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Abstract. This paper proposes a soft-sensor (SS) for on-line monitoring the droplet/particle size 

distribution (PSD) in miniemulsion polimerizations. The SS utilizes turbidity measurements and a 

global particle refractive index (PRI) estimated on the basis of the instantaneous polymer conversion 

and the PRIs of the monomer and the polymer. The proposed method requires solving an ill-

conditioned inverse problem (ICIP). Two different approaches are proposed for solving the ICIP: i) a 

Tikhonov regularization (TR), and ii) a General Regression Neural Network (GRNN). Both 

approaches are evaluated on the basis of simulated examples corresponding to a styrene miniemulsion 

polymerization. For unimodal PSDs, both TR and GRNN produce acceptable estimates of the average 

diameters of the PSD along the polymerization. The TR method produces PSDs with spurious peaks, 

while the GRNN allows better estimates. For bimodal PSDs both methods produce acceptable average 

diameters but erroneous PSDs. Simulation results suggest that the proposed method is a robust tool 

for on-line monitoring of the average diameters in miniemulsion polymerizations. 
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1 INTRODUCTION 

A polymer colloid (or latex) is normally constituted by submicrometric polymer particles 

dispersed in an aqueous medium. Latexes are typically used in the production of paints, inks, 

coatings, adhesives, immunoassay kits, drugs delivery systems, etc. Synthetic latexes are 

mostly obtained through aqueous phase microemulsion, miniemulsión, emulsion, and 

dispersion polymerization processes (Gugliotta et al., 2010). Particularly, miniemulsion 

polymerization involves the utilization of a surfactant/stabilizer system to produce stable 

monomer droplets (the miniemulsion itself) of small sizes (normally, 10 nm – 500 nm) 

(Schork et al., 2005). After the initiation (either outside or inside the droplets) the 

polymerization is mainly carried out within the monomer droplets. Along a miniemulsion 

polymerization the dispersed droplets and particles can exhibit a wide variety of 

monomer/polymer ratios since the initiation of the polymerization is not instantaneous in all 

monomer droplets. Miniemulsion polymerization represents an alternative for the synthesis of 

hybrid latexes; and enables the incorporation of a hydrophobic component into the polymer 

particles in a single step process, without requiring its diffusion through the aqueous phase 

since the miniemulsion droplets can be generated containing all the components to be 

incorporated in the synthesized material (Minari et al., 2009; Ronco et al., 2013). 

The particle size distribution (PSD) is a morphological characteristic of primary 

importance in several particulate systems including miniemulsions, emulsions, suspensions 

and dispersions. In the particular case of a latex, the PSD affects the end-use properties (e.g., 

rheological, mechanical, physical) of the material when used as an adhesive, a paint, an ink, or 

a coating. Also, the PSD affects the growth, and the interaction of the particles along 

heterogeneous polymerizations (Gugliotta et al., 2010). For such reason, the accurate 

knowledge of the PSD is necessary not only for the characterization of the final products, but 

also for the understanding of the physicochemical mechanisms that take place in the course of 

miniemulsion polymerizations. Additionally, on-line monitoring of the PSD along 

miniemulsion polymerizations is important for the developing of control strategies. 

On-line monitoring of the PSD is difficult due to the lack of a sensor for measuring the 

PSD in the polymerization reactor medium. Alternatively, the PSD can be estimated through 

an indirect method that involve: i) the measurement of a given physical property of the 

particles, and ii) the resolution of an inverse problem (IP) (Tikhonov and Arsenin, 1977) on 

the basis of a mathematical model that relate the measurements with the PSD. At present, a 

light scattering (LS) based-method, such as turbidimetry (T), is a powerful technique for 

estimating the PSD of a latex. In fact, T is fast, simple, and absolute (in the sense that it does 

not require a previous calibration); and besides it does not produce sample damages (Gugliotta 

et al., 2010).  

Main definitions concerning PSDs of homogeneous spherical particles were reviewed by 

Gugliotta et al. (2010). We shall call f(Di) the discrete number PSD. The ordinates of f(Di) 

represent the number (or number concentration) of particles contained in the diameter interval 

[Di , Di + ΔD] (i = 1, …, I), being ΔD a regular partition of the D axis. For a given discrete 

PSD, several average diameters, that we shall call baD ,

, can be defined as follows: 
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For example, 0,1D = nD  is the number-average diameter, and 3,4D = wD  is the weight-

average diameter. 

