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Abstract. Multiphase solid-gas flows may be found in many industrial applications, from oil refining
processes to hydrogen production reactors. In particular, we focus our interest in the dynamics of solid
particles in a circulating fluidized bed riser of a Fluid Catalytic Cracking (FCC) unit, in which the solid
particles distribution is one of the main variables in the global efficiency of the unit. In the last decades,
much effort has been put in the development of Euler-Euler models with granular energy coupling to
simulate this kind of problems due to the good balance between computational cost and accuracy of the
numerical solution. In this work, in order to have a closure with the Navier-Stokes equations for the solid
phase, we use the kinetic theory of granular flow with solid pressure and stress tensor models, while
Wen-Yu and Ergun correlations are used to calculate the drag coefficients. All the numerical simulations
are carried out with the fully unstructured open source code OpenFOAM R©, based on the finite volume
method. In addition, an iterative procedure based on a combination of PISO and SIMPLE method (called
PIMPLE) is adopted and a proper discussion of its benefits is performed. To validate the solver, we
present two widely studied multiphase flow problems. The first one consists on a sedimentation column
starting from a uniform solid volume fraction suspension. The second one is based on a falling block of
solid particles in a pure gas environment. Finally, we study a problem of a fluidized bed of particles with
a constant gas injection from below. For this case, we are able to verify the good performance of the
solver. In order to do this, we analyze the time and space average profiles of the solid volume fraction in
comparison with the numerical and experimental results from several authors.
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1 INTRODUCTION

In the context of solid-gas multiphase flows, the Circulating Fluidized Bed (CFB) reactors
are commonly used in many industrial applications such as agriculture, pharmaceutical, chemi-
cal and energy production processes due to the low pressure drops, uniform temperature distri-
butions and high energy and mass-transfer rates. A riser of a Fluid Catalytic Cracking (FCC)
unit uses this kind of configuration, in which the interaction between gas-solid and solid-solid
particles directly affects in the global efficiency of the process. This leads to the need of a
proper understanding of the natural phenomena involving fluidized bed multiphase systems
(Min et al., 2010; Li et al., 2011) and FCC units in particular (Ramajo et al., 2010; Almuttahar
and Taghipour, 2008).

The design of a commercial-scale CFB system is usually based on the previously obtained
data of pilot-scale experiments, which are expensive, often difficult to setup and time consum-
ing. Also, with the development of high performance computers and the advances in numerical
techniques and algorithms, Computational Fluid Dynamics (CFD) becomes a strong tool to aid
and complement the experimental approach for the design of such systems.

The Euler-Euler (EE) method and the Lagrange-Euler (LE) method are the two main ap-
proaches used to simulate gas-solids flows. While the LE method, in which the equations of
motion are solved for each solid particle, gives high precision describing the solid-gas and solid-
solid interactions, it requires a strong amount of computational resources to simulate the physics
of real CFB problems. On the other hand, with the EE method, both phases are described as
an interpenetrating continua, provides a good balance between the computational costs and ac-
curacy in the description of the flow. In this present work, we opt for the EE approach with
kinetic theory of granular flow which gives closure to the conservation equations (Gidaspow,
1994; Van Wachem, 2000).

Here we use a multiphase solver called twoPhaseEulerPimpleFoam (Passalacqua and Fox,
2011) developed and implemented into the open-source code OpenFOAM R© (OpenCFD-OpenFOAM,
2010), to carry out the simulations. This solver is an improved version of the twoPhaseEuler-
Foam, in which the possibility to simulate an arbitrary number of dispersed phases and a con-
servative treatment of the phase momentum equations, were added. The solver also provides a
great variety of drag models and kinetic theory models.

As a reminder of the present work, the next sections are organized as follows. In Section 2,
we describe the equations involved in the model. The Section 3 briefly describes the numerical
approach implemented in the solver. Finally, in Section 4 we present the results for two test
cases and the results and analysis of a standard fluidized bed case.

