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Abstract.  In the past years, the consumption of energy produced by wind turbines had an exponential
growth. This requirement gave momentum to the development of larger turbines with the goal  of
producing  more  energy at  the  same  site,  reducing  the  initial  investment,  and  the  operation  and
maintenance costs.  In order  to  achieve this  objective,  longer,  lighter,  maintenance-free  blades  are
required so that smaller loads are transferred to the other, more expensive, wind turbine components.
The  resulting  larger  flexibility,  imposes  new  challenges  to  the  blade  and  controller  designs;
henceforth, new concepts are being developed to add more intelligence into these systems. During the
last few years, the electronics industry had invested resources into the research and development of
practical  applications  for  piezoelectric  ceramic  materials.  The  result  of  this  effort  was  the
development  of  high  precision  piezoelectric  actuators  and  sensors,  which  achieve  forces  and
deformations that are compatible with the ones needed for the control of aerodynamic surfaces. 

In a former study made by the authors, the aeroservoelastic behavior of a lifting surface with a fixed
end and a flexible piezoelectric actuator was analyzed. In that work it was shown that the flexible
piezoelectric actuator is an effective tool for vibration control. In the present paper, the analysis of the
aeroservoelastic behavior of a lifting surface with a flexible piezoelectric actuator is extended to a
non-inertial  coordinate  system that  spins  around  an  inertial  one.  The  actuator  is  composed  of  a
flexible trailing edge with embedded piezoelectric layers that enables the active control of the local
aerodynamic forces. Structurally, both the flexible surface and flap are modeled as continuous beams
with fixed-free end conditions. The displacements are described by a series expansion of assumed
modes. The system aerodynamics are modeled with an unsteady version of the vortex lattice method
(UVLM).  High Reynolds  number  flow is  assumed,  therefore  viscous  effects  are  confined  at  the
boundary layers and the wake shed by the surface. Both surface and wake are idealized as vortex
sheets which in turn are discretized with vortex rings. In order to capture the physical aspects from the
fluid-structure-control interaction, the aerodynamic and structural numerical models are combined by
means of a strong coupling technique. The system equations of motion are integrated iteratively in the
time domain.  Numerical  experiments  are  performed on  a  100m test  blade.  The  results  show the
feasibility of utilizing this type of actuators in the control of large horizontal axis wind turbines.
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1 INTRODUCTION

The  consumption  of  renewable  energy produced  by wind  turbines  had  an  exponential
growth during last years. The development of large wind turbines producing more energy at
the  same site  reducing the  initial  investment,  the  operation  and maintenance  costs,  is  an
engineering challenge.  In order to  achieve this  objective,  longer,  lighter,  maintenance-free
blades are required so that smaller loads are transferred to the other wind turbine components.
The resulting larger flexibility imposes new challenges to the blade and controller  design.
Therefore  new concepts  are  being  developed  to  obtain  better  systems.  There  are  several
studies regarding this subject, mostly of them applied to aircraft and wind turbines. A good
review can be seen in  Barlas and Kuik (2010). In their work they state that “...trailing edge
flap  control  seems  to  be  one  of  the  most  efficient  of  the  proposed  aerodynamic  control
surfaces..”. 

The  modeling of a lifting surface with an active smart flexible flap is not a simple task.
Nonlinearities  arise  due  to  unsteady aerodynamics,  complex  structural  properties  such  as
shear, tension and mass center offset; but also due to the Fluid Structure Interaction (FSI), as
discussed by Felippa et al (2001), i.e. the aerodynamic pressure responds to the shape of the
flexible surface which is in turn a function of the aerodynamic pressure.  Finally, adding a
flexible trailing edge, capable of modifying its  own geometry by means of a piezoelectric
effect, in a predictable and useful manner, reveals the full complexity of the problem. 

An efficient way for considering the aerodynamic effects over deformable bodies is the
unsteady vortex lattice  method (UVLM) used by  Preidikman (1999) and  Gebhardt  (2008)
among others. The former used UVLM to study the fluid structure interaction in smart wings;
the latter applied the method to large horizontal axis wind turbines (LHAWT). 

Regarding piezoelectric actuators, there is much ongoing research focused on improving
the  performance of  wings,  helicopter  blades  and wind turbines.  For  a  general  review see
Giurgiutiu  (2000) and  Niezrecki  et  al  (2001).  One  of  the  most  common  actuator
configurations is known as unimorph, where two  active layers of piezoelectric material are
bonded  to  the  exterior  faces  of  a  passive  material  layer.  This  structure  allows  a  smooth
bending control surface that prevents flow detachment.  Pinkerton et al (1997) experimented
on a thin layer composite-unimorph ferroelectric driver and sensor (THUNDER) piezoelectric
actuator designed by NASA. Buhl et al (2007) studied the use of a THUNDER actuator as a
trailing  edge  flap  control  for  a  wind  turbine  blade.  A  study  on  the  two  dimensional
aeroservoelastic behavior of a wind turbine blade typical section, equipped with a smart flap,
driven by a THUNDER actuator, has been presented by the authors (Tripp et al. (2011)). The
results show that adding a simple plunge velocity feedback control law in the piezoelectric
layers can increase bending damping up to 73% for the two dimensional case.