In a T experiment, the attenuation of a light beam while traveling through a dilute sample 

is measured as a function of the light wavelength, λj (j = 1, …, J), and the turbidity spectrum, 

τ(λj), is calculated as follows: 

 )](/)(ln[)/1()( 0 jtjj II λλλτ ℓ=  (2) 

where ℓ  is the optical path length, and I0(λj) and It(λj) are the intensity of the incident and the 

emerging light beams. In absence of multiple scattering (i.e., when the light scattered by a 

particle does not interact with any other particle), and assuming spherical and homogenous 

particles, the PSD f(Di) is related with the T measurement τ(λj) as follows (Gugliotta et al., 

2010): 

 ∑
=

=

I

1

2
)()](),(,,[)(

i

iijpjmjiextj DfDnnDQk λλλλτ
τ

 ;   j = 1, …, J (3) 

where kτ is a known experimental constant, and )](),(,,[ jpjmjiext nnDQ λλλ  is the light 

extinction by a particle of diameter Di and refractive index )( jpn λ  immersed in a non-

absorbing medium of refractive index )( jmn λ  at the wavelength jλ , and is calculated 

through the Mie scattering theory (Bohren and Huffman, 1983). 

For homogeneous particles composed of two different species, the particle refractive index 

(PRI) )( jpn λ  can be calculated as follows (Iulian et al., 2010): 

 )()()( 2,21,1 jpjpjp nnn λϕλϕλ +=  (4) 

where 1ϕ  and 2ϕ  are the volume fraction of species with PRI )(1, jpn λ  and )(2, jpn λ , 

respectively. 

Equation (3) represent a system of J linear equation with I unknowns (the ordinates of the 

PSD), that can be rewritten in a matrix form, as follows: 

 fQτ
τ
k=  (5) 

where τ (J×1) and f (I×1) are vectors with components τ(λj) and f(Di), respectively, and Q 

(J×I) is the matrix with the (j,i)-th component given by 2
)](),(,,[ ijpjmjiext DnnDQ λλλ . The 

PSD f can be estimated from τ by inverting Eq. (5). To this effect, matrix Q is calculated 

through the Mie scattering theory (Bohren and Huffman, 1983) and the PRI )( jpn λ  must be 

accurately known. Inversion of Eq. (5) is known to be an “ill-conditioned” inverse problem 

(ICIP); i.e., small perturbation caused by experimental noise or uncertainties in the PRI can 

lead to important deviations in the estimated PSD. 

When the colloid exhibits particles of different composition (and thus different PRIs), as in 
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the case of a miniemulsion polymerization, Eq. (5) can be generalized as follows: 

 ][ LL2211 fQfQfQτ +++= ⋯
τ
k  (6) 

where Ql (J×I) (l = 1, ..., L) is the l-th matrix with components 
2

, )](),(,,[ ijlpjmjiext DnnDQ λλλ  corresponding to the particle population with a fixed 

composition and PRI )(
, jlpn λ , and fl (I×1) is the corresponding PSD for a given particle 

composition. Note that the global PSD is given by: 

 N21 ffff +++= ⋯  (7) 

On line monitoring of PSDs by T has been scarcely studied in the literature. Moreover, 

most papers restrict their study to analyze the sensitivity of T measurements to changes in the 

characteristics of the colloid rather than proposing methods for estimating the PSD. For 

example, Chicoma et al. (2011) and Higgins et al. (2003) observed meaningful sensitivity of T 

measurements along the synthesis of polymeric particles and the production of pharmaceutical 

drug nanoparticles, respectively. Brandolin et al. (1991) utilized simulated examples to 

investigate the sensitivity of operative parameters (for example, sample time, latex 

concentration, light wavelength, etc.) on estimated PSDs obtained by inverting Eq. (5) along 

emulsion polymerization of styrene. Kiparissides (1980) investigated the on-line monitoring 

of continuous emulsion polymerization of vinyl-acetate through T measurements. In its work, 

T at a single wavelength (350 nm) was able to detect the beginning of the polymerization and 

whether the system reached a steady state or exhibited oscillations. Other authors have utilized 

alternative light scattering measurements such dynamic light scattering (DLS) and multiangle 

static light scattering (MALS) for on-line monitoring of average diameters and PSDs along 

heterogeneous polymerizations (Çatalgis-Giz et al., 2003; Alb et al., 2006; Alb and Reed, 

2008). As far as the authors are aware, monitoring of miniemulsion polymerization on the 

basis of light scattering techniques has not been investigated yet.  