2 MULTIPHASE MODEL

The Euler-Euler two phase model implemented in the open-source finite volume based pro-
gram OpenFOAM R© was used to carry out the simulations. This model is based in the fact that
both phases are treated as interpenetrating continua (Gidaspow, 1994), the concept of phase
volume fraction is introduced and the condition

∑
i αi = 1 is verified. The continuity and

momentum equations for the dispersed phase are:

∂

∂t
(αsρs) +∇· (αsρsus) = 0

∂

∂t
(αsρsus) +∇· (αsρsusus) = ∇· (αsτ s)− αs∇p−∇ps + αsρsg +Ksg(ug − us)

(1)
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On the other hand, the conservation equations for the continuous phase are:

∂

∂t
(αgρg) +∇· (αgρgug) = 0

∂

∂t
(αgρgug) +∇· (αgρgugug) = ∇· (αgτ g)− αg∇p+ αgρgg +Ksg(us − ug)

(2)

Here, both phases are treated as Newtonian fluids and the stress tensors are defined as:

τ g = µg[∇ug +∇uTg ]−
2

3
µg(∇·ug)I

τ s = µs[∇us +∇uTs ] + (λs −
2

3
µs)(∇·us)I

(3)

In order to solve the governing equations, several unknown terms require modeling. These
models are known as closure laws.

If we are treating a dispersed phase with relatively small particles and large densities, the
interphase drag force dominates over the other forces such as lift and virtual mass (Ranade,
2002). Therefore, the Ksg coefficient has just a drag contribution. A list of the available models
are detailed in Table 1:

Author Drag Model

Ergun Ksg = 150
µgα

2
s

d2pα
2
g

+ 1.75
ρgαs
dpαg

|ug − us|

Wen-Yu Ksg = 0.75
Cdαsα

−1.65
g ρg|ug − us|

dp

Gidaspow Ksg =

{
Ergun Model , αs > 0.2

Wen-Yu Model , αs < 0.2

Schiller-Naumann Ksg = 0.75
Cdαsαgρg|ug − us|

dp

Syamlal-O’Brien Ksg = 0.75
Ceαsαgρg|ug − us|

dpv2rs

Gibilaro Ksg = 17.3
µg

d2pα
2.8
g

+ 0.336
ρg

dpα2.8
g

|ug − us|

Table 1: Drag models

Fluidized systems are an example of multiphase flow in which the gravity and drag are the
dominant forces. But when the density of particles is greater, the frictional stresses becomes
preponderant. Therefore, for general cases, it is recommended to use a model that takes into
account both scenarios, such as Gidaspow and Syamlal-O’Brien drag models.
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The coefficients Cd, Ce, vrs and Rep are defined as:

Cd =


24

Rep
(1 + 0.15Re0.687p ), Rep < 1000

0.44, Rep ≥ 1000
, Ce =

[
0.63 +

4.8

(Rep/vrs)0.5

]2
(4)

vrs = 0.5
(
A− 0.06Rep +

√
(0.06Rep)2 + 0.12Rep(2B − A) + A2

)
(5)

A = α4.14
g , B =

{
0.8α1.28

g , αg ≤ 0.85

α2.65
g , αg > 0.85

(6)

Rep =
ρgdp|ug − us|

µg
(7)

The kinetic theory of granular flow (Gidaspow, 1994; Van Wachem, 2000) introduces the
concept of granular temperature (θs) to have closure with the conservation equations. There-
fore, the properties of the dispersed phase are function of this granular temperature, which is
determined by solving the granular energy transport equation:

3

2

[ ∂
∂t

(αsρsθs) +∇· (αsρsusθs)
]
= (−psI + τ s) : ∇us +∇· (κs∇θs)− γs + Jvis (8)

The solid stress tensor contains shear and bulk viscosities arising from particle momentum
exchange due to translation and collision. A frictional component of the viscosity can also be
included to account the effect of the viscous-plastic transition when the maximum solids volume
fraction is reached.