In this work, the aeroservoelastic behavior of a three dimensional lifting surface equipped
with  an  active  smart  flap  is  numerically  simulated  in  the  time  domain.  The  nonlinear
aerodynamic effects are modeled with the UVLM, and the structural behavior is analyzed by
means of Lagrange equations. The structural degrees of freedom are reduced with the assumed
modes method.  The latter is widely used in the helicopter industry and in some of the most
popular aeroelastic codes for wind turbines, such as  FAST (2005). To capture the physical
aspects from the control-fluid-structure interaction, the models are combined using a strong
coupling technique.  The equations  of motion of the aeroservoelastic  system are integrated
numerically and interactively in the time domain.

The  present  work  is  organized  as  follows.  Firstly  the  main  theoretical  concepts  are
introduced.  Secondly the  actuator  and controller  design procedures  are  exposed.  Next  the
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analysis is focused on the response of a 100m wind turbine blade-flap system embedded in a
rotating environment at different speeds and undergoing plunging motion. Finally, the results
are presented and discussed.

2 AEROSERVOELASTIC MODEL

In this section the aeroservoelastic model is described. Since the purpose of the present model
is to simulate the response of wind turbine blades, the simulated surface will be referred as
surface or blade. First the coordinate systems are introduced, then the structural model for the
surface and the flap are presented. Next the UVLM model is introduced along with the force
translation into modal coordinates. Then the resulting coupled system of equations is shown.
Finally the numerical FSI coupling technique is presented.

2.1 Reference systems and nomenclature:

To describe the surface motion, three reference systems are defined as shown in figure 1.

Figure 1: Reference systems.
The following definitions and conventions are used throughout this work:
n̂1, n̂2, n̂3 : (N-system) Inertial system fixed in space.
b̂1, b̂2, b̂3 : (B-system) Body system fixed to the body that rotates around the n̂3 axis.
ê1, ê2, ê3 : (E-system) Elastic system fixed to the local chord.
Small displacements and small deformations are assumed hence the E-system is rotated with
the local elastic twist only.
φ(t) : azimuthal angle defined around n̂3 axis.
β : pitch angle defined around b̂2 axis.
θ( y ,t ) : elastic twist angle defined around b̂2 axis.
x , y , z : coordinates along the B-system.
xe , ye , ze : coordinates along the E-system.
h( y , t) : is the out of plane displacement relative to the B-system.
v (x ,t ) : is the flap deflection relative to the B-system.
d 1( y ) : is the distance offset of the section center of mass from the section shear center.
ρ( y) : is the section mass per unit length or blade mass density.
Bmass: is the blade total mass.
Lblade: is the blade total span.
TSR( φ(t) ): is the tip speed ratio, which represents the ratio of the tangential speed of the tip
of the blade over the free-stream speed.
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The structural  model  comprises  four  degrees  of  freedom,  namely the elastic  out  of  plane
displacement, the elastic twist angle, the azimuthal angle and the elastic flap deflection. Since
the azimuthal angle represents a rigid body rotation, no stiffness is associated to this DOF.
The section mass is lumped at the mass center and the section stiffness are lumped at the shear
center. The line defined by all the mass centers is referred as mass axis, while the one defined
by  all  the  shear  centers  is  the  elastic  axis.  The  time  derivatives  are  noted  with  a  dot
superscript, while unit vectors are noted with a hat superscript. A bar superscript denotes a
pseudo-property, i.e. Ī plays the role of a second moment of inertia though it is not strictly
calculated as such.

2.2 Position and velocity vectors:

The position vector of point along the mass axis is shown as a red filled circle in figure 2. The
undeformed blade is drawn in green dashed lines and the deformed blade in solid green lines.
The dashed red line represents the mass axis, while the blue dashed line is the elastic axis. 

b̂3

b̂2

b̂1n̂3

n̂2

n̂1

d
1
(y)

h(y,t)

y

ê3

ê2

ê1

Figure 2: Position vector
Position of a point along the mass axis in the R-system: 
r⃗= y b̂2+h ( y , t) b̂3+x ê1= xcosθ( y , t) b̂1+ y b̂2+[h ( y , t)− x sinθ( y ,t )]b̂3     (1)

