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Abstract. Shape optimization of axisymmetric solids is performed in this work using a NURBS
parametrization of the geometry coupled with a Sequential Quadratic Programming (SQP) algorithm
where the sensitivity analysis is performed by automatic differentiation (AD). The structural analysis is
evaluated by the Finite Element Method. The framework proposed is computationaly efficient and accu-
rate and in addition remeshing techniques are also avoided. Large thickness variation are allowed with
the methodology. As a result, structures with improved structural performance are obtained for linear
elastic structural problems.
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1 INTRODUCTION

In structural mechanics, axisymmetric structures have a wide range of applications such
as components of submarines and aircraft fuselages, rockets, metallic silos, pressure vessels,
spherical domes, cooling towers, among others. As the stiffness of these structures depend
on their geometry and material properties, shape optimization is necessary in order to obtain
improvement in their behaviour for fixed materials. Axisymmetric shape, loads and boundary
conditions of these structures also lead to two-dimensional simplification in the analysis of the
problem. Thus, shape optimization of the three-dimensional solid geometry can be performed
through shape optimization of the cross section of the structure. Shape optimization deals with
the modification of the structure using an optimization algorithm by the structural analysis and
its sensitivity analysis. Therefore, different areas must be coupled together to establish a struc-
tural optimization system. Both the accuracy and efficiency of the optimization depends on all
these areas.

Many different structural models and approaches have been focused in structural optimiza-
tion. Some works of Ramm et al. (1993) and Bletzinger et al. (2008) use a thick and thin shell
element formulation, respectively, with an elastic formulation. Shape optimization of shells
to prevent buckling are analyzed by Khosravi et al. (2008) and Aubert and Rousselet (1998),
and the same problem, taking into account imperfections of the structure, were studied by
Reitinger and Ramm (1995). Axisymmetric thin shell structures optimization was investigated
by Mota Soares et al. (1994) and a shell optimization by Rousselet et al. (1995). Shape opti-
mization of axisymmetric structures was analyzed by Özakça et al. (1993) using an adaptative
finite element procedure and by Csonka and Kozák (1995) using a higher-order shear deforma-
tion theory. AD with NURBS was investigated by the authors of this work (Espath et al., 2011)
to optimize shape of shell structures, obtaining a good performance. In the present work, AD,
SQP and NURBS are also used for shape optimization. However, the major limitation addressed
to shape optimization of shells is the difficult to deal with thin and thick regions in the same
structure. Since axisymmetric solids naturally deal with these strong differences in thickness,
in the optimization process a large thickness variation is allowed. Thus, in the optimal shape
is expected solids with three different behaviors related to thin, thick shells as well as solids
structures.

For optimization problems, evaluation of derivatives are of great importance since it is one
of the most important information used by the gradient-based optimization algorithm to find the
optimum point. The need for obtaining derivatives in optimization problems is directly related
to its formulation. Therefore, the choose of the differentiation method should combine both
precision and efficiency to be well suitable for optimization procedures. The Automatic Differ-
entiation method (AD) is a numerical-computational method for evaluating derivatives with the
advantage of having analytical precision, limited only by the truncation error of the machine.
Evaluation of gradients of functionals by AD have generally a much lower computational cost
compared to other numerical methods (such as the finite differences method), being well suit-
able for optimization applications, where those evaluations take massive computation efforts.
However, additional computational memory can be needed when using AD.

The optimization algorithm used in the present work is the Sequential Quadratic Program-
ming (SQP). It is a robust algorithm for deterministic non-linear optimization with continuous
variables being well suitable for the current shape optimization purpose, where the geometri-
cal constraints adopted are usually highly nonlinear. Also, as the SQP algorithm uses a quasi-
Newton approach, only the gradient information is needed instead of a complete Hessian matrix
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information required by a Newton approach. This feature is well suitable for the coupled use of
AD, with faster and more accurate evaluation of derivatives.

