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Abstract. Several generalizations of the traditional Tikhonov-Phillips regularization method for in-
verse ill-posed problems have been proposed during the last two decades. Many of these generalizations
are based upon inducing stability throughout the use of different penalizers which allow the captur-
ing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in
some problems in which it is known that the regularity of the exact solution is heterogeneous and/or
anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or
more penalizers of different nature. Such is the case, for instance, in some image restoration problems in
which preservation of edges, borders or discontinuities is an important matter. In this work we present
some new results on the simultaneous use of penalizers ofL2 and of bounded-variation (BV) type. For
particular cases, existence and uniqueness results are shown. Open problems are discussed and some
results in applications to signal and image restoration problems are presented.
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1 INTRODUCTION

We consider the general problem of findingu in an equation of the form

Tu = v, (1)

whereT : X → Y is a bounded linear operator between two infinite dimensional Hilbert spaces
X andY, the range ofT is non-closed andv is the data, which is supposed to be known,
perhaps with a certain degree of error. It is well known that under these hypotheses problem (1)
is ill-posed and it must be regularized before any attempt is made to approximate its solutions
(Engl et al.(1996)). The most usual way of regularizing a problem is by means of the use of
theTikhonov-Phillips regularization methodwhose general formulation can be given within the
context of an unconstrained optimization problem. In fact, given an appropriate penalizerW (u)
with domainD ⊂ X , the regularized solution obtained by the Tikhonov-Phillips method and
such a penalizer, is the minimizeruα (provided it exits), overD, of the functional

Jα,W (u) = ‖Tu− v‖2 + αW (u), (2)

whereα is a positive constant called regularization parameter. For general penalizersW , suffi-
cient conditions guaranteeing existence, uniqueness and weak and strong stability of the mini-
mizers under different types of perturbations, where found inMazzieri et al.(2012).

Each choice of an admissible penalizerW originates a different regularization method pro-
ducing a particular regularized solution possessing particular properties. Thus, for instance, the
choice ofW (u) = ‖u‖2 gives raise to the classical Tikhonov-Phillips method of order zero
producing always smooth regularized approximations which approximate, asα → 0+, the best
approximate solution (i.e. the least squares solution of minimum norm) of problem (1) (see
Engl et al.(1996)). Similarly, the choice ofW (u) = ‖u‖

BV
(where‖·‖

BV
denotes the total vari-

ation norm) results in the so called “bounded variation regularization method” (Acar and Vogel
(1994), Rudin et al.(1992)). The use of this penalizer is very appropriate when preserving dis-
continuities, borders or edges is an important matter. The method, however, has as a drawback
that it tends to produce piecewise constant approximations and therefore, it will likely be highly
inappropriate near regions where the exact solution is smooth (Chambolle and Lions(1997))
producing the so called “staircase effect".

In certain types of problems, particularly in those in which it is known that the regularity
of the exact solution is heterogeneous or anisotropic, it is reasonable to think that using and
spatially adapting two or more penalizers of different nature could be more convenient. During
the last 15 years several regularization methods have been developed in light of this simple
reasoning. Thus, for instance, in 1997 Blomgrenet al. (Blomgren et al.(1997)) proposed the
use of the following penalizer, by using the variableLp spaces:

W (u) =

∫

Ω

|∇u|p(|∇u|)dx, (3)

where lim
r→0

p(r) = 2, lim
r→∞

p(r) = 1 and p is a decreasing function. Thus, in regions where

the modulus of the gradient ofu is small the penalizer is approximately equal to‖|∇u|‖2
L2(Ω)

corresponding to a zero-order Tikhonov-Phillips method (appropriate for restoration in smooth
regions). On the other hand, when the modulus of the gradient ofu is large, the penalizer resem-
bles the bounded variation seminorm‖|∇u|‖L1(Ω), whose use, as mentioned earlier, is highly
appropriate for border detection purposes. Although this model forW is quite reasonable, prov-
ing basic properties of the corresponding generalized Tikhonov-Phillips functional turns out to
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be quite difficult. A different way of combining these two methods was proposed by Chambolle
and Lions (Chambolle and Lions(1997)). They suggested the use of:

Wβ(u) =

∫

|∇u|≤β

|∇u|2 dx +

∫

|∇u|>β

|∇u| dx,

whereβ > 0 is a given threshold. Thus, in regions where borders are more likely to be present
(|∇u| > β), penalization is made with the bounded variation seminorm while a standard order-
one Tikhonov-Phillips method is used otherwise. This model was shown to be successful in
restoring images possessing regions with homogeneous intensity separated by borders. How-
ever, in the case of images with non-uniform or highly degraded intensities, the model is ex-
tremely sensitive to the choice of the thresholdβ. More recently penalizers of the form

W (u) =

∫

Ω

|∇u|p(x)dx, (4)

for certain functionsp with range in[1, 2], were studied inChen et al.(2006) and Li et al.
(2010). It is timely to point out here that all previously mentioned results work only for the case
of denoising, i.e. for the caseT = id.

In this work we propose the use of a model for general restoration problems, which combines,
in an appropriate way, the penalizers corresponding to zero-order Tikhonov-Phillips method
and the bounded variation seminorm. Although several mathematical issues for this model still
remain open, as we shall see in Section 5, its use in some signal and image restoration problems
has proved to be very promising. The purpose of this article is to introduce the model, prove
some theorems regarding the existence of the corresponding regularized solutions, and present
a few results on their application to some signal and image restoration problems.

2 PRELIMINARIES

From now onΩ will denote a convex region inRn, n = 1, 2, 3, whose boundaryδΩ is Lips-
chitz continuous. The following Theorem, whose proof can be found inAcar and Vogel(1994)
(Theorem 3.1), guarantees the well-posedness of the unconstrained minimization problem

u∗ = min
u∈Lp(Ω)

J(u). (5)

Theorem 2.1 LetJ a functional BV-coercive defined onLp(Ω). If 1 ≤ p < n
n−1

andJ is lower
semicontinuous, then the problem (5) has a solution. Ifp = n

n−1
, n ≥ 2 and in additionJ is

weakly lower semicontinuous, then a solutions also exists. In either case, the solution is unique
if J is strictly convex.

The following theorem, whose proof can also be found inAcar and Vogel(1994) (Theorem
4.1), focuses on the existence and uniqueness of minimizers of functionals of the form

J(u) = ‖Tu− v‖2 + αJ0(u), (6)

whereα > 0 andJ0(u) denotes the bounded variation seminorm.

Theorem 2.2 Suppose thatp satisfies the restrictions of Theorem2.1 andTχΩ 6= 0. Then the
functional (6) has a minimizer.
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Note here that (6) is a particular case of (2) with W (u) = J0(u). The following theorem,
whose proof can be found inMazzieri et al.(2012), gives conditions guaranteeing existence
and uniqueness of minimizers of (2) for general penalizersW (u). This Theorem will be very
important for our main results in the next section.

Theorem 2.3 (Existence and uniqueness) LetX , Y be normed vector spaces,T ∈ L(X ,Y),
y ∈ Y , D ⊂ X a convex set andW : D −→ R a functional bounded from below,W -
subsequentially weakly lower semicontinuous, and such thatW -bounded sets are relatively
weakly compact inX . More precisely, suppose thatW satisfies the following hypotheses:

• (H1): ∃ γ ≥ 0 such thatW (x) ≥ −γ ∀ x ∈ D.

• (H2): for everyW -bounded sequence{xn} ⊂ D such thatxn
w→ x ∈ D, there exists a

subsequence{xnj
} ⊂ {xn} such thatW (x) ≤ lim infj→∞ W (xnj

).

• (H3): for everyW -bounded sequence{xn} ⊂ D there exist a subsequence{xnj
} ⊂ {xn}

andx ∈ D such thatxnj

w→ x.

Then the functionalJW,α(x)
.
= ‖Tx− y‖2 + αW (x) has a global minimizer. If moreoverW is

convex andT is injective or ifW is strictly convex, then such a minimizer is unique.

3 MAIN RESULTS

In this section we will state our main results concerning existence and uniqueness of min-
imizers of particular generalized Tikhonov-Phillips functionals with combinesL2-BV penal-
izers. Due to brevity and since complete proof of these results will appear in a forthcoming
paper, we will not include all proofs here, limiting our discussion only to those considred more
relevant. In what follows,Ω shall denote a bounded open convex subset ofRn with Lipschitz
boundary andθ : Ω → [0, 1] a measurable function.