Only the fixed pitch case is considered. 
Taking the time derivative of equation 1, and considering that the B-system is non inertial, i.e.
taking the time derivative of the unit vectors thus exposing the azimuthal degree of freedom
(see Meirovitch 1970), the velocity of the point in the R-system is found:
V⃗⋅b̂1=[−θ̇( y , t ) x sinθ( y ,t )−φ̇(t ) y cosβ ]
V⃗⋅b̂2=φ(t ) [ x cos(θ( y , t)+β)+h( y , t )sinβ ]
V⃗⋅b̂3=[ ḣ( y , t )−θ̇( y , t ) x cosθ( y ,t )−φ̇( y , t) y sinβ ]

     (2)

2.3 Surface model:

To reduce the  problem of  continuous  media  with infinite  degrees  of  freedom (DOF),  the
assumed modes method is used. The DOF are reduced to a finite number by means of two
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series expansions, one for the out of plane displacement and the other for the torsion angle. In
this work only the first term of the series is used:
h=qh(t)ϕh( y )
θ=qθ(t)ϕθ( y)

    (3)

where qh(t) and qθ(t) are time dependent generalized coordinates and ϕh( y ) ,ϕθ( y ) are space-
dependent admissible functions (Meirovitch 1980), compatible with the boundary conditions.
The system equations  of motion for a discrete system can be obtained with the Lagrange
equations: 
d
dt (∂∂ q̇h

T )−∂
∂qh

T +∂
∂ qh

U=Qqh

d
dt (

∂
∂ q̇θ

T )−∂
∂ qθ

T +∂
∂ qθ

U=Qqθ

d
dt (

∂
∂ φ̇

T )−∂
∂φ

T +∂
∂φ

U=Qφ

    (4)

where T is the kinetic energy, is the potential energy, and Qh ,Q θ ,Qφ are the non-conservative 
generalized forces for the three DOF.

2.3.1 Kinetic energy:

The kinetic energy is defined as:

T (t)=
1
2 ∫0

BMass
V⃗ (t )⋅V⃗ (t )dm   (5)

Hence replacing (2) into (5):
T (t)=T hh(t)+T θθ(t)+T φφ(t)+T hθ( t)+T hφ(t )+T θφ(t)
where

T hh(t)=
1
2

q̇h
2∫0

Lblade
ϕh

2
( y)ρ( y )dy

T θθ(t)=
1
2

q̇θ
2∫0

Lblade
ϕθ

2 d 1
2
( y)ρ( y)dy

T φφ (t)=
1
2
φ̇

2
(∫0

Lblade
y2
ρ( y)dy+∫0

Lblade
(d 1( y )cos (θ( y , t)+β)+h( y ,t )sinβ)2

ρ( y )dy)

T hθ(t)=−q̇h q̇θ∫0

Lblade
ϕh( y )ϕθ( y )d 1( y)cos(qθϕθ)ρ( y)dy

T hφ( t)=−q̇hφ̇ sinβ∫0

Lblade
ϕh( y) yρ( y)dy

T θφ(t )=q̇θφ̇∫0

Lblade
ϕθ( y)d 1( y) y sin (β+θ( y , t))ρ( y)dy

  (6)

2.3.2 Potential energy

The potential energy due to elastic bending and torsion is:

U (t)=
1
2
∫0

blade vol
σ yy( y , z , t)εyy( y , z , t)dvol+

1
2
∫0

blade vol
τxz (x , y , z , t)γxz (x , y , z , t)dvol   (7)

where:
σ yy( y , z ,t ) and εyy( y , z , t) are the axial stress and strain of the beam.
τxz (x , y , z , t ) and γxz( x , y , z ,t ) are the torsional stress and angular distortion of the beam.
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The  stress  and  strain  components  are  found  considering  Euler-Bernoulli  beam  theory
hypotheses, uniform torsion and linear elastic material:

εyy( y , z , t )=−(z−zn)
∂

2

∂ y2
h( y ,t )

σ yy( y , z ,t )=E ε yy( y , z ,t )

γxz (x , y , z , t )=r (x , z )∂
∂ y

θ( y , t)

τxz (x , y , z , t)=G γxz (x , y , z , t)

  (8)

where:
zn is the neutral axis location, is the radial distance from the shear center,  E and  G are the

elastic isotropic young modulus and shear modulus.

Replacing the approximations for the elastic displacement and twist, i.e. replacing (3) into (8):

εyy( y , z , t)=−(z−zn)qh(t )
∂

2

∂ y2
ϕh( y)

γxz (x , y , z , t)=r (x , z )qθ(t)
∂
∂ y

ϕθ( y )
  (9)

Finally inserting (8) and (9) into (7) the potential energy equation is found:

U (t)=
1
2

qh
2( t)∫0

Lblade
(
∂

2
ϕh

∂ y2 )
2

EJ xx( y )dy+
1
2

qθ
2( t )∫0

Lblade
(
∂ϕθ

∂ y
)

2

GJ p( y)dy (10)

where EJ xx( y ) and GJ p( y ) are the beam section bending stiffness and torsion stiffness.