In this paper a novel method is proposed for on-line monitoring of the PSD along a 

miniemulsion polymerization on the basis of T measurements. The method is evaluated 

through a simulated example corresponding to an aqueous phase miniemulsion 

polymerization of styrene with PSDs of different average diameters. A Tikhonov 

regularization method and a general regression neural network are compared as tools for 

solving the involved ICIP. All the computer work was carried out in Matlab.  

2 THE PROPOSED METHOD 

On-line estimation of the global PSD along a miniemulsion polymerization through the 

mathematical model of Eq. (6) and (7) is difficult because the droplets and particles exhibit a 

wide variety of unknown compositions (and thus, unknown PRIs). In consequence, matrixes 

Ql in Eq. (6) cannot be calculated. An approximated estimation method is proposed in what 

follows.  

Consider the instantaneous polymer conversion, x(t), at each time t, defined as:  

 
0

0 )(
)(

M

tMM
tx

−

=  (8) 

where M0 and M(t) are the initial and instantaneous mass concentration of the monomer, 

respectively. From x(t), the global instantaneous volume fractions of monomer and polymer, 
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)(xMonϕ  and )(xPolϕ , respectively, can be calculated as follows: 
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where Monρ  and Polρ  are the known densities of the monomer and the polymer, respectively. 

Then, a “global” PRI, )(, jgpn λ , can be obtained from Eq. (4): 

 )()()()(),(
,,, jPolpPoljMonpMonjgp nxnxxn λϕλϕλ +=  (10) 

where )(
, jMonpn λ  and )(

, jPolpn λ  are the known PRIs of the monomer and the polymer, 

respectively. Then, from ),(, xn jgp λ  the turbidity mathematical model of Eq. (5) can be 

utilized for estimating a global PSD at each conversion, x. Note that, Eq. (10) implicitly 

assumes that all particles have a common monomer/polymer composition at each x. 

The proposed method for estimating the global PSD can be summarized in the following 

steps: 

 

i) Measurement of the turbidity spectrum, τ(λj) (j = 1, …, J). 

ii) Measurement of the instantaneous polymer conversion x. 

iii) Calculation of the global PRI ),(, xn jgp λ  from Eqs. (9) and (10). 

iv) Calculation of the matrix Q of Eq. (5) on the basis of ),(, xn jgp λ . 

v) Solution of the ICIP of Eq. (5) for estimating the global PSD f [or equivalently 

)(
i

Df ]. 

 

In what follows, two different methods for solving the ICIP are described. 

2.1 Tikhonov Regularization Method 

The first order Tikhonov regularization method for solving the ICIP of Eq. (5) can be 

written as the following optimization problem (Tikhonov and Arsenin, 1977): 

 0)(ˆ;ˆˆmin
2

2

ˆ
≥









+−
i

Dfk ffQτ
f

α
τ

 (11) 

where f̂  (I×1) is a vector whose components are the ordinates of the estimated PSD, )(ˆ
i

Df ; 

Q is the matrix obtained through the Mie scattering theory (Bohren and Huffman, 1983) on 

the basis of the estimated global PRI, ),(, xn jgp λ ; α is the regularization parameter; and the 

symbol ⋅  indicates the 2-norm of a vector. In Eq. (11), the selection of the regularization 

parameter is critical. Small values of α produce PSDs exhibiting several spurious peaks. On 
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the other hand, high values of α produce excessively broad PSDs. In general, α depends on: i) 

the degree of ill-conditioning of the inverse problem (i.e. the condition number of the matrix 

Q); and ii) the measurement noise level. There are a variety of criteria to determine the 

optimum value of the regularization parameter (Aster et al., 2005). In this work, the L-curve 

technique is utilized (Hansen and O’Leary, 1993). Computer programs for solving the 

optimization problem of Eq. (11) were developed based on the regularization tools reported 

by Hansen (1994). 