The characteristic variables of shape optimization process are geometrical parameters that
define the geometry of the structure. The number of variables can be dramatically reduced if
Computer Aided Geometry Design (CAGD) concepts are used. According to these concepts,
free-form geometries can be described through a set of few points called control points. These
control points are used as optimization parameters in the present work. Thus, a smooth and
precise geometry description is looked for in the shape optimization context. A Non Uniform
Rational B-Splines (NURBS) parametrization promotes an easy shape modification through the
manipulation of the control points. Furthermore, it can precisely represent complex geometries
with an efficient mathematical implementation. Such description is standard to describe and
to model curves and surfaces in CAGD. A two-dimensional NURBS description is used for
shape description and modification in the present work. More details of NURBS can be found
in Piegl and Tiller (1997).

The structural analysis is performed using a standard Constant Stress Triangle (CST) finite
element for static elastic linear axissymetric structural problems. Avoiding large mesh distortion
and entanglement during the geometry modification, a mesh update scheme is used.

2 THEORETICAL ASPECTS

Many fields have to be coupled together in order to create an optimization system: geometry
description, sensitivity analysis, optimization algorithm and structural analysis. The optimiza-
tion of the geometry is performed by modification of the control points from a NURBS param-
eterization of the structure. The sensitivity analysis is done using the Automatic Differentiation
(AD) method. The optimization algorithm used here is the Sequential Quadratic Programming
(SQP) and the structural analysis is performed using a CST finite element for axisymmetric
problems.

2.1 Automatic Differentiation (AD)

The first-order sensitivity analysis is performed using Automatic Differentiation (AD) in the
present work. This method is based on the graph theory. Computationally, all evaluations can
be described as a trace (sequence) of calculus. This trace contains all the sequence of elemental
evaluations performed by the computer in order to achieve the final result (the functional eval-
uation, for example). This means that to calculate a given functional F(x), where x ∈ Rn, it is
possible to rewrite it by breaking the original functional into a functional evaluated by parts:

F(x) ≡
l⊙

i=1

vi = v1 ◦ . . . ◦ vl (1)

where these vi parts are intermediate calculations, each of them evaluated by means of one
or more previous intermediate calculations, making a sequence of operations to evaluate the
functional. We also call each of these vi steps of evaluations as variables. The initial steps of
evaluation are called initial variables, with i ranging from 1 − n to 0. The initial variables are
also the independent variables, x. The internal steps are called internal variables, with i ranging
from 1 to l − 1 and the final variable is the functional itself, with i defined as l. We can group
all the variables vi in a set V:

V = {v1−n, . . . , v0︸ ︷︷ ︸
x

, v1, v2, . . . , vl−1, vl︸︷︷︸
F(x)

} (2)
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Each of these vi variables are the vertices of a graph (Figure 1). The vertices vi with i ≥ 1 are
obtained by applying an elementar function φi to a given set or arguments vj , with i > j. This
can be stated as:

vi = φi(vj)j≺i (3)

where the symbol j ≺ i means that a given variable vi is directly depended on a set of given
variables vj , with i > j. An elementar function φi is any function associating one or two
variables vj to a new variable vi, for example, the sum, the division and the multiplication of
two variables and the exponential and the secant of one variable. It is obvious that any compli-
cated functional can be expressed as a sequence of elementary operations over the independent
variables. More generally this means that a functional evaluation can be interpreted as a graph
G containing vertices V and edges E. The vertices are the variables vi whose relations are the
edges, given by φi(vj)j≺i, where i > j. In a more systemic notation it can be stated as (see
Figure 1):

G (V,E)
Rn → R1

x → F(x)
vi =


xi i = 1− n . . . 0

φi(vj)j≺i i = 1 . . . l − 1

F(x) i = l

(4)

v1-n

...

v0

v1

...

vl-4

vl-3

vl-1

vlvl-2

φ (v )1-n1

φ (...)1

φl-3 1-n(v )

φl-3 1(v )
φl l-3(v )

φl l-1(v )

φl 0(v )

φl-4 0(v )

φl-1 0(v )

φl-2(...)

φl-2(...)

φ...(...)
φl-1 l-2(v )

φl-1 l-4(v )

Figure 1: An example of graph variables and its vertices.

