began to be used in the experiments. The main propertiesegbeiformed fluids are: low
vapor pressure and more viscous than water. Liquids witbetisbaracteristics are for instance
the concentrated sulfuric acid solutiori3idenko et al.(2000, Flannigan and Suslick005,
Hopkins et al(2005). However, in the region of interest in the phase space®ptioblem, it
was observed that bubbles did not were spatially stabletrayddescribed pseudo-orbits under
a single driving frequency. This state was coined “moviBs8’ (m-SBSL). The existence of
this state makes the characterization of the bubbles mifi@ut, and in consequence this cause
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the inability of determine in an indirect manner the reacteedperature of the inside bubble
contents. Besides, the bubbles move away from the ceng@a®f the resonator where the
applied acoustic pressure is higher.

Later, the experimental suppression of the spatial trajexst of bubbles immersed in a concen-
trated sulfuric acid solution was first made Uyteaga and Bonett(2008 by adding a second
harmonic frequency to the acoustic field.

Recent investigations made IDellavale et al (2012, Dellavale(2012), revealed that the bi-
harmonic excitation allows to trap and spatially stabilmébles in a highly viscous sulfuric
acid solution for a small amount of dissolved gas in the Hgequivalent tol mbar €= ~
0.001). Under these conditions a boosting in the temperaturesohigide bubbles contents was
accomplished, and the predicted temperature wag)000 K. The remarkable fact of using
highly degassed solutions is that higher acoustic pressumagld be applied on the bubble and
by means of the bi-frequency excitation the spatial trapjsmossible.

In this context, the bi-harmonic excitation allows to egkathe accessible cases able to experi-
mentally characterize where the energy concentratios iisthe phase spacg’f ;). Because
of this, in the present work we made a deeper study within toeistic cavitation field, in or-
der to study the presence of the path instability on bi-fezapy driving bubbles, and show the
developed tool to investigate the mechanisms that allowpatially stabilize bubbles.

The work is organized in the following manner: in S@¢ e describe the numerical model
that couples the radial dynamics and the translationalonaf a single bubble immersed in an
acoustic pressure field imposed by ultrasound. In Spwé show a verification procedure and
a validation of the developed tool with experimental data.Sec.4) we show the numerical
results regarding the path stability of a single bubbleidg\by bi-harmonic excitation. Finally
in Sec.p) we summarize our conclusions.

2 THE MODEL

In the present work we used the model presente@anohiman et al(2012), Rechiman et al.
(2013, to calculate the coupled radial and translational dyrarof a bubble. We deal with
the particular case of a bubble driving by an intense acopsassure field so that the radial
oscillations of the bubble are non-linear. The non-automesndynamical system that model
the problem can be sum up in the following manner:

(1= B R B(e) + 2R2(1) (1 — B2) = L1 4+ D) (py (R(1)) — p(r, 1)) + HOLED) _ 20D 20
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The first equation of Eq4l] is the Rayleigh-Plesset-Keller equati&eller (1980 which de-
scribes the radial oscillations of the bubble. The secondhgon of Eqs.) is the energy
equation assuming a Van der Waals gas inside the bubble @odnmprofiles of pressure and

temperature within the bubble. Finally, the third equatbEqgs.() is the translational equation
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of the bubble which takes into account the following forcetsay on it: primary Bjerknes force
(ﬁBjerknes Leighton(1994), added mass forceﬁgm Landau and Lifshit{1987), steady-drag
force (Fp,., Batchelor(1967), buoyant force £, Landau and Lifshit1987) and history
force (ﬁmstory Magnaudet and Legend(#999). Further treatment of the history force kernel
approximation can be found Rechiman et al(2012h, Rechiman(2013.