Definition 3.1 We define the functionalW0,θ(u) by

W0,θ(u)
.
= sup

~ν∈Vθ

∫

Ω

−u div(θ~ν) dx, u measurable, (7)

whereVθ

.
= {~ν : Ω → Rn such thatθ~ν ∈ C1

0(Ω) and|~ν(x)| ≤ 1∀x ∈ Ω}.
It is not difficult to prove the following two lemmas.

Lemma 3.2 If u andθ belong toC1(Ω) thenW0,θ(u) = ‖θ |∇u| ‖L1(Ω).

Observation: From de density ofC1(Ω) in W 1,1(Ω) it follows that Lemma3.2holds foru, θ ∈
W 1,1(Ω).

Lemma 3.3 The functionalW0,θ defined by (7) is weakly lower semicontinuos with respect to
theLp topology,∀ p ∈ [1,∞).

Theorem 3.4 LetX = L2(Ω), Y a normed vector space,T ∈ L(X ,Y), v ∈ Y , α1, α2 positive
constants andJθ the functional defined by

Jθ(u)
.
= ‖Tu− v‖2

Y + α1‖
√

1− θ u‖2
L2(Ω)

+ α2 W0,θ(u), u ∈ L2(Ω). (8)

If there existsε2 ∈ R, such that0 ≤ θ(x) ≤ ε2 < 1 a.e. x ∈ Ω, then the functional (8) has a
unique global minimizeru∗ ∈ L2(Ω). If moreoverθ ∈ C1(Ω) and there existsε1 ∈ R such that
0 < ε1 ≤ θ(x) a.e.x ∈ Ω, thenu∗ ∈ BV (Ω).
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Proof: Due to Theorem2.3 it is sufficient to show that the functional

W (u)
.
= α1‖

√
1− θ u‖2

L2(Ω)
+ α2 W0,θ(u), u ∈ L2(Ω)

satisfies hypothesis(H1), (H2) and(H3). Clearly(H1) holds withγ = 0.
To prove (H2) let {un} ⊂ L2(Ω) such thatun ⇀ u ∈ L2(Ω) andW (un) ≤ c < ∞. We want

to show thatW (u) ≤ lim inf
n→∞

W (un). Since
√

1− θ ∈ L∞(Ω) one has
√

1− θ un ⇀
√

1− θ u.

The conditionθ(x) ≤ ε2 < 1 a.e. x ∈ Ω clearly implies that‖√1− θ u‖L2(Ω) is a norm.
Then, from the weak lower semicontinuity of‖√1− θ u‖2

L2(Ω)
it follows that

‖
√

1− θ u‖2
L2(Ω) ≤ lim inf

n→∞
‖
√

1− θ un‖2
L2(Ω). (9)

On the other hand, from the weak lower semicontinuity ofW0,θ in L2(Ω) (Lemma3.3) it follows
that

W0,θ(u) ≤ lim inf
n→∞

W0,θ(un). (10)

From (9) and (10) we conclude that

W (u) = α1‖
√

1− θ u‖2
L2(Ω)

+ α2 W0,θ(u)

≤ α1 lim inf
n→∞

‖
√

1− θ un‖2
L2(Ω) + α2 lim inf

n→∞
W0,θ(un)

≤ lim inf
n→∞

(
α1‖

√
1− θ un‖2

L2(Ω) + α2W0,θ(un)
)

= lim inf
n→∞

W (un),

what proves (H2). To prove (H3) let {un} ⊂ L2(Ω) be such thatW (un) ≤ c < ∞, ∀n. We
want to show that there exist{unj

} ⊂ {un} andu ∈ L2(Ω) such thatunj
⇀ u. For this note

that

(1− ε2)‖un‖2
L2(Ω) ≤ ‖

√
1− θ un‖2

L2(Ω) ≤ W (un) ≤ c. (11)

Thus the existence of a weakly convergent subsequence follows from the boundedness of{un}
in L2(Ω). Hence, by Theorem2.3, Jθ(u) given by (8) has a global minimizeru∗ ∈ L2(Ω). The
conditionθ(x) ≤ ε2 < 1 a.e.x ∈ Ω clearly implies the strict convexity ofJθ and therefore the
uniqueness of the global minimizer.