Once a graph (and also an entire algorithm which evaluates a given functional) is stated as
above, it can be derived by two distinct ways. The first methodology is simply the application
of the chain rule with respect to a given variable t:

∂F(x)

∂t
=

∂F(x)

∂x

∂x

∂t
(5)

where the term ∂F(x)
∂x is the Jacobian matrix of F(x). This is called forward mode or tangent

mode of differentiation in AD (Griewank and Walther, 2008). The forward mode implies that
for each variable of the graph also its corresponding derivative with respect to t must be eval-
uated. This way, the total size of this process is exactly twice as the single evaluation of the
functional. Applying the chain rule (5) on the graph (4) and taking into account (1) the following
derivatives arise:

∂vi
∂t

=


∂xi

∂t
i = 1− n . . . 0∑

j≺i
∂φi(vj)j≺i

∂vj

∂vj
∂t

i = 1 . . . l − 1
∂F(x)
∂t

i = l

(6)
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The derivative of the elementary function ∂φi

∂vj
is also called tangent function associated to the

elementar function φi and it is obtained by simple differentiation of the original function. For
example, the elementar function associated with the multiplication of two variables φ = a · b
has the tangent function ∂φ

∂t
= ∂a

∂t
· b+ a · ∂b

∂t
associated.

The second methodology to propagate derivatives is called reverse mode of propagation in
AD. In this mode not only a directional derivative but the complete gradient of the functional is
evaluated. It can be stated:

∇tF(x) =
∂F(x)
∂x

(7)

The total size of this procedure is no more then twice the original functional evaluation because
there is a dependence on the particular graph structure. To apply the gradient on the graph, the
propagation of evaluations over the variables vi must be performed in a reverse way, from the
functional to the independent variables x:

∂F(x)

∂vi
=


1 i = l∑

i≻j
∂φi(vj)j≺i

∂vj

F(x)
∂vi

i = l − 1 . . . 1

∇tF(x) i = 0 . . . 1− n

(8)

In the statement above, the need of evaluation of the contribution of all the successors j ≻ i of
a given variable vi can be computationally inappropriate because of the need of information not
directly available from the elementary functions φi and its arguments. This way, it it necessary
to obtain for each variable vj a list of all elementary functions depending of the variables vj .
This approach is also called non-incremental reverse mode. However, the most practical for
computational applications is the incremental reverse mode, which is identically to the non-
incremental mode except that the intermediate variables are evaluated as follows:

∂F(x)

∂vi
=

∂F(x)

∂vi
+

∂φi(vj)j≺i

∂vj

F(x)

∂vi
∀j ≺ i, i = l − 1 . . . 1 (9)

The computational complexity of a evaluation procedure can be measured in terms of the num-
ber of computational flops involved and it is directly related with the computational cost (physi-
cal time required by the machine to execute the evaluation). The complexity involved in forward
mode is (Griewank, 1993):

flops{∂F(x)
∂t

}
flops{F(x)}

≤ 1 + 3n (10)

where flops{F(x)} is the number of flops needed to evaluate the original functional F(x) and
flops{∂F(x)

∂t
} is the number of flops needed to evaluate the forward propagation of derivatives

in AD. For the reverse mode the complexity is:

flops{∇tF(x)}
flops{F(x)}

≤ 5 (11)

where flops{∇TF(x)} is the number of flops needed to evaluate the gradient of a scalar func-
tional F(x) in the reverse mode of AD. It is explicit in the statement above that it holds to be
independent of any length of x. This independence with respect to the number of independent
variables is high efficient in optimization problems where the number of variables can be very
large and the computational costs involved are very high. Although the reverse complexity
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was stated in the present work only to scalar-valuable functionals, it can be also extended to
vectorial-valuate functionals F(x) : Rn → Rm:

flops{∇tF(x)}
flops{F(x)}

≤ 1 + 4m (12)

being the scalar case m = 1 a particular case of the general complexity relation. It is evident
that when the number of required first-order derivatives of the functional is larger compared
with the total number of independent variables the reverse mode is preferable instead of the
forward mode due to less computational cost involved.