In the system represented by Ed3.( is the time,R(t) is the radius of the bubble?(t) is the
radial velocity of the bubble interfacé?(t) is the radial acceleration of the bubble interface,
p 1S the liquid densityg; is the speed of sound in the liquid,is the surface tensiomw is the
kinematic viscosity of the liquid7, is the temperature of the gas contents inside the bubble,
v(R, R, Ty) is the variable polytropic coefficien,(t) denotes the thermal diffusivity of the
gas, Ty is the ambient temperature ahds the Van der Waals hard core radius of the gas.
is the radial coordinatey(t) = \/x(t) 2+ z(t)? is the distance from the center of the
bubble to the origin of coordlnates WhICh is located in thieldte of a spherical resonator,
x(t), y(t) and z(t) indicate the location of the center of the bubble in Cartes@ordinates,
U(r,t) =V, — @(r, t) is the relative velocity between the bubble translatiomdbeity and the
liquid velocity andy is the gravity acceleratior,.(¢) andé, (t) are the switches for the activation
or deactivation of the history force defined byegel et al(2009. p,(R(t)) is the pressure of
the gas contents inside the bubble aiid ¢) denotes the driving pressure field. The driving
pressure field in the present work is composed by two partsv&equency component, which
oscillates with the first eigenfrequency associated to arsgdl resonator, and a high frequency
component, which can oscillates with a harmonic frequericii@fundamental or with a non-
harmonic frequency:

in(k in(k
sin(kor) sin( nr)pZ sin(2rnfot + 6) @
kor k,r

In EQ.@), p is the uniform static pressure, while the subindex “0” desdhe fundamental
model and " indicates the harmonit. k, = 2”f° andk,, = 2’”‘f° are the wave numbers,is

the radial distance between the center of the bubble andameroof the resonatofy andf,, are

the driving frequenciesy is the relative phase between the signals (is positive ihdrenonic
signal is forward the fundamental signapf, andp” are the amplitudes of each component of
the pressure field in the resonator center, and these twanpéees can be controlled in the ex-
periments. Is important to point out the difference betwdle@ amplitudes of each component
of the pressure field at the resonator centérgnd p?), from the amplitudes of the pressure
applied on the bubble at positiepassociated to each component, which we will indicate them
in the following mannerp-"" = S50l 0 andphi 7" — stlftul ). If the bubble is not far away
from the resonator centér (p?X*" and prF ) are similar to 2 andp?) respectively. With the
present model for the driving pressure field, it should bécedtthat the spatial dependence of
the fundamental and harmonic components are strictly kadia

The system of equations Edb.(vas solved by using the Runge-Kutta 4.5 adaptive step size
algorithm, in which each integration step was determinedhgydoubling-stepping method
Press et al(1992. In this way we completely solved the three time scalesliea in the
problem which are:

p(r,t) = poo — pg sin (27 fot) —

! Harmonic frequency: is a frequency equivalent to an integenber ) of the fundamental frequencyy).
The last meansy,, = nfy. In the case of no-harmonic frequencies, the argument ofuhetionsin() of the
second term igno garm X t.

2 a distance shorter thahmm for the range of parameters explored in the present work.
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e Time scale associated with the main collapse of the bubbleseg.)

e Time scale associated with the expansion of the bubble gldhe rarefaction phase of
the ultrasound~{ useg.)

e Time scale associated with the spatial trajectories of thibdle (~ seg.)

The third equation of the system Edg.that governs the translational motion is an integrodif-
ferential equation. One possible method to solve it is tduata the integral term of the history
force model in each time step of the integration of the wholgpted system of equations given
by Egs.(). To evaluate the integral in each time step, 15 variabkasied in the history force
integrand were stored; R(t), R(t), uf (r,t), ul(r,t), ui (r,t), af (r, t), 0¥ (r,t), @ (r,t), ip(t),
o(t), 2(1), Z(t), Go(t) Y Z(t) °.

The strict manner to make the integration of the historydowill be to store the whole evolu-
tion of the bubble from the very beginning of the simulatiétowever, this way of calculation
have several draw backs: the large amount of time requiredatce the calculations in each
time step of integration of the complete system, the largewarhof storage memory and the
model of the history force used in the present work is valichaditime backwards as it was
indicated byMagnaudet and Legend(&998.

In this sense, with the purpose of store a lower amount of @ladamake the integration over a
shorter period of time, one possible method is to applytWiedow method”in which a finite
truncated time interval is considered.

This method was developed in first placebgrgan and Lott{2007) to solve the integral of the
Basset force over particles of fixed size, denser than thieligogl and in a range in which the
fluid dynamic around the body could be described by a creejpmgmotion. That work was
also extended blyoth and Dorgar§2009 for the study of bubbles, and optimize in precision and
time byvan Hinsberg et a(2017), but all those works are orientated to the study of tramsjat
bubbles with fixed size.