Replacing (6) and (10) in (4)  and grouping all the terms results in the following matrix form:

[M (t )](
q̈h(t)
q̈θ(t)
φ̈ (t) )+[K ](

qh( t)
qθ(t )
φ(t) )+[B(t)](

q̇h(t)
q̇θ(t)
φ̇ (t ))=(

Qh( t)
Qθ(t )
Qφ( t)

) (11)

where:
M is the mass matrix:

M (t)=[
mhh mhθ mhφ

mθh mθθ mθφ

mφh mφθ mφφ
]

mhh=∫0

Lblade
ϕh

2
( y )ρ( y)dy=m̄

mhθ(t )=mθh(t)=−∫0

Lblade
ϕh( y )ϕθ( y )d 1( y)cosθ( y , t)ρ( y)dy=S̄ y( t)

mhφ=mφh=−sinβ∫0

Lblade
ϕh( y ) yρ( y )dy=S̄ z

mθθ=∫0

Lblade
ϕθ

2
( y )d 1

2
ρ( y)dy= Ī yy

mθφ(t )=mφθ(t )=∫0

Lblade
ϕθ( y)d 1 ysin(β+θ( y ,t ))ρ( y )dy= Ī θφ( t)

mφφ (t )=∫0

Lblade
( y2

( y)+(d 1cos (θ( y ,t )+β)+h( y , t)sinβ)2
)ρ( y)dy=I zz(t )
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K is the stiffness matrix:

K=[
khh 0 0
0 k θθ 0
0 0 k φφ

]
k hh=∫0

Lblade
(∂

2

∂ y2 ϕh( y))
2

EJ xx( y)dy

k θθ=∫0

Lblade
(∂
∂ y

ϕθ( y))
2

GJ p( y)dy

k φφ=0

And B is the gyroscopic matrix:

B(t )=[
0 q̇θ(t )bhθ(t) φ̇ (t)bhφ(t)

0 0 φ̇ (t)bθφ(t )
φ̇ (t)bφh(t) q̇θ(t )bφθ(t) q̇θ(t )bφφ(t )

]
bhθ( t)=∫0

Lblade
ϕh( y )ϕθ

2
( y )d 1( y)sinθ( y , t)ρ( y)dy

bhφ(t)=−sinβ∫0

Lblade
ϕh( y)(d 1( y)cos(θ( y , t)+β)+h ( y , t)sinβ)ρ( y)dy

bθφ( t)=∫0

Lblade
d 1( y )sin(θ( y , t )+β)ϕθ( y)(d 1cos (θ( y , t)+β)+h( y ,t )sinβ)ρ( y )dy

bφ h(t)=2sinβ∫0

Lblade
ϕh( y)(d 1( y )cos(θ( y , t)+β)+h( y , t)sinβ)ρ( y )dy

bφ θ( t)=∫0

Lblade
ϕθ

2
( y )d 1( y) y cos (β+θ( y , t))ρ( y)dy

bφ φ(t)=−2∫0

Lblade
d 1( y )sin(θ( y , t)+β)ϕθ( y)(d 1( y)cos(θ( y , t)+β)+h ( y , t)sinβ)ρ( y)dy

2.4 Flap model:

The flap mass is neglected against the blade total mass; it is modeled as an elastic surface,
with fixed-free boundary conditions. 

2.4.1 Piezoelectric material model:

For  modeling  the  actuator,  the  bender reference  architecture  was  used  (Jalili  2010).  The
actuator is modeled as a beam made of a composite material, where the outer layers are made
of piezoelectric PZT ceramic material  and the inner layer is made of steel. The beam has
fixed-free boundary conditions as shown in figure 3.

Figure 3: Flap Layout

PZT Layer

Steel Layer

PZT Layerzn

Lxflap
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The flap deflection, relative to the body of the blade, is described using the assumed modes
method. As before only the first term of the expansion is used: 

v (xe , t)=q flap (t)ϕ flap(xe )=q flap(t)(xe

Lxflap
)

2

(12)

where q flap(t) and ϕ flap( x) are the time-dependent generalized function and space-dependent 
admissible function respectively, xe is the coordinate along the ê1 axis and Lxflap is the flap 
length in the chord direction.
The flap strain energy is: 

U flap(t)=∫0

inner volume
σxx

inner
( xe , z e , t )εxx(x e , z e , t )dvol+∫0

outer volume
σxx

outer
(x e , ze , t )εxx( xe , z e , t )dvol (13)

where U flap(t) is the potential energy, andare the axial stress components for the inner and
outer layers respectively and εxx(xe , ze , t) is the axial strain component. 
The axial strain can be found considering Euler-Bernoulli beam theory hypotheses. 