2.2 General Regression Neural Network 

Figure 1) presents a scheme of the utilized general regression neural network (GRNN). 

 

Figure 1: Schematic representation of the utilized GRNN 

The GRNN involves: 2J inputs, the components of the global PRI vector 

)],(,),,([ J,1, xnxn gpgp λλ ⋯=pn  and the measurement vector τ ; I outputs, the components 

of the estimated PSD vector f; an input layer with 2J neurons; an output layer with I neurons; 

and a hidden layer with K neurons (Haykin, 1999). The k-th neuron in the hidden layer 

receives the vector ][ τnp  as input and produces an scalar output of amplitude hk given by: 

 
2

2

2
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2

1
k

k

eh

k

k

σ

πσ

cτnp −

−

= ;   k = 1, …, K. (12) 

where kcτnp −][  represent the distance between the vector ][ τnp  (2J×1) and the center 

kc  (2J×1) of the k-th neuron in the hidden layer; and kσ  is the so-called smoothness 

parameter associated with the k-th neuron. From hk, the components )(ˆ
i

Df  (i = 1, …I) of the 

output f̂  of the GRNN are calculated as follows:  

 ∑
=

=

K

1

,)(ˆ

k

kkii hwDf ;   i = 1, …, I. (13) 

where kiw ,

 is the weight coefficient of the connection between the k-th hidden neuron and the 

i-th output neuron.  
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2.2.1 Training of the GRNN 

The center of each hidden neuron ck and the weight of their connections with the output 

layer ),,( ,I,1 kkk ww ⋯=w  are selected by training the GRNN. To this effect, a set of K pairs 

{ ][ , kk τnp  , fk} (the training patterns) are presented to the GRNN. The training of a GRNN is 

fast and simple (Specht, 1993). The center of the k-th hidden neuron is chosen as 

k
c = ][ , kk τnp , and the weight coefficients of their connections with the output layer are 

chosen as 
kk
fw = . Consequently, from Eq. (13), the output of the GRNN produces the 

following PSD estimate: 

 ∑
=

=

K

1

)()(ˆ

k

ikki DfhDf ;   i = 1, …, I. (14) 

where: 

 
2

2

,

2

][][

2

1
k

kk
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k

k

σ

πσ

τnτn pp −

−

= ;   k = 1, …, K. (15) 

According to Eq. (14), the output of the GRNN f̂  results the linear combination of the 

training patterns kf . Note from Eq. (15) that the coefficient kh  in the linear combination of 

Eq. (14) becomes larger when the center ck = ][ , kk τnp  is closer to the input ][ τnp . Thus, the 

output f̂  is mostly defined by those training patterns fk that exhibit a small distance 

][][][
, kkk τnτncτn ppp −=− . 

For training the GRNN of Fig. 1), a set of K = 283,866 pairs { ][ τnp  , f} were utilized. 

Each pair was generated as follows: 

 

i) First, a global PSD )(
i

Df  (or f) was generated on the basis of an exponentially 

modified Gaussian (EMG) distribution for given values of the average diameter ( fD ), 

standard deviation ( fσ ), and decay constant of the exponential component ( fτ ), as 

follows: 
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 (16) 

where the symbol ‘*’ stands for convolution product.  

ii) A conversion x was selected, and the global PRI ),(, xn jgp λ  (or np) was calculated 

through Eq. (10). 

iii) The turbidity measurement )( jλτ  (or τ) was calculated through Eq. (5) on the basis of 

)(
i

Df , and the global PRI ),(, xn jgp λ . 

 

Steps i) to iii) were implemented for increasing conversions x from 0 to 1, at intervals of 

0.02; average diameters fD  from 150 nm to 600 nm, at intervals of 10 nm; standard 
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deviations fσ  from 15 nm to 65 nm, at intervals of 5 nm; and exponential decays fτ  from 15 

nm to 65 nm, at intervals of 5 nm. Finally, the GRNN was trained on the basis of the 

generated pairs. The choice of EMG as basis of the training pattern enables the approximation 

of a wide variety of different distributions (e.g. Gaussian, normal-logarithmic, etc). 