In the present work we implement theindow method”to solve the integral associated to the
history force model. The history force integral, which itsislved in each step of the integra-
tion of the complete system, was made by using the two-pdletgton-Cotes closed formula
Press et al(1992. This method was selected based on time computing restrs;tdue to the
history force integral is mainly composed by two integrale anside the other, one depending
on R(s) which is inside the integral over. Both integration ranges,y 7, are the same and
correspond to the selected window size (indicatedvbyoints).

Figure (1) shows the scheme of calculation of the system of equatiwes ¢y Eqgs.{).

3 VERIFICATION AND VALIDATION OF THE NUMERICAL CODE

3.1 PATH INSTABILITY DUE TO THE ACTION OF THE HISTORY FORCE ON
THE BUBBLE

Toegel et al(2006 shows that the history force is the reason of the existehtteegath insta-
bility of bubbles immersed in highly viscous fluids. In ordermake a check of consistency,
we simulate the same case with and without the history faa tn the model. We have con-
sidered an argon bubble in SA85 solution with an ambientusadf R, = 9.0um, which is
driving by an acoustic pressure field which amplitude at és®nator center is) ~ p? = 1.65

bar and oscillates af, = 30.0 kHz. Based on the experiments, this case is associated with a

3Here the subindex™ indicates “liquid”, while “b” indicates “bubble”.
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Figure 1:Calculation scheme of the system of equations given byEgs.(

bubble which is path unstable. The initial conditions fottbstates areR?; = Ry, R; = 0.0,

Ty = 293.15 K, z; = 0.1 mm, &; = 0.0, y; = —0.15 mm, g; = 0.0, z; = 0.0 mm,

z; = 0.0, In the case displayed in Figur2X) in which we have not included the history force
in the model, it can be seen that the bubble moves to a levitidtation above the origin of co-
ordinates but without describing pseudo-orbits. On theotiand, in FigureZB) we show that
the inclusion of the history force term to the model causeapiigearance of the path instability.
In all the simulated cases the trajectories are containadidimensional subspace.

3.2 VALIDATION OF THE NUMERICAL CODE WITH EXPERIMENTAL DATA

We have shown that the hydrodynamic force responsible @opéth instability of bubbles driv-
ing by a pressure field imposed by ultrasound oscillatindhanton-linear regime immersed
in a highly viscous liquid, is the history forceJdegel et al (2006, Rechiman et al(2013,
Rechiman(2013). Typically, the experimental characterization of thdighdynamic of a bu-
bble requires that the bubble will be fixed in a spatial positilf this condition is accomplished,
the temporal evolution of the bubble radius can be measaretby fittings with a suitable nu-
merical model, it can be determined the amplitude of thesunesapplied on bubble wall, the
amount of non-condensible gas inside it and the temperegamhed by the bubble contents.
Three different method have been applied in order to getajyagtationary bubbles: 1) keeping
the amplitude of the pressure field below a certain threshigldsing strongly degassed liquid
and Ill) using multi-frequency excitation, harmonic in no$ the cases. In particular, in the
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Figure 2: Influence of the history force acting on an argon bubble inS#WBich ambient radius iy = 9.0um.
The bubble is driving by an acoustic pressure field which #oge at the resonator center js ~ p? = 1.65
bar and oscillates at a frequency equal fp = 30.0 kHz. (A) Without including the history force term in the
translational equation. (B) Including the history forcethre model.

present work the suppression of the pseudo-orbits will beenty bi-frequency excitation, and
by strongly degassed liquid in combination with the bi-fregcy excitation.

In Figure BA) we show an experiment made Bellavale(2012, in which an argon bubble
immersed in a SA85 solution driving by a pressure field whstiltates at 30 kHz in a spherical
resonator, is in the m-SBSL state (moving Single Bubble &anunescence). Figure3B)
shows that the addition af” harmonic to the driving pressure field cause the suppresgion
the pseudo-orbits

Figure 3: (A) Argon bubble moving in SA85 driving with the frequencoagted with the first normal mode of a
spherical resonator f, = 29.2) kHz. (B) Spatially fixed bubble due to the addition of a séamymponent to the
pressure field with a harmonic frequencyf¢y. Both pictures were taken with a Nikon D50 camera, with altpt
open diaphragm and with an integration time of 1 secbadilavale(2012. The concentration of dissolved gas in
the liquid was equivalent to 16 mbar.