µi = µi,col + µi,kin + µi,fric (9)

Schaeffer (1987) proposed the following models to calculate these parameters:

µs,col =
4

5
ρsα

2
sdpg0(1− ep)

(
θs
π

)1/2

µs,fric = 0.5psI
−1/2
2D sin(φ)

(10)

The particle bulk viscosity is given by:

λs =
4

3
ρsα

2
sdpg0(1− ep)

(
θs
π

)1/2

(11)

And the energy dissipation:

γs = 3ρsα
2
sg0(1− e2p)θs

(
4

dp

√
θs
π
−∇· us

)
Jvis = −3Ksgθs

(12)
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Parameter Model

Particle pressure Syamlal ps = 2ρsα
2
sg0(1− ep)θs

Lun ps = ρsαsθs + 2ρsα
2
sg0(1− ep)θs

Radial distribution Sinclair-Jackson g0 =
1

1−
( αs
αs,max

)1/3
Gidaspow g0 =

0.6

1−
( αs
αs,max

)1/3

Lun-Savage g0 =
(
1− αs

αs,max

)−2.5αs,max

Carnahan-Starling g0 =
1

1− αs
+

3αs
2(1− αs)2

+
α2
s

2(1− αs)3

Kinetic viscosity Gidaspow µs,kin =
10ρsdp

√
θsπ

96g0(1 + ep)

[
1 +

4

5
(1− ep)αsg0

]2

Syamlal µs,kin =
αsρsdp

√
θsπ

6(3− ep)

[
1 +

2

5
(1− ep)(3ep − 1)αsg0

]

Hrenya-Sinclair µs,kin =
αsρsdp

√
θsπ

6(3− ep)

[
1 +

(3ep − 1)

2l
+

2

5
(1− ep)(3ep − 1)αsg0 +

5

4

1

(1− ep)αsg0l

]

Thermal conductivity Gidaspow κs = ρsdp
√
θ

[
2α2

sg0(1 + ep)√
π

+

9

16

√
πα2

sg0(1 + ep) +
15

16

√
παs +

25
√
πg0

64(1 + ep)

]

Syamlal κs = ρsdp
√
θ

[
2α2

sg0(1 + ep)√
π

+

9

2

√
πα2

sg0(1 + ep)(2ep − 1)

49− 33ep
+

15

2

√
παs

49− 33ep

]

Hrenya-Sinclair κs = ρsdp
√
θ

[
2α2

sg0(1 + ep)√
π

+
9

2

√
πα2

sg0(1 + ep)(2ep − 1)

49− 33ep
+

15
√
παs(0.5e

2
p + 0.25ep − 0.75 + l)

(49− 33ep)l
+

25

4

√
π

(49− 33ep)(1 + ep)lg0

]

Table 2: Available KTGF models
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To calculate the rest of the parameters, a list of the models available on the solver, are sum-
marized in Table 2.

An important remark is that most of the models for the radial distribution introduce strong
numerical instabilities due to the singularity when the packing limit is reached. The Carnahan-
Starling model (Carnahan and Starling, 1969) is recommended to avoid this issue.

3 NUMERICAL METHOD

3.1 The PIMPLE algorithm

The solution algorithm implemented in the present solver is based on a modification of the
PISO algorithm (Issa, 1985), called PIMPLE. This procedure improves the convergence and ro-
bustness of the first method by introducing under-relaxation factors. This procedure is explained
in detail by Passalacqua and Fox (2011).

The operations performed in each time step may be summarized as follows:

1. Store the previous iteration value of pressure, for explicit underrelaxation.

2. Update the ∂p/∂αs field at each cell and face centroids.

3. Solve the αs continuity equation and iterate until the pre-defined convergence criterion
(or the pre-determined number of iterations) is met.

4. Update the momentum transfer coefficients with the new value of the phase fractions.

5. Solve the θs granular temperature equation.

6. Compute the phase stress tensors.

7. Solve the phase momentum equations to obtain the predicted values of the velocities at
the new time.

8. Start the pressure corrector loop.

9. Repeat the previous steps until the solution satisfies the pre-defined convergence criterion
(or the pre-determined number of iterations is reached).

3.2 Numerical Schemes

OpenFOAM R© has a wide range of numerical schemes available for the discretization of each
term on the conservation equations. This allows the user to select the scheme according to the
accuracy needed for a particular problem. For example, for the momentum and phase frac-
tion convective terms (∇· (uiui) and∇· (αiui)) discretization, we will focus on three numerical
schemes. The limitedLinear scheme is a limited second order central scheme, with the special
version limitedLinear01 to ensure the bounding between 0 and 1 for the phase fraction con-
vective term and the limitedLinearV for vector fields such as the momentum convective term.
The fully upwind scheme may be the right choice to ensure the stability of the solution, but in
most cases, introduces too much diffusivity. Falling between these two methods, a bounded lin-
earUpwind method (which is second order accurate) has proven to be robust for most industrial
applications.