2.2.2 Selection of the smoothness parameter kσ  

The smoothness parameter kσ  affects the selectivity of each hidden neuron. A small kσ  

typically produces a highly selective GRNN; i.e., only those neurons with a small norm 

][][
, kk τnτn pp −  meaningfully contribute to the output f̂ . On the contrary, a high kσ  

produces a less selective GRNN, and therefore neurons with larger distances 

][][
, kk τnτn pp −  will also contribute to the output.  

Several methods have been proposed for selecting kσ  (Specht, 1991; Zhong et al., 2005). 

In this work, a common value of kσ  was used for all the hidden neurons, and was selected 

according to the “Holdout” method proposed by Specht (1991). To this effect, 10,000 patterns 

were randomly selected and removed from the original set of 283,866 training patterns. 

Therefore, the GRNN training (see section 2.2.1) was carried out on the basis of the remaining 

273,866 patterns and kσ  was selected by solving the following optimization problem: 

 












−∑

=

000,10

1

ˆmin

k

kk

k

ff
σ
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where kf̂  is the estimated PSD for the k-th removed pattern. According to the “Holdout” 

method, kσ  is chosen as the value that best reproduces the PSD of the 10,000 removed 

patterns. The advantage of this method is the simplicity for its implementation and 

automation. 

3 ANALISYS OF SIMULATED EXAMPLES 

Consider a simplified model of a miniemulsion polymerization of Styrene. The simulated 

sample consists of a blend of 10 different species: i) the initial miniemulsion (i.e. droplets of 

pure Styrene in which conversion is x0=0); ii) hybrid particles (i.e. particles with monomer 

and polymer) exhibiting partial conversion of x1=1/9, x2=2/9, …, x8=8/9; and iii) pure 

polystyrene particles (in which conversion is x9=1).  

Species with x0=0 exhibits a Normal-Logarithmic PSD, )(0 i
Dg  [Fig. 2)] defined in the 

range [50 nm – 700 nm] at regular interval of D∆  = 1 nm and given by: 

 







=

2

2

0

0

2

)]/ln([
exp

2
)(

σπσ

∆ DD
-

D

D
Dg i

i

i
 (18) 

where 0D  = 300 nm is the average diameter and σ  = 0.20 is the standard deviation. For the 

species with x > 0, a particle contraction is expected since the density of polystyrene (pSt = 

1.05 g/cm
3
) is larger than the density of Styrene (St = 0.909 g/cm

3
). Thus, the PSD for the 

species with xl > 0, )( il Dg (l = 1, …, 9), were simulated from Eq. (18) assuming the 

corresponding contracted average diameter: 
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 0

3/1

St )](/[ DxD lll ρρ= ; (l = 1, …, 9) (19) 

with: 

 pStpStStSt )()()( ρϕρϕρ llll xxx += ; (l = 1, …, 9) (20) 

where )( ll xρ  is the density of particles corresponding to species with conversion xl; and 

)(St lxϕ  and )(pSt lxϕ  are the volume fractions of styrene and polystyrene for the specie with 

conversion lx , respectively, and were obtained from Eqs. (9a) and (9b). Note that for pure 

polystyrene particles (i.e. with x9 = 1) it results 0
3/1

pStSt9 ]/[ DD ρρ= . Figure 2 compare the 

normalized (to equal area) PSDs )( il Dg  (l = 0, …, 9). 

 

Figure 2: Normalized size distributions )( il Dg  (l = 0, …, 9) for the species with conversions  

xl = 0, 1/9, 2/9, …, 1 

Four examples (EX. 1, EX. 2, EX. 3 and EX. 4) were considered by assuming the number 

concentrations of each species, cl, that are presented in Table 1. The aim of EX. 1, EX. 2 and 

EX. 3 is to simulate several stages of a miniemulsion polymerization. EX. 1 corresponds to 

the initial stage of the polymerization in which only the species with small conversion xl are 

present. EX. 2 corresponds to the middle stage in which all species are present. EX. 3 

corresponds to the final stage of the polymerization in which only species with high 

conversion xl are present. An additional case (EX. 4) was simulated by adding a Normal-

Logarithmic mode [Eq. (18)] of pure polystyrene particles, with average diameter 150 nm, 

standard deviation 0.1 and number concentration 0.75, to the case of EX. 2. This kind of PSD 

is normally obtained in miniemulsion polymerizations that exhibit simultaneous 

polymerization by homogeneous nucleation, thus producing a population of polymer particles 

of small diameters. 