With the conditions of Figure3B), the Figure 4) shows the measurements of the temporal
evolution of the radius. The measurements were made by tisg{iMie scattering” technique
Urteaga(2008, Dellavale(2012), which allows to obtain selativemeasuremerttof the radius

of the bubble as function of time. To illuminate the bubblétmNe Melles Griot laser (hominal

“We refer to “path suppression of the bubble” in the senseglitite movement of the bubble can exist, but the
spatial scale is negligible or imperceptible for the measwents of the temporal evolution of the bubble radius.

5The intensity of light () scattered by the bubble and collected by the photomudtiplibe follows this law:
I(t) o< Rpupbie (t)?
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power 30 mW) was used, and the scattered light was colleatedspecial angle by using
a photomultiplier tube Oriel 77340, which has a charadierigesponse time of WHM =

2.1 ns. The fundamental driving frequency was similar to the onseisited with the first
normal mode of the resonatofy(= 29081 Hz), while the second frequency, was a harmonic
frequency from the fundamentgl(= 7f, = 203567 Hz). Is important to point out that in this
case the dissolved gas in the liquid was about 16 mbar. A cdrateon is considered “high” in
SAS85 solution if it is larger than 10 mbabéllavale(2012), in which a bubble driving by only
the fundamental frequency describes pseudo-orbits, ardebgiddition of a certain harmonic
to the pressure field, the spatial fixing is possible (SeerEi@)B).

The selected parameters to characterize the bubble ofd~g)uand make the non-linear fitting
are: Ry, p?tt, p?HE and¢. We implement a code that allows to make multiple sweepsef th

fitting parameters to minimize the? function. The figure of merit §2-function” is defined
R‘?IpiR;nodel

as: y* = Zj.vzl(fT)Q, where NV is the amount of experimental point8;”” indicates
each experimental point of the measurement of the radiusnasion of time g, is the standard
deviation associated to each experimental pointlaj‘ltf‘el is the radius of the bubble calculated
by numerical integration.

Due to the fact that the translational dynamics does notecengg/or changes on the radial dy-
namics respect to the maximum radius, minimum radius armlraibstructure, the fittings were
made by suppressing the translational dynamics and theslsp@pendence from the numerical
model. This was made in order to reduce the computing tfmes

Figure @) shows that the fitting of the experimental data is quite goechuse it is able to re-
produce the complex structure of the rebounds. This pourttghat the thermodynamical model
used in this work for the evolution of the gas inside the bahbla suitable model. Moreover,
from the fitting it can be seen that the region in which theeldéhce between the numerical
and experimental results are larger is during main collajpsparticular, it can be seen that the
experimental measurements obtained by using the “Mieesaagt’ technique does not reach
the minimum radius predicted by the adjustment of the RghiEtlesset-Keller equation. The
same effect can be seen in experimental results obtainbédirdtsame technique reported by
Lofstedt et al.(1995, Barber and Puttermaf1992, Gompf and Pech&000. According to
Brenner et al(2002), the relation of proportionality between the intensitycoflected light dis-
persed by the bubble and the square of the radius of the bigobhdte longer valid during main
collapse due to the refraction index of the inside bubblgems when is compressed, is un-
known. Furthermore, the size of the bubble on those instamtsthe same order of magnitude
than the light’s wavelength. In spite of thidrteaga and Bonett2008 made experiments in
which they used another technique knowrifasge method” in order to measure the temporal
evolution of the bubble radius. By using this method theuadif the bubble is measured in an
absolute way and with higher accuracy, specially duringyoallapse. The results obtained by
this procedure validate the hydrodynamic theory (RPKE)escdbe the radius of the bubble.
On the other hand, we also made fittings of an argon bubble iA8b Solution but at a low
gas concentration of dissolved gas in the liquid. At a pressifi6 mbar of dissolved gas

The grid used to make the fitting calculations to adjust 4patars o, p2L ¥, pbH ¥ ¢), are10 x 10x 10 x 10,
which represent 10000 simulations. In the case in which wasider the translational dynamics in the calculations,
the steady state is reached after 5000 radial cycles, whechalculated in 10 hours. The last represent 100000
hours to make the calculations. By suppressing the traoskdtdynamics to make the fittings, like it was made
in previous works reported in the literatuReiente(2005,Urteaga(2008, Dellavale(2012, the calculations to
compute the fitting takes 5 hours approximately in a laptojhan INTEL core i5 processor. By applying this
assumption, the model is reduced to consider a bubble inedé@nsan infinite liquid.
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Figure 4: Temporal evolution of the radius of an argon SL bubble imertrismi SA85. The concentration
of dissolved gas in the liquid is approximately 30 mbécf( = 0.030). The bubble is spatially stabilized