For the second part, assume further thatθ ∈ C1(Ω) and there existsε1 > 0 such thatθ(x) ≥
ε1 a.e.x ∈ Ω. Following the proof of Theorem 5.1 inMazzieri et al.(2012), it suffices to show
that under this additional hypothesis the weak limitu in (H3) above belongs toBV (Ω). For this
note that, sinceW (un) is uniformly bounded, from (11) it follows that there existK < ∞ such
that

‖un‖L1(Ω) ≤ K ∀ n. (12)

Also, by Lemma3.2, if u ∈ C1(Ω) then

W0,θ(u) = sup
~ν∈Vθ

∫

Ω

−u div(θ~ν) dx = ‖θ|∇u|‖L1(Ω) ≥ ε1‖|∇u|‖L1(Ω) = ε1J0(u). (13)

Using the density ofC1(Ω) in L2(Ω) it follows thatW0,θ(u) ≥ ε1J0(u) ∀ u ∈ L2(Ω). Thus from
(12) and (13) it follows that

‖un‖BV (Ω) = ‖un‖L1(Ω) + J0(un) ≤ c < ∞ ∀n.
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Hence the fact that the weak limit in (H3) is in BV(Ω) follows from the compact embedding of
BV(Ω) in to L2(Ω). This result is an extension of the Rellich-Kondrachov Theorem and can be
found, for example, in (Adams(1975), Attouch et al.(2006)). ¥

Remark 3.5 Note that ifθ(x) = 0 ∀x ∈ Ω, thenJθ as defined in (8) is the classical Tikhonov-
Phillips functional of order zero. On the other hand, ifθ(x) = 1 ∀x ∈ Ω thenJθ has a global
minimizer provided thatTχΩ 6= 0. If moreoverT is injective then such a global minimizer is
unique. These facts follow immediately from Theorems 3.1 and 4.1 inAcar and Vogel(1994).

4 FURTHER RESULTS AND OPEN ISSUES

Several other results on existence and uniqueness of global minimizers, under different con-
ditions onθ andT can also be established. We state next, without proof, one of them.

Theorem 4.1 Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary,X = L2(Ω), Y a
normed vector space,T ∈ L(X ,Y), v ∈ Y, α1, α2 positive constants andθ : Ω → [0, 1] such
that θ ∈ C1(Ω), 1

1−θ
∈ L1(Ω) and 1

θ
∈ L∞(Ω). Then the functional (8) has a unique global

minimizeru∗ ∈ BV (Ω).

It is important to mentioned at this point that, although numerical results are quite promising,
we were unable to proof any rigorous mathematical results on existence for the important case
corresponding toθ binary (i.e. with values in the set{0, 1}). We are still devoting efforts to
this case. Also, in light of the results inAcar and Vogel(1994), we establish the following
conjecture, which we were unable to prove up to now.

Conjecture 4.2 Assume there exist a setΩ1 ⊂ Ω of positive measure such thatθ(x) = 1 ∀x ∈
Ω1. We conjecture that:

(i) If TχΩ1 6= 0 thenJθ has a global minimizer.

(ii) If moreoverT |Ω1 is injective, such a global minimizer is unique.

5 APPLICATIONS TO SIGNAL AND IMAGE RESTORATION

The purpose of this section is to present some applications of the simultaneous use of penal-
izers ofL2 and of bounded-variation (BV) type to signal and image restoration problems.

Example 5.1: A basic mathematical model for signal blurring is given by convolution via
the following Fredholm integral equation of first kind:

g(t) =

∫ 1

0

h(t, s)f(t)ds, (14)

whereh(t, s) = 1√
2πσb

exp
(
− (t−s)2

2σ2
b

)
is a Gaussian kernel,σb > 0, f is the original signal andg

is the convolved signal. For the numerical examples that follow, equation (14) was discretized
in the usual way (using collocation and quadrature), resulting in a discrete model of the form

v = Au, (15)

whereA is a n × n matrix, u, v ∈ Rn (uj = f(tj), vj = g(tj), tj = j
n
, 1 ≤ j ≤ n). For

this case we consideredn = 350 andσb = 0.05. The datav was contaminated with a 0.1 %
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Figure 1:Original signal(- -) and convolved noisy signal(—).

zero-mean Gaussian additive noise (i.e. standard deviation of the order of 0.1 % of‖v‖∞).
Figure 1 show the original signal (unknown in real life problems) and the blurred noisy signal
which constitutes the data for the inverse problem.