For each simulated example, the global PSD was obtained according to Eq. (7), as follows: 

 ∑
=

=

9

0

)()(
l

illi DgcDf  (21) 

Figure 3a) compare the global PSDs )(1 iDf , )(2 i
Df , )(3 iDf  and )(4 i

Df  for examples EX. 

1, EX.2, EX. 3 and EX. 4, respectively. 
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 c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 

EX. 1 0.50 0.25 0.15 0.10 0.0 0.0 0.0 0.0 0.0 0.0 

EX. 2 0.05 0.05 0.05 0.10 0.25 0.25 0.10 0.05 0.05 0.05 

EX. 3 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.15 0.25 0.50 

EX.4  0.0125 0.0125 0.0125 0.025 0.0625 0.0625 0.025 0.0125 0.0125 0.875 

Table 1: Number concentration of the different species in the four analyzed examples. 

 

Figure 3: Global PSDs f1, f2, f3 and f4 (a) and noisy T measurements 1
~

τ , 2
~

τ , 3
~

τ  and 4
~

τ  (b) for the four analyzed 

examples 

For simulating the T measurement, jλ  was assumed within the range [436 nm – 1046 nm] 

at regular intervals of 10 nm. The PRI of each simulated species, ),(, xn jlp λ  (l = 0, …, 9), 

was calculated through Eqs. (9a), (9b) and (10), on the basis of the corresponding conversions 

xl, and the PRI of styrene (Kasarova et al., 2007) and polystyrene (Inagaki et al., 1977). The T 

measurements )(1 jλτ , )(2 jλτ , )(3 jλτ  and )(4 jλτ  were calculated on the basis of Eq. (6), 

as follows: 

 ∑
=

=

9

0l

lll ck gQτ
τ

 (22) 

where lQ  (J×I) is the matrix with components 2
, )],(),(,,[ ijlpjmjiext DxnnDQ λλλ . For 

simulating examples representative of practical applications, all measurements were 

contaminated with random noise, as follows: 

 εττ
ε
σ+=

~  (23) 

where the oversymbol “
∼

” indicates a noisy measurement; ε  is a Gaussian random sequence 

of zero mean and unity standard deviation; and )max(001.0 τ
ε

×=σ  is the standard deviation 

of the noise. Figure 3b) compares the simulated noisy measurements )(~
1 jλτ , )(~

2 jλτ , )(~
3 jλτ  

and )(~
4 jλτ . 

The global conversions x1, x2, x3 and x4 for examples EX. 1, EX. 2, EX. 3 and EX. 4, 

respectively, were assumed to be known and were calculated as: 
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Finally, the proposed method of section 2 was applied for estimating the global PSD of 

examples EX. 1, EX. 2, EX. 3 and EX. 4 on the basis of )(~ jλτ  and x. For implementing the 

estimation procedure a diameter axis from 10 nm to 700 nm at regular intervals of 12.5 nm 

was assumed. Results are presented in Fig. 4) and in Table 2. Figure 4 compares the true 

calculated global PSDs with its estimates obtained through the Tikhonov method and the 

GRNN. Table 2 presents the average diameter 0,1D , 3,4D , 5,6D  and 3,6D  calculated on the 

basis of the true and estimated global PSDs through Eq. (1). 