by the bi-frequency excitation composed by the fundamembale and ther*” harmonic: f, = 29081 Hz ,

fr = 7fo = 203567 Hz. (Blue dots) Experimental measurements made by usirfd/tieescattering” technique.
The measurements were obtained with a photomultiplier @itel 77340 with a response time FWHM = 2.1ns.
The dotted points are the result of the averaging of 10 measents. (Red solid line) Non-linear fitting. The best
parameters obtained by the¢Z minimization procedure areR, = (10.7 £ 0.1)um, p2FF = (1.34 £ 0.02) bar,
ptHF = (1.19 £ 0.02) bar, ¢ = (1.80 + 0.01) rad. (Green dots) Indicates the difference between theusadi
predicted by the model and the corresponding experimesatial. d

in the liquid, which is a highly degassed case, the bubblencdrbe spatially trapped in the
experiments Pellavale (2012). Because of this, an addition of a second component to the
pressure field is needed in order to confine and stabilizeuhblb under study.

Figure 6A) shows the experimental data associated with the tempwodlition of the radius of
a bubble driving by bi-harmonic excitation composed by thedamental mode at a frequency
fo = 29075 Hz and the4*” harmonic. It can be seen that the present model fits quite theod
experimental data and capture the rebound phase in an szcuaaner.

We have also made fittings of experimental data of an argohleub SA85 but driving by bi-
frequency excitation (not harmonic). In this case the disgsbgas in the liquid was equivalent
to 10 mbar, while the fundamental driving frequencyfis= 29116 Hz and the not harmonic
frequency isfnonarm. = 15 KHz. In Figure BB) it is shown the result of the fitting. It can be
seen that the model is able to reproducepgéeod-doublinghat is evident from the observation
of experimental data for the mention kind of excitation.

4 NUMERICAL RESULTS FOR BI-FREQUENCY DRIVING BUBBLES
4.1 HARMONIC MODE EFFECT

In this section we show simulations made with the completdehtor the experimental case
displayed in Figure4), and we analyze the effect of using different modes in otdeget
spatially stationary bubbles.
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Figure 5: Temporal evolution of an argon bubble in SA85. (A) SL bubbtieudriving by a bi-harmonic excitation
fo = 29075 Hz and4f,. The fitted parameters areRy = (4.9 & 0.1)um, p?L¥ = (1.50 & 0.02) bar, ptH ¥ =
(0.92 £+ 0.02) bargp = (—4.66 &+ 0.01) rad. The concentration of gas dissolved in the liquid was\eant to 6
mbar (% = 0.006).(B) Bubble driving by bi-frequency excitatigh = 29116 Hz Y fxoarm. = 15 kHz. The fitted

parameters areRy = (6.3 & 0.1)um, ptL¥ = (1.48 £ 0.02) bar, p# ¥ = (0.19 + 0.02) barg = (1.57 £ 0.01)

rad. The concentration of gas dissolved in the liquid was\ejant to 10 mbar%o = 0.010). The reference time

t = 0, corresponds to the zero crossing with positive slope ohtueistic pressure in the fundamental mode. (Blue
dots) Experimental data measured with the “Mie scatteritggthnique. (Red line) Non-linear fitting. (Green dots)
Difference between the model and the experimental data.

In the sequence shown by Figu@A¢l) is displayed the path of an argon bubble in the ex-
perimental case of Figurel). For the simulations we used the following input paranster
which are the results of the numerical fitting of experimedta: R, = (10.7 £ 0.1)um,
P = (1.34 £ 0.02) bar,¢ = (1.80 4 0.01) rad. At the beginning of the sequence, the bu-
bble was only driving by the fundamental frequency, and gadlg the amplitude of the high
frequency component rises up to a vapi€? = (1.19 + 0.02) bar. Is relevant to point out
from the observations of the simulations that the meand&wit position is quite near the ori-
gin of coordinates, and in consequengg & p?Lf andp! ~ pbF). It can also be seen that
the pseudo-orbits are suppressed whierises, as well as the mean levitation approaches to the
center Rechiman et al(2013). This last effect could be explained based on the factttieat
addition of a second component to the pressure field caugerlgradients. Larger spatial gra-
dients of the pressure field implies that the averaged BgsrKarce in a radial period is more
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intense in the case of a bi-harmonic driving bubble (sgstgtable) respect to the case of a
bubble driving by only the fundamental mode (moving bubbt@) the other hand, the suppres-
sion of the pseudo-orbit is caused due to the maximum valtleechdded mass, which occurs
at main collapse, diminishes. An important parameter toutate in this kind of problem is the
compression ratio, which for a bubble driving by only thedamental mode |§m— = 20.6,

min

while for the bubble driving by the fundamental mode antieharmonic isf=== = 25.5.