εxx(xe , ze , t)=−( ze−zn)
∂

2

∂ x2
v (xe , t) (14)

where once again zn is the neutral axis location and v (x ,t ) is the flap displacement.
The axial stress for the inner layer is found in the same way as in the blade calculations, while 
the axial stresses for the outer layers are found considering the direct piezoelectric effect:
σ xx

inner
( xe , ze , t)=E εxx( xe , ze , t)

σ xx
outer

( xe , ze , t)=cxx
ϵ
[εxx( xe , ze , t)−d zx ϵzz ]=c xx

ϵ
[εxx(xe , z e , t)−d zx

V
t p

]
(15)

where:
 E: is the young modulus of the inner layer.
cxx
ϵ

: is the elastic young modulus of the outer layers under constant electric displacement.
εxx(xe , ze , t) : is the axial mechanical strain.
d zx : is the electromechanical coupling coefficient.
ϵzz : is the electric field normal to the piezoelectric surface.
V : is the applied voltage. 
t p : is the piezoelectric layer thickness.

Replacing (12) into (14), the axial strain is defined in terms of the flap DOF:

εxx(xe , ze , t)=−q flap(t)( z−z n)
2

Lxflap
2  (16)

The geometry of the flap is assumed uniform, hence replacing (15) and (16) into (13) and 
grouping terms results in:  

U flap(t)=
4 L yflap(EI inner+2 EI outer)

Lxflap
4

q flap
2

(t)+
2 L yflap d zx c xx

ϵ S outer

t p Lxflap
2

ΔV (t)q flap(t) (17)

where:
L yflap : is the flap length in the span direction.
EI inner : is the inner layer bending stiffness.
EI outer : is the outer layer bending stiffness.
S outer : is the outer layer first moment of inertia.
ΔV : is the difference between the voltage applied at the upper outer layer and the lower 
outer layer.
Since there is no flap kinetic energy, the Lagrange equation for the flap system reduces to a
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static equilibrium equation:
∂
∂ q flap

U flap(t )=Q flap(t ) (18)

where Q flap( t) is the non-conservative force due to the aerodynamic pressure over the flap.
Replacing (17) into (18) we obtain the flap stiffness kflap and the equivalent piezoelectric force
Fpzt:

k flap q flap(t)+F pzt V (t)=Q flap(t )
where:

k flap=
8 L yflap(EI inner+2 EI outer)

Lxflap
4

F pzt=
4 Lyflap d zx cxx

ϵ S outer

t p Lxflap
2

(19)

2.5 Unsteady Vortex Lattice model:

This model follows the work of Preidikman (1998). The fluid is assumed to be incompressible
and  homogeneous.  Forces  are  assumed  irrotational.  Since  high  Reynolds  number  flow is
assumed, viscous effects are confined at the boundary layers and are shed into the wake at the
trailing  edge.  No  viscous  diffusion  takes  place,  hence  the  circulation  around  any closed
material curve is invariant in time. Therefore the distribution of vorticity is idealized in terms
of two vortex sheets (surface and wake) embedded in an irrotational domain. Both surface and
wake vortex sheets are represented by a grid of discrete vortex rings as shown in figure 4. The
no penetration condition is enforced at control points. The wake is allowed to move with the
local velocity with a force-free condition. The vorticity of the rings in the wake sheet remains
constant in time.  

Figure 4: Vortex ring element

The velocity induced by a segment of the vortex ring at each control point is found from an
integral representation, which for the case of a discrete ring can be written in the following
vector form:

v⃗ i=G j∑
k=1

4 1
4π

L⃗k×r⃗1k

∥L⃗k×r⃗1k∥2

2 ( L⃗k⋅(ê1k− ̂e2k))=a⃗ ij G j (20)

where:
v⃗ i is the induced velocity at the control point i.
G j is the ring j strength.
̂d 1k , ̂d 2k are unit vectors pointing from the segment k endpoints to the control point.

G

d̂ 1
L⃗

d̂ 2

r⃗ 1
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r⃗ 1k is a vector defined by the first endpoint of the segment k and the control point i.
L⃗k  is a vector defining the segment k length.
a⃗ ij is the induced velocity of the vortex ring j with unit strength into the control point i. 

The no penetration condition is enforced at each control point:
( ⃗v surface+ ⃗v wake−v⃗∞− ⃗vbody)⋅n̂=0                           (21)
where:

⃗v surface : is the velocity induced by the vortex sheet attached to the surface.
⃗vwake : is the velocity induced by the wake vortex sheet shed from the surface.

v⃗∞ : is the free stream velocity.
⃗vbody : is the velocity induced by the surface motion.

n̂ : is the surface normal unit vector.