Although the reverse mode is very computationally cheaper compared with other numeri-
cal procedures to evaluate derivatives, it has a drawback: the computational memory needed.
This occurs due to the requirement to store all the computational graph in the memory and also
its derivatives. Special treatment can be performed to optimize the memory usage in this pro-
cess, with allocation and deallocation of variables and taking into account the Jacobian matrix
sparsity (Griewank, 2003).

In the present work, automatic differentiation tool TAPENADE AD INRIA (2002), devel-
oped by the INRIA in France, is employed to evaluate the derivatives with reverse automatic
differentiation.

2.2 Non-Uniform Rational B-Spline (NURBS)

In order to represent a complex surface, a parametric representation is used. NURBS pa-
rameterization is well suitable for shape optimization in any physical problem involving curves,
surfaces and solids. For a bidimensional representation of structures, a plane surface represen-
tation in the form

S (ξ, η) = (x (ξ, η) , y (ξ, η)) (ξ, η) ∈ [0, 1]× [0, 1]

is looked for.
The NURBS surface in homogeneous coordinates is defined as

Sw (ξ, η) =
n∑

i=0

m∑
j=0

Ni,p (ξ)Nj,q (η)P
w
i,j (13)

where (p, q), (n,m), (Ni,p (ξ) , Nj,q (η)) are the degrees, the numbers of basis functions,
and the basis functions in (ξ, η) directions, respectively. Pw

i,j = (wi,jxi,j, wi,jyi,j, wi,j) are the
control points in homogeneous coordinates.

The basis functions in recursive form are defined as

Ni,0 (ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise (14)

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (15)

(16)

over the following knot vectors, in (ξ, η) directions

Ξ = {0, . . . , 0︸ ︷︷ ︸
p+1

, ξp+1, . . . , ξr−p−1, 1, . . . , 1︸ ︷︷ ︸
p+1

} with r = n+ p+ 1

H = {0, . . . , 0︸ ︷︷ ︸
q+1

, ηq+1, . . . , ηs−q−1, 1, . . . , 1︸ ︷︷ ︸
q+1

} with s = m+ q + 1
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In the shape modification, when a control point, a weight and/or a knot position is modified
the parametric mesh remains the same; however, the mesh in the Euclidean space assumes a
new position according with the new geometry. This mapping may be not the best choice,
because the mesh distortion is not controlled, although this problem is somehow minimized
with a convenient initial mesh. An additional update scheme to control mesh distortion is also
used in the present work and it is explained in the section 3.

The geometry description used in the present work uses a weight w = 1 which leads the
general NURBS description to a particular Bézier description case. In the optimization process,
the external control points (lying on the boundary) Pi,j of the geometry are used as optimization
variables and the internal ones are defined as dependent of the external control points (this
dependence is also the mesh distortion control scheme).

A complete overview of NURBS and Bézier theories can be found in Piegl and Tiller (1997).

2.3 Numerical optimization

In the context of the numerical shape optimization, the SQP method is used. The optimiza-
tion problem is stated as

min
x∈Rn

F (x) subject to

{
Ci (x) = 0, i ∈ E
Ci (x) > 0, i ∈ I

(17)

where F , Ci are defined in Rn; and E and I are two finite index sets. x are the independent
variables, F is the objective function, Ci, i ∈ E are equality constraints and Ci, i ∈ I are
inequality constraints.

The active set of inequality constraints is expressed as

A (x) = E ∪ {i ∈ I | Ci (x) = 0} (18)

The Lagrangian functional is defined as

L (x, λ) ≡ F (x)−
∑

i∈A(x)

λiCi (x) (19)

where λi are the Lagrange multipliers. If the linear independence constraint qualification holds,
then the optimum (x∗, λ∗) must satisfy the Karush-Kuhn-Tucker (KKT) condition, i.e.,

∇x L (x∗, λ∗) = 0, (20a)
Ci (x∗) = 0, ∀ i ∈ E , (20b)
Ci (x∗) > 0, ∀ i ∈ I, (20c)

λ∗
i > 0, ∀ i ∈ I, (20d)

λ∗
iCi (x∗) = 0, ∀ i ∈ E ∪ I (20e)

The proof and the complete theory related is shown by Nocedal and Wright (1999). The KKT
conditions, Eqs. (20a) to (20e), must be satisfied for a given tolerance range.