Figure 2 show the regularized solutions obtained with the classical Tikhonov-Phillips method
of order zero with regularization parameterα = 1 × 10−6 and with penalizer associated to the
bounded variation seminormJ0 with regularization parameterαBV = 0.1 (in this case an al-
gorithm proposed inJensen et al.(2012) was utilized). Comparing the regularized solutions in
Figure 2, it’s clearly seen how the regularized solution obtained with theJ0 penalizer is signifi-
cantly better then the one obtained with the classical Tikhonov-Phillips method near jumps and
in regions where the exact solution is piece wise constant. Its also observe that the opposite
happens where the exact solution is smooth.
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Figure 2:Regularized solutions obtained with Tikhonov-Phillips (top) and bounded variation seminorm (bottom).

Figure 3 shows the regularized solution obtained with the new combinedL2 −BV (see (8))
with regularizations parametersα1 = α2 = 1× 10−6. In this case the functionθ(x) was chosen
to beθ(x)

.
= 1 for x ∈ (0, 0.4] andθ(x)

.
= 0 for x ∈ (0.4, 1). Although this choice ofθ(x) is

clearly based upon “a-prior” information about the regularity of exact solution, other choices
of θ can be made by using only data information. The improvement of the combinedL2 −BV
method with respect to both previous ones, is obvious. Nevertheless the improvement is also
clearly reflected by the Improved Signal-to-Noise Ratio (ISNR) defined as

ISNR = 10 log10

(
‖v − u‖2

‖uα − u‖2

)
,

(whereuα is the restored signal obtained with regularization parameterα). For the presented
examples, the ISNR was computed in order to have an objective parameter to measure and
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compare the quality of all regularized solutions (see Figure 4).
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Figure 3:Regularized solution obtained with the combinated methodL2- BV.
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Figure 4: ISNR: Tikhonov-Phillips (red), bounded variation seminorm (blue) and combinated methodL2-BV
(green).

Example 5.2: In this example we present an application to image restoration. For this case
the forward blurring model is given by convolution with a point spread function of “atmospheric
turbulence” type, i.e., with a two-dimensional Gaussian function with horizontal and vertical
standard deviationsσh andσv, respectively. Data for the inverse problem is then obtained by
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adding aσ % zero-mean gaussian noise to the blurred image. Figure 5 show the original and
blurred noisy images corresponding toσh = σv = 3 andσ = 0.001.

Figure 5:Original and blurred noisy images.

Figure 6 contains the regularized solutions obtained with Tikhonov-Phillips method and the
use of penalizer associated to the bounded variation seminorm (in this case the algorithm pro-
posed inDahl et al.(2010) was utilized). Figure 7 shows the restoration image obtained with
the new combinedL2 − BV method. For this new method, regularization was numerically
obtained as the minimizer of the functional (8) with θ(x) computed at each pixel, as a function
of the modulus of the gradient ofu (with an appropriate threshold). Finally, Figure 8 show the
ISNR values corresponding to each method.

Figure 6:Regularized solutions obtained with Tikhonov-Phillips and bounded variation seminorm.
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Figure 7:Regularized solution obtained with the combinated methodL2- BV.
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Figure 8: ISNR: Tikhonov-Phillips (red), bounded variation seminorm (green) and combinated methodL2-BV
(blue).

6 CONCLUSIONS

In this work we presented some new results on the simultaneous use of penalizers ofL2

and of bounded-variation (BV) type. For particular cases, existence and uniqueness results
were shown. Open problems were discussed and several results in applications to signal and
image restoration problems were presented. Although these preliminary results are clearly quite
promising, much further research is needed. In particular, besides Conjecture4.2, and in spite
of interesting numerical results, no rigorous mathematical proofs are yet known on the existence
and uniqueness of minimizers of functional (8) for the caseθ(·) binary (i.e. withθ(x) taking
only the values 0 and 1).
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Another important research direction is in regard to the “optimal” choice of the parameters
α1 andα2. It is not clear how, if in any way, those parameters are related to the corresponding
optimal values (as given for instance by theL−curve method or by Morozov’s discrepancy
principle) of the pure simple cases, Tikhonov of zero order and BV-regularization. The choice
of θ(·) in a somewhat optimal way is also a subject which deserves much further attention.
Research in all these directions is currently under way.
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