C. VENIER, S. MARQUEZ DAMIAN, D. RAMAJO, N. NIGRO1854

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



4 RESULTS AND DISCUSSION

4.1 Test cases

Two basic test cases were studied to evaluate the performance of drag and KTGF models
under different discretization schemes, and then obtain some criteria for the set up of problems
with a higher level of complexity.

4.1.1 Column sedimentation

The first test case is a two-dimensional problem which consists of a homogeneous settling
gas-solid suspension under the effect of gravity in a vertical column, starting from an uniform
solid volume fraction. The simulation was performed with a timestep of 1.0 × 10−5 s on a
0.05 × 0.3 m domain with a grid of 8 × 40 square cells. The initial solid volume fraction is
set to 0.3 and the packing limit is specified as 0.63. The numerical scheme adopted for the
convective term discretization was full upwind, which was necessary to avoid fluctuations near
the packing limit. The continuous phase is air (ρg = 1.28 Kg/m3, νg = 1.328 × 10−5m2/s )
and the dispersed phase consists of spherical particles with a density of ρs = 2460Kg/m3 and
a diameter of dp = 480ηm. The results were compared with the ones obtained by Passalacqua
and Fox (2011) with the MFIX platform.

Figure 1 shows the solid volume fraction along a vertical centered line at different times. A
more diffusive aspect of the solid volume fraction is obtained in the transient stage at t = 0.1s
due to the upwind numerical scheme in comparison with the MFIX results. Nevertheless, the
steady state (reached at 0.6s) shows a sharp stratification which is consistent with the expected
physical behavior.

Based on the steady state solution, we may conclude that even a scheme with strong numer-
ical diffusion (first order upwind) could be proper to simulate this kind of problems.
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Figure 1: Vertical profile of the solid phase fraction on a transient stage (top) and a steady state (bottom)
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4.1.2 Falling block of particles

The second case of study is a falling block of particles in a vertical column that hits the
bottom under the effect of gravity. This is a two-dimensional problem for a rectangular domain
of 0.05 m wide and 0.2 m high. The grid consists of 10×40 structured squares. The continuous
phase is air with ρg = 1.2 Kg/m3 and νg = 1.5× 10−5 m2/s, while the dispersed phase are solid
uniform spherical particles with ρs = 2000Kg/m3 and a diameter of d = 400 ηm.

In this problem, the powder modulus was adopted to calculate the elastic stress modulus
G(αs) in order to obtain the particles pressure as described in Eq. 14 (Bouillard et al., 1989)
and slip condition was specified for the solid phase velocity at the walls.

∇ps = G(αs)∇αs (13)

G(αs) =
∂ps
∂αs

= G0e
[c(αs−αs,max)] (14)

The time evolution of the solid volume fraction are shown in Figure 2. The volume fraction
evolves as expected with strong gradients near the packing limit and a flat interface is reached
when the solid phase settles completely at t = 0.35 s. Some instabilities on the phase fraction
are still present on settled state. This may be due to the mesh size and the numerical scheme
adopted (TVD).

alpha (solid)
0.63

0.00

0.20

0.40

0.60

t = 0.00s t = 0.50st = 0.10s t = 0.20s t = 0.30s

Figure 2: Time evolution of the dispersed phase volume fraction
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4.2 Fluidized bed

Next, a two-dimensional fluidized bed with Geldart B particles was studied (Figure 3) on a
riser configuration. All the model parameters and phase properties are summarized in Table 3.

In this case, we focus our attention in studying the solution with different drag models.
Figure 4 shows the mean solid volume fraction in the fluidized region, averaged between t = 5s
and t = 30s to avoid the start of the fluidization stage. It is clear that most of the solid phase
concentrates towards the walls as was expected.