The numerical approach for the optimization problem using a SQP algorithm starts from an
initial point x0, and then the SQP algorithm generates a sequence of iterations {xk}∞k=0 that
ends when no more progress can be made or when this point is the approximate solution with
sufficient accuracy, i.e., the KKT conditions are satisfied for a given tolerance range. The SQP
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algorithm approximates the objective function F(xk) by a quadratic form and the restrictions Ci
(of both equality and inequality) by a linear form. Therefore, applying the Newton method to the
Lagrangian function with these approximations for the objective function and restrictions, the
SQP method arrives to a quadratic programming problem. An algorithm for solving quadratic
problems is then applied in order to obtain a search direction δk = xk − xk−1, being δk the
solution of the quadratic problem. A linear search method is then used to obtain a new position
trough this search direction with lower value, which is a unidimensional minimization problem.
While the optimal conditions are not satisfied, new points and new directions with new length
are evaluated on each step and the process is repeated. Every new point xk+1 is updated by:

xk+1 = xk + δk (21)

While the optimum is not reached, the Hessian matrix required by the quadratic program is
updated by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. The BFGS method is an
algorithm which generates an approximation for the Hessian based on the gradients of the cur-
rent and previous iteration. This mean that BFGS is a quasi-Newton method, i.e., the Hessian is
not evaluated exactly, but approximated by gradients evaluations. These gradients evaluations
are performed using AD.

2.4 Structural analysis

The structural analysis is performed using the finite element method for an axisymmetric
problem. The Constant Stress Triangle (CST) for linear elastic static analysis, commonly related
in the literature, is employed.

3 SHAPE MODIFICATION AND SHAPE OPTIMIZATION

The coupling of the optimization procedure to shape optimization is presented in this section.
The shape modification is performed by moving control points Pi,j belonging to the NURBS
description of the geometry. Only the control points on the boundary Γ need to be chosen as
optimization variables and the internal control points within the domain Ω are updated in order
to prevent interpenetration of the control points and also to avoid large mesh distortions. Thus:

x = {Pi,j ∈ Γ} (22)

The boundary control points which are optimization variables are allowed to move in just one
given direction. An upper and lower bound are imposed over this control point movement as an
optimization constraint. Also, a minimal distance is imposed as optimization constraint to avoid
interpenetration of the control points. When the new position of these optimization variables
are obtained by the optimization algorithm, intermediate control points are then updated by
linearly interpolation over the distance between the boundary control points along the moving
direction. This process improves the mesh update and is represented in Figure 2 and Figure 3.
In these figures, the red control points represent control points which are chosen as optimization
variables and the blue ones the other control points. Figure 2 represents the initial condition of
the mesh and geometry. Thus, the two middle optimization nodes (red) on the top and bottom
boundaries are moved in one direction. As a result, intermediate points (blue) between points
representing the variables (red) are also updated, holding an equal distance along the moved
direction. In Figure 3 it can be seen that this procedure moves the mesh following the change
of the geometry. The chosen objective function to be minimized F is the internal strain energy
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Figure 2: Original geometry and mesh.

Figure 3: New geometry and mesh.

in linear elastic problems, which is given by

F =

∫
Ω

σ : ϵ dΩ = UTKU (23)

where σ is the stress tensor, ϵ is the strain tensor, U is the displacement vector and K is the stiff-
ness matrix. The optimization problem is performed using relative objective functions values,
i.e., referred to an initial value.