z [mm]

z [mm]

0.1
0.0

0
-0.2 -0.1 X [mm]

0.
y [mm]

Figure 6: Simulated path of an argon bubble in SA85 solution with theesaonditions of the experimental case
shown in Figure 4). The characteristic parameters arefy, = 29081 Hz, fr = 203567 Hz, Ry = 10.7um,
pbEF = 1.34 bar. The sequence starts with a bubble driving by only theldnmental mode, and gradually the
amplitude of the high frequency component of the pressuceriges. The initial conditions for the complete
model are:R; = Ry, R; = 0.07%, T} = Tiig, i = 0.10 mm,i; = 0.0, y; = —0.15 mm,y; = 0.0%,2; = 0.0
mm, z; = 0.0*. (A) Bubble driving by only the fundamental mqqie: 0.00 bar. (B)p? = 0.15 bar. (C)

p’ = 0.30 bar. (D) p! = 0.45 bar. (E)p! = 0.50 bar. (F) p] = 0.55 bar. (G)p? = 0.60 bar. (H) p” = 1.05 bar.

() p? = 1.19 bar.

In Figure (7) is displayed the sequence in which the amplitude of thersecomponent of the
pressure field given by thé" mode rises. It can be seen that the model predicts that aynearl
stationary bubble could be obtained but in a mean levitgimsition shifted from the pressure
antinode 7). In Figure @) is shown the same sequence but usingsthenode, which also al-
lows to obtain spatially fixed bubbles but in a nearest pasifiom the resonator centei). In
Figure Q) is shown the sequence using t& mode, in which a similar behavior than in Figure
(71) is obtained. From this series of simulations it can be gherhigh sensibility of the trajec-
tories with the chosen mode for the high frequency compouoighe pressure field. The builded
numerical tool allows to complement the kind of experimatdae byDellavale et al(2012),
Dellavale(2012, in which a sophisticated control system of the multi-treqcy pressure field
acting inside the resonator was developed.

Itis worth to mention that in all presented cases, we havepted the shape instabilities along

Copyright © 2013 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



1474 L.M. RECHIMAN, F.J. BONETTO

the whole path to verify if the breakage of the bubble occW& have followed the scheme
implemented byrRechiman et ali20123, but for periodically driving bubbles. The simulations
presented in this work were found to be parametrically angldigh-Taylor stable.

z [mm]
z [mm]
z [mm]

z [mm]
z [mm]

0
y [m(r)n] -0.5 -0.5 X [mm]

z [mm]

_1 ‘V
1 0 0.5

yimm -1 05 xmm]

Figure 7: Simulated path of an argon bubble in SA85 solution with theesaonditions of the experimental case
shown in Figure 4), but using thet'” mode as a second component of the pressure field. The chasticte
parameters are;f, = 29081 Hz, f, = 116324 Hz, Ry = 10.7um, p®“¥ = 1.34 bar. The sequence starts with

a

a bubble driving by only the fundamental mode, and graduakyamplitude of the high frequency component of
the pressure field rises. The initial conditions for the ctetgomodel are:R;, = Ry, R; = 0.07%, T} = Tiig,

r; = 0.10 mm,z; = 0.07, y; = —0.15mm,y; = 0.07*,z; = 0.0 mm, 2; = 0.07*. (A) Bubble driving by only the
fundamental modg? = 0.00 bar. (B)p? = 0.15 bar. (C)p? = 0.30 bar. (D) p; = 0.45 bar. (E)p? = 0.50 bar.

(F) p2 = 0.55 bar. (G)p? = 0.60 bar. (H) p? = 1.05 bar. (1) p? = 1.19 bar.