Group Description Value
Gas density 1.4 Kg/m3

Phase Gas viscosity 1.8× 10−5 Pa.s
properties Particle density 2000 Kg/m3

Particle diameter 350× 10−6m
Width 0.138 m

Geometry Height 1 m
Bed initial height 0.2 m
Grid 14× 100 (structured squares)
Timestep 1.0× 10−4 s
Overall simulation time 30.0 s

Numerical Time discretization Second order, implicit
method Momentum discretization TVD limited linear

Momentum residual 1.0× 10−3

Volume fraction discretization TVD limited linear
Volume fraction residual 1.0× 10−6

Particle pressure Lun
Radial distribution Carnahan-Starling

KTGF model Kinetic viscosity Gidaspow
Thermal conductivity Gidaspow
Restitution coefficient 0.9
Vertical inlet gas velocity 0.54 m/s

Initial and Wall solid velocity slip
boundary Intel solid volume fraction 0.0
conditions Outlet pressure 0 Pa

Initial bed packing 0.58

Table 3: General parameters

Figure 5 shows the radial distribution of solid volume fraction compared with the one ob-
tained by Passalacqua and Fox (2011). All the different drag models show good agreement
with slight differences on the minimum solid fraction near the walls, which may be attributed
to different boundary conditions for the solid phase velocity.
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Uinlet

g

Figure 3: Schematic representation of a fluidized bed problem

Figure 4: Time-averaged solid volume fraction for different drag models: Syamlal-O’Brien (left), Gidaspow (cen-
ter), Wen-Yu (right)
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Figure 5: Time-averaged solid volume fraction profile on a horizontal plane at y = 0.16

The results of time-averaged bed height predicted in this work shows a strong dependence on
the drag model (see Figure 6). The Syamlal-O’Brien model shows a typical profile for fluidized
beds while the Wen-Yu and Gidaspow seems to overestimate the overall effect of the drag force
(Ramajo et al., 2010). Figure 7 shows the pressure profile along the height of the riser. The
smoothness of this result indicates that the numerical method is stable even near the packing
limit. Once again, the Syamlal-O’Brien model predicts a pressure drop of 2500 Pa, which is in
agreement with the reported results.
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Figure 6: Time-averaged solid volume fraction profile on a vertical centered plane
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5 CONCLUSIONS

A computational program based on the OpenFOAM R© platform, was used to solve the Euler-
Euler multiphase flow model with kinetic theory closure on two-dimensional laminar standard
problems. The implementation on a column sedimentation showed a stable behavior near the
packing limit for both transient and steady state, in which a sharp phase segregation profile
was obtained. Also, the simulation of a two-dimensional fluidized bed riser showed some level
of agreement with published results. We believe that most of the differences could be due to
different boundary conditions for the dispersed phase at the walls and the use of a coarse grid.
A stable solution was achieved with a TVD momentum discretization scheme and a relatively
large time step (1 × 10−4 s) which indicates that the solver may be a proper tool for industrial
scale problems. Finally, a study of different drag models was performed, in which the solutions
of the Syamlal-O’Brien model turned out to be similar to the reported data, while Gidaspow
and Wen-Yu models seemed to overestimate the drag effect on the fluidized bed height.
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NOTATION

c compaction modulus
Cd drag coefficient
Ce Syamlal-O‘Brien drag coefficient
dp particle diameter, m
ep particle restitution coefficient
g gravity acceleration, m/s2

g0 radial distribution coefficient
G elastic stress modulus, N/m2

G0 packing elastic stress modulus, N/m2

I identity tensor
I2D second invariant of the deviatoric stress tensor
Jvis transfer rate of energy, Kg/m.s3

Kij momentum exchange coefficient, Kg/m3.s
l length scale, m
p pressure, Pa
ps granular pressure, Pa
Rep relative Reynolds number
ui velocity, m/s
t time, s
vrs terminal velocity, m/s

Greek letters

αi volume fraction
γi energy dissipation, Kg/m.s3

θi granular temperature, m2/s2

κi diffusion coefficient of granular energy, Kg/m.s
λi bulk viscosity, Kg/m.s
µi shear viscosity, Kg/m.s
µi,col collisional viscosity, Kg/m.s
µi,kin kinetic viscosity, Kg/m.s
µi,fric frictional viscosity, Kg/m.s
νi kinematic viscosity, m2/s
ρi density, Kg/m3

τ i stress tensor, N/m2

φ angle of internal friction

Subscripts

i, j general index
g gas
s solid
p particle
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