 

Figure 4: a-d) Simulated PSDs (f), and estimated through the Tikhonov regularization method (TR) and the 

GRNN (NN) 

 

  
0,1D (nm)  

3,4D  (nm)  
5,6D  (nm)  

3,6D  (nm) 

  True TR NN  True TR NN  True TR NN  True TR NN 

EX. 1  305 299 294  330 325 324  372 367 370  358 352 354 

EX. 2  299 291 291  324 320 321  365 364 365  351 349 350 

EX. 3  293 287 280  318 315 312  358 360 361  344 345 344 

EX. 4  188 264 268  252 319 302  351 339 343  321 326 329 

Table 2: Average diameters calculated for the estimated PSDs 

For unimodal PSDs (EX. 1, EX. 2 and EX. 3), both the Tikhonov method and the GRNN 

produce acceptable estimates of the average diameters exhibiting errors below 4%. 
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Additionally, the GRNN produces acceptable estimates of the global PSD although the left 

tail exhibited meaningful deviations [Fig. 4a-c)]. On the contrary, the Tikhonov method 

produces PSDs with multiples erroneous spurious peaks. This is due the ill-conditioning of 

the inverse problem and may be overcome through a stronger regularization (a larger α). As an 

example, Fig. 5 compares the global PSD )(1 i
Df  with its estimates obtained through the 

Tikhonov regularization on the basis of  = 250 (estimated by the L-curve method),  = 1000, 

and  = 4000. As expected, a larger  produced PSDs estimates without spurious modes. 

Table 3 compares the average diameters of the estimated PSDs. Note that the average 

diameters 5,6D  and 3,6D  remained almost constant for increasing α’s. 

 

Figure 5: Comparison of PSD estimates obtained through the Tikhonov regularization with regularization 

parameter  = 250 (estimated by the L-curve method),  = 1000, and  = 4000. 

 

α  0,1D (nm)  3,4D  (nm)  5,6D  (nm)  3,6D  (nm) 

  True TR  True TR  True TR  True TR 

250  

305 

299  

330 

325  

372 

367  

358 

352 

1000  301  328  366  353 

4000  313  339  366  357 

Table 3: Average diameters of the PSDs of Fig. 5. 

In the particular case of EX. 4 both methods were incapable of acceptably recover the small 

diameter mode. This result is normally obtained in T, and is due the fact that the smaller 

particles have a low contribution to the T measurement than the larger particles. In general, 

most estimation methods normally produce erroneous estimation of populations of small 

particles. Additionally, for the case of the GRNN this result is expected since the training of 

the network was carried out with unimodal PSDs, and therefore, the output will always be 

unimodal. Note that although the average diameters 0,1D  and 3,4D  were erroneous, the 5,6D  

and 3,6D  were acceptably estimated (Table 2).  

4 CONCLUSIONS 

A novel method based on turbidity measurements was proposed for on-line monitoring the 

particle size in miniemulsion polymerizations. The method involves solving an ill-conditioned 

inverse problem through two alternative approaches: a Tikhonov regularization method and a 

general regression neural network. 

The proposed method was able to acceptably estimate the average diameters when samples 
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exhibit unimodal PSDs. Additionally, the neural network produced good estimates of the 

PSD. The Tikhonov method produced PSDs with erroneous spurious modes. For bimodal 

PSDs (typically obtained in reactions that also exhibit homogeneous nucleation) both methods 

produced erroneous PSD estimates. However, the proposed method was adequate to estimate 

the average diameters 5,6D  and 3,6D . Consequently, although the global PSD is erroneously 

recuperated in some applications, the proposed method could in principle be used for on-line 

monitoring the average diameter (either the 5,6D  or the 3,6D ) along miniemulsion 

polymerizations. For example, along a miniemulsion polymerization only slight variations of 

the average diameter of the global PSD are observed; as can be seen in Table 2 where the 

3,6D  is 358 nm at the begining of the polymerization (EX. 1) and 344 nm at the end (EX. 3) 

(i.e. a variation of aproximately 4%). However, when the polymerization exhibits 

homogeneous nucleation (EX. 4) a meaningful decrease in the average diameters of the global 

PSD are produced. This can be seen in Table 2 where 3,6D  is 321 nm for EX. 4 (i.e. a 

variation of almost 11% with respect to EX. 1). Thus, homogeneous nucleation along 

miniemulsion polymerization can be detected by monitoring the 5,6D  and/or the 3,6D . 

With respect to the inversion techniques, although the neural network is less general 

because the estimated PSD is highly dependent of the selected training pattern utilized, the 

GRNN is a simple and fast technique that does not require previous expertise. On the 

contrary, the Tikhonov method requires some level of expertise of the user and frequently the 

obtained PSD exhibits spurious modes due the highly ill-conditioning of the inverse problem. 
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