Hence the evaluation of (21) at all the surface control points produces the following linear 
system of equations:

[A]G⃗=−(V wake+V ∞+V body)⋅N (22)

where:
[A] : is a matrix whose components are the induced velocities of all the surface vortex rings,
with unit strength, at each control point.
G : is a vector containing the unknown surface vortex ring strengths.
V wake ,V ∞ ,V body :  are matrices  containing the velocities  induced by the wake vortex sheet
rings, the free stream and the surface motion, at each control point.
N : is a matrix containing the normal unit vector of every control point.

At each time step, the linear system of equations (22) is solved for the unknown vorticity G .
The induced velocities at the surface and wake are then evaluated with (20) and the pressure
jump at each element is determined using an unsteady version of the Bernoulli equation:

Δ P=PdynΔCp=Pdyn[2(V⃗ m−V⃗ CP)⋅ΔV⃗ +2
D
Dt

GCP ]
(23)

where:
Δ P is the pressure jump at a control point.
Pdyn is the free stream dynamic pressure.
ΔCp is the nondimensional pressure coefficient difference at each control point
V⃗ m is the fluid tangential velocity nondimensionalized by the reference velocity.
V⃗ CP is the surface velocity nondimensionalized by the reference velocity..
Δ V⃗ is the tangential velocity jump across the sheet nondimensionalized by the reference 
velocity. 

D
Dt

GCP is the total derivative of the vortex ring strength.

Finally, time is advanced, the wake shape is updated using the local velocity field and all the
previous calculation steps are repeated.

2.6 Generalized forces

The generalized non-conservative forces, which deform the elastic system, are retrieved from
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the virtual work done by the aerodynamic pressure over the surface-flap system.

2.6.1 Blade forces

The virtual work produced by the aerodynamic pressure is the same as the one produced by
the generalized non-conservative forces.

̄δW=Q qh(t )δqh+Q qθ(t)δqθ+Q φ(t)δφ=∫0

blade surface
d⃗f (x , y , t)⋅δ r⃗ (x , y , t) (24)

where:
f⃗ (x , y , t) : is the force produced by the aerodynamic pressure jump.
r⃗ (x , y , t) : is the position vector (1).

The aerodynamic pressure jump is defined normal to the local chord:
d⃗f (x , y , t)=Δ p (x , y , t) ê3 (25)
Taking the variation of (1)  and replacing it into (24), along with (25),  and equating vector
terms, the generalized non-conservative forces over the blade are found:

Qqh(t )=∫0

blade surface
ϕh( y)cosθ( y , t)Δ p (x , y , t)dA

Qqθ(t )=−∫0

blade surface
xϕθ( y )Δ p( x , y , t)dA

Qφ( t)=−∫0

blade surface
y sin(θ( y , t)+β)Δ p (x , y , t)dA

(26)

The pressure coefficient from (23) is defined as follows:

ΔCp=
Δ p

1
2
ρC V C

2 (27)

where ρC ,V C are the free-stream reference density and velocity respectively.

Hence replacing (27) into (26) the generalized forces can be rewritten:

Qqh(t )=
1
2
ρair V ∞

2∫0

blade surface
ϕh( y)cosθ( y ,t )Cp( x , y , t)dA

Qqθ(t )=−
1
2
ρair V ∞

2∫0

blade surface
x ϕθ( y)Cp(x , y , t)dA

Qφ( t)=−
1
2
ρair V ∞

2∫0

blade surface
y sin (θ( y ,t )+β)Cp(x , y , t)dA

(28)

2.6.2 Flap forces

The same procedure applied for the blade forces is used for the flap surface with the addition 
of the flap DOF.

̄δW=Qqhδ qh+Q qθδqθ+Qφδφ+Q flapδq flap=∫0

flap force
d⃗f (xe , ye , t)⋅δ r⃗ ( xe , ye ,t ) (29)

In this case the position vector is defined as:
r⃗= y r̂2+h( y , t) r̂ 3+(x+xe) ê1+v (xe , t) ê3 (30)

Therefore the generalized non-conservative forces over the flap are:
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Qqh=
1
2
ρair V ∞

2∫0

flapsurface
ϕh( y)cosθ( y , t )Cp( xe , ye ,t )dA

Qqθ=−
1
2
ρair V ∞

2∫0

flap surface
ϕθ( y )(x+ xe)Cp( xe , ye , t)dA

Qφ=−
1
2
ρair V ∞

2∫0

flapsurface
y sin(θ( y , t)+β)Cp( xe , ye ,t )dA

Q flap=
1
2
ρair V ∞

2∫0

flap surface
(
xe

Lxflap

)

2

Cp( xe , ye , t)dA

(31)