4.2 PHASE EFFECT

In the present section we show the sensibility of the satutvdh the phase between the signal
associated with the high frequency component and the sagsalciated with the fundamental
frequency component. We considered as a base case, theyzeiuation in which atk, =
(10.7+0.1)um argon bubble immersed in SA85 highly gassed solutioi( mbar%o = 0.030)

driving by fo = 29081 Hz, p®*" = (1.34 4 0.02) bar describe pseudo-orbits (Figu6a) and
by means of the addition of tH&" harmonic, the path is suppress (FigéteFigure 10). In

the last case the additional parameters dre= 7f, = 203567 Hz, p?#¥ = (1.19 4 0.02) bar,

¢ = (1.80 £ 0.01) rad.

In Figure (L1) we show the solutions of the simulations made with the sarpetiparameters
than in FigurelO but for different ¢) phases. It can be seen that the bubble no longer remains
in a spatially fixed location like in the particular casegof= 1.80 rad, and a widely variety

of trajectories are obtained which indicates that the smius highly sensible with the chosen
phase.
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Figure 8: Simulated path of an argon bubble in SA85 solution with theesaonditions of the experimental case
shown in Figure 4), but using the5** mode as a second component of the pressure field. The chasticte
parameters are;f, = 29081 Hz, f5 = 145405 Hz, Ry = 10.7um, p®“" = 1.34 bar. The sequence starts with

a

a bubble driving by only the fundamental mode, and graduhkyamplitude of the high frequency component of
the pressure field rises. The initial conditions for the ctetgpmodel are:R; = Ry, R, = 0.07%, Tg’ = Tiigq,

r; = 0.10 mm,z; = 0.0, y; = —0.15mm,y; = 0.0"*,2; = 0.0 mm, 2; = 0.0**. (A) Bubble driving by only the
fundamental modg? = 0.00 bar. (B)p2 = 0.15 bar. (C)p> = 0.30 bar. (D) p; = 0.45 bar. (E)p2 = 0.50 bar.

(F) p2 = 0.55 bar. (G)p> = 0.60 bar. (H) p2 = 1.05 bar. (1) p2 = 1.19 bar.

5 CONCLUSIONS

In the present work we have shown a validation of the numlecmde with experimental data
for spatially fixed bubbles. We have made non-linear fittingan argon SL bubble driving
by bi-harmonic and bi-frequency excitation. In particulae have fitted experimental data of a
stable argon bubble driving by the fundamental and’th@armonic. In this case, the liquid was
highly gassed, then the spatial confinement and fixing coalattainable due to the addition of
the second harmonic. It was shown that the numerical modedcity predicts the spatial fixing
of the bubble in agreement with experimental observatidis.have also made a fitting of a
stable argon bubble driving by the fundamental anddthénarmonic but in a highly degassed
sulfuric acid solution. In this case the trapping of the Habb not possible without a second
harmonic in the pressure field. In order to explore furtharidg pressure fields, we have also
fitted experimental data of an argon bubble driving by bgérency excitation (not-harmonic).
In all cases, a quite good agreement between the numeriailraad the experimental data
was shown during most of duration of the radial period of thblide except at main collapse
due to the intrinsic nature of the experimental method useddasure the temporal evolution
of the bubble radius.

We have shown the sensibility of the computed solutions Whighchosen mode and the phase.
The numerical simulations made allow us to determined thagtdition of the&s* harmonic
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Figure 9: Simulated path of an argon bubble in SA85 solution with theesaonditions of the experimental case
shown in Figure 4), but using the6!* mode as a second component of the pressure field. The chasticte
parameters are;f, = 29081 Hz, fs = 174486 Hz, Ry = 10.7um, p®“" = 1.34 bar. The sequence starts with

a

a bubble driving by only the fundamental mode, and graduhkyamplitude of the high frequency component of
the pressure field rises. The initial conditions for the ctetgpmodel are:R; = Ry, R, = 0.07%, Tg’ = Tligs

r; = 0.10 mm,z; = 0.0, y; = —0.15mm,y; = 0.0"*,2; = 0.0 mm, 2; = 0.0**. (A) Bubble driving by only the
fundamental modg® = 0.00 bar. (B)p¢ = 0.15 bar. (C)pS = 0.30 bar. (D) pS = 0.45 bar. (E)p¢ = 0.50 bar.

(F) pS = 0.55 bar. (G)pS = 0.60 bar. (H) p¢ = 1.05 bar. (1) p¢ = 1.19 bar.

to the pressure field is able to trap and stabilize the bulsbtbe center of the resonator in
agreement with previous experimental results reportedigaga and Bonett(2008.
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