2.7 Time nondimensionalization

In order to achieve regular aerodynamic vortex rings, the variables are nondimensionalized in
time defining a nondimensional time variable t as follows:

t=
t D

TC
where:

TC=
LC
VC

(32)

VC is the reference free-stream velocity and LC is the chordwise length of a vortex ring in the
bound lattice.
Replacing (32) into the time derivatives of (11) results in: 

(
h( t)
θ( t)
φ(t))

D

=(
LC h( t)
θ( t)
φ(t) )→(

ḣ
θ̇
φ̇)

D

=
1
TC (LC ḣ

θ̇
φ̇ )→(ḧ

θ̈
φ̈)

D

=
1

TC2 (LC ḧ
θ̈
φ̈ ) (33)

where the D superscript defines dimensional.

2.8 Combining the models

Replacing (28), (31) and (33) into the blade equation of motion (11) and the flap static 
equilibrium equation (19), results in the complete equations of motion and flap equilibrium: 

[
m̄ S̄ y S̄ z

S̄ y Ī yy Ī θφ

S̄ z
̄I θ φ Ī zz

]
D

(
q̈h

q̈θ

φ̈ )+TC2[
k hh 0 0
0 k θθ 0
0 0 0]

D

(
qh

qθ

φ )+[
0 q̇θbhθ

D
φ̇ bhφ

D

0 0 φ̇bθφ

D

φ̇ bφ h
D q̇θ bφ θ

D q̇θbφ φ
D ](q̇h

q̇θ

φ̇ )= 1
2
ρC LC 2(

Q qh

Qq θ

Qφ
)

q flap=
(Q flap−F pzt)

k flap

(34)

2.9 Numerical integration

The numerical scheme follows the work of Preidikman et al (1999). The aeroelastic coupling
is  modeled  in  a  staggered  fashion  as  shown in  figure  5.  First  the  aerodynamic  model  is
evolved to the next time step while keeping the structural mode frozen. Next, a new structural
state is proposed with the updated aerodynamic loading. Then, the geometry is updated in the
aerodynamic model while keeping the wake frozen. A correction is applied to the structural
state and the error is evaluated. The scheme iterates until the error meets a tolerance criteria
and then time advances again.
The predictor-corrector numerical scheme is the Hamming multistep method. This method
requires the information of 4 previous states, so a starting procedure is required. The starting
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procedure  follows  the  same  strategy  exposed  for  the  treatment  of  the  fluid  structure
interaction. The difference is that the predictor-corrector scheme is changed as more states
become available, therefore, the first step is solved with the improved Euler method and the
rest are solved with Adams-Bashforth Adams-Moulton multistep methods.

Figure 5: Fluid Structure Interaction scheme

3  ACTUATOR AND CONTROLLER DESIGN

3.1 Actuator

In order to study the actuator force and stiffness requirements, a baseline trailing edge flap
was modeled with a bimorph piezoelectric architecture. The flap geometry was set as 1/6th of
the local chord and the outer half of the surface span. The actuator stiffness and available
force  were  scaled  up  from  a  reference  actuator  with  known  properties  (see  THUNDER
datasheet). Two parameter sweep studies were performed to obtain the scaling parameters.
The initial conditions for both tests were tip speed ratio (TSR) of 7 (maximum aerodynamic
damping,  Resor  et  al  2012)  and  no  deflection  and  torsion  angle.  The  objective  for  the
geometry scaling was to  achieve  a  maximum flap deflection  of  15º  at  nominal  operating
conditions  and  zero  input  voltage  (see  Figure  6).  A  mechanical  amplifying  device  was
assumed to be embedded in the kinematic chain so as to produce the required force. The
mechanical gain was defined so as to obtain a maximum flap deflection of 15º at nominal
operating conditions and maximum input voltage (see Figure 7).

Figure 6: Geometrical scaling study results.
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Figure 7: Force scaling study results.

3.2  Controller

The controller objective was to increase the torsional damping of the blade. For this purpose a
simple derivative law was implemented. Since the flap deflection at the nominal tip speed
ratio is not zero, a voltage offset is added to center the surface. The control law is:

u (t)=uoffset (TSR)+K d q̇θ( t) (35)
where u (t) is the control voltage, is the voltage required to center the flap (which is a function
of the TSR) and K d is the control gain. 
To define the offset voltage a parameter sweep for different TSR was performed. In figure 8,
the blue curve shows the voltage required for a null flap deflection for different TSR; while
the yellow curve shows the proposed function for the controller.

Figure 8: Offset voltage study results.

To define the control gain a final parameter sweep was performed. An initial estimate of the
gain was calculated from the open-loop response of the surface. The torsional angle response
results are shown in figure 9 for the initial estimate and a gain four times bigger.
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Figure 9: Control gain study results.

4 NUMERICAL EXPERIMENTS

4.1 Wind turbine blade

To demonstrate the effects of the rotating environment on the system behavior,  numerical
experiments  were preformed  on a wind turbine  reference blade proposed by the National
Renewable Energy Laboratory (NREL). The blade chord distribution and structural properties
were taken from Griffith and Ashwill (2011). The blade surface is modeled as a flat surface
with no twist and a variable chord. The blade elastic normal modes were extracted from the
available data using a finite element code written by Bir G. (2012) and distributed by NREL.
The modal shapes for an arbitrary set of points are shown in figures 10 and 11 along with the
chosen approximating functions. For the bending mode there is a good agreement with a cubic
function  of  the  position  y,  but  for  the  torsional  one, a  square  function  shows  a  closer
agreement.

Figure 10: Bending mode.
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Figure 11: Torsional mode.

4.2 Test conditions:

The blade was meshed with 30 spanwise and 6 chordwise elements. The chosen time step for
the integration of the coupled system was 0,02s. Four test cases were simulated at different
initial TSR, in passive (no flap surface) and active (active flap surface) modes. In all test cases
the air inflow was set at an angle of 90º relative to the blade surface and at a constant speed of
10m/s.  The reference  density was  1,225 kg/m3.  Since  the  blade  chord  distribution  is  not
uniform along the span, the reference length was calculated from the mean aerodynamic chord
(mac).  In  this  case  the  calculated  mac  was  6,0205m  ad  the  reference  length1,0034m.
Moreover, an initial, out of plane displacement of 1m was set in order to force a plunging
motion for all cases.

4.3 Results

The  results  from  the  numerical  experiments  are  presented  in  this  section.  Since  the
displacements  are  approximated  by  a  single  mode,  the  generalized  coordinates  vector
temporal evolution is presented to describe the system response.
In figure 12 the temporal response of the torsional DOF is presented for the analyzed TSR.
The red curves represent the cases were the flap has no deformation while the blue curves
show the response due to the controlled flap activity. In all cases an important reduction in the
vibration is achieved by means of the flap actuation. 
In figure 13, the temporal evolution of the other DOF is shown for the TSR 7 case. The rotor
movement seems undisturbed by the flap action, while the out-of-plane displacement shows a
reduction in the vibration induced by the coupling of the torsional DOF. 
Finally, in figure 14 a comparison of the critical damping ratio obtained for all test cases is
plotted. Damping was measured from the logarithmic decay in the torsional DOF responses.
There is  a minor  increase in  the damping ratio  due to  the rotational  motion  for both the
passive and active cases.
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Figure 12: Torsional vibration results.
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Figure 13: out of plane and rotational response for TSR 7.
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Figure 14: Critical damping results for different TSR and modes.

5 CONCLUSIONS

In the present paper, the analysis of the aeroservoelastic behavior of a lifting surface with a
flexible  piezoelectric  actuator  is  extended  to  a  non-inertial  coordinate  system  that  spins
around an inertial one. The actuator is composed of a flexible trailing edge with embedded
piezoelectric  layers  that  enables  the  active  control  of  the  local  aerodynamic  forces.
Structurally, both the flexible surface and flap are modeled as continuous beams with fixed-
free end conditions. The displacements are described by a series expansion of assumed modes.
The system aerodynamics are modeled with an unsteady version of the vortex lattice method.
High  Reynolds  number  flow  is  assumed,  therefore  viscous  effects  are  confined  at  the
boundary layers and the wake shed by the surface. Both surface and wake are idealized as
vortex sheets which in turn are discretized with vortex rings. In order to capture the physical
aspects from the fluid-structure-control interaction, the aerodynamic and structural numerical
models  are  combined by means  of  a  strong coupling technique.  The system equations  of
motion are integrated iteratively in the time domain. 

Numerical experiments were performed on a 100m blade proposed by the NREL fitted
with a smart flexible flap. A derivative control law was implemented to set the input voltage
for  the  piezoelectric  actuator.  The  control  parameters  were  tuned  using  parameter  sweep
studies on the blade-flap system. From the analysis of the actuator scaling parameters, it was
found that  the geometry needs  be 30 times larger than the reference,  which seems rather
unfeasible. Also the piezoelectric force needs to be amplified by a factor of 2000 in order to
best the aerodynamic loading and set the desired flap deformation.

Four test cases were simulated at different TSR, in passive (no flap surface) and active
(deformable  flap  surface)  modes.  In  all  cases  an  important  reduction  in  the  vibration  is
achieved by means of the flap actuation. The rotor movement seems undisturbed by the flap
action, while the out-of-plane displacement shows a reduction in the vibration induced by the
coupling of the torsional DOF. The results show a minor increase in the damping ratio due to
the rotational motion for both the passive and active cases.
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