This minimization of F is then constrained by geometrical or mechanical functions, such
as constant volume restriction, limiting upper and lower bound of the points and the minimum
distance between boundary control points in the given optimized direction. These restrictions
may be written as follows:

C = 1− V

Vini

= 0

C =
(
xa
i − xb

i

)
− tol ≥ 0

xmin ≤ xi ≤ xmax

(24)

where V is the current volume, Vini is the initial volume, xmin is the lower bound, xmax is the
upper bound, xa

i − xb
i indicate the distance between control points (in a given direction) of each

boundary and tol is the minimum distance adopted. These functions are evaluated by FEM, and
the gradients by AD. The complete algorithm of shape optimization can be stated as follows:

1. Perform a structural analysis on initial geometry by FEM,

2. Evaluate the required gradients by reverse AD,

3. Check KKT conditions. If convergence is not obtained, find a new search direction and
perform unidimensional minimization along this direction in order to obtain a new posi-
tion xn+1 for the optimization variables Pi,j ,
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4. Update internal control points of the geometry by linear interpolation of the distance
between opposite boundaries in a given direction,

5. Perform a structural analysis on the new geometry by FEM.

The algorithm loops over the second and fifth steps if the convergence is not achieved. When
convergence is achieved, the algorithm just performs the final structural analysis (step 5).

4 NUMERICAL APPLICATIONS

In order to demonstrate and validate the shape optimization algorithm, some examples are
presented in this section. The material properties for all the examples are: Young’s elastic
modulus E = 3.10 × 1010, Poison coefficient ν = 0.2 and specific mass γ = 2.5 × 104.
The values used are in the SI. The objective function to be minimized in all examples is the
strain energy and the equality constraint of constant volume is imposed in all examples. Other
constraints adopted for each example are properly specified in the description of each case.
For all examples, the initially uniform load remains constant on all geometries through the
optimization process.

4.1 Example 1

The initial geometry of this example is a disk shape. An initial height of h = 1 and radius
R = 5 are used. The disk is simply supported on its external point and a uniformly distributed
load of q = 750 × 103 is applied on the upper boundary (see Figure 4). No body forces are
considered in this example.

Figure 4: Initial geometry and boundary conditions for example 1.

Figure 5: Finite element mesh for example 1.

The finite element mesh has 2121 nodes and 4000 elements as shown in Figure 5. The
NURBS parametrization is done with 16 control points, where 8 of them were adopted as opti-
mization variables (4 in the upper boundary and 4 in the bottom). Figure 6 shows the adopted
optimization variables with red color and the other with blue color. The basis function are
defined over the knot vectors

Ξ = {0, 0, 0, 0, 1, 1, 1, 1} (25)
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Figure 6: Surface parametrization and adopted optimization variables for example 1.

H = {0, 0, 0, 0, 1, 1, 1, 1} (26)

The control points are allowed to move in the vertical direction bounded by an upper limit of
25 and lower limit of −25. Also, vertical distance between upper and lower boundary control
points are limited to be greater or equal to 0.15 (to avoid interpenetration of one point into other
one). The initial coordinates of the 16 control points are shown in Table 1.

P x y

(0,0) 0.00 0.00
(1,0) 1.67 0.00
(2,0) 3.33 0.00
(3,0) 5.00 0.00
(0,1) 0.00 0.33
(1,1) 1.67 0.33
(2,1) 3.33 0.33
(3,1) 5.00 0.33
(0,2) 0.00 0.67
(1,2) 1.67 0.67
(2,2) 3.33 0.67
(3,2) 5.00 0.67
(0,3) 0.00 1.00
(1,3) 1.67 1.00
(2,3) 3.33 1.00
(3,3) 5.00 1.00

Table 1: Initial coordinates of control points for example 1.

The imposed constraint of constant volume forces the geometry to search the best mass
distribution in order to minimize the strain energy with fixed boundary conditions and load,
avoiding a simple mass increase in order to obtain a lower strain energy. Figure 7 shows the
evolution of the geometry along the iterations until an optimized shape is obtained. At the 28th
iteration, the optimum condition is reached. The final relative objective function obtained Fopt

is F28�Fini = 0.114. A comparison between the displacements and the von Mises stresses in
initial and final optimized geometry is shown in Figure 8. The decrease of the relative objective
function in terms of the iterations is presented in Figure 9. Also it is presented the final geom-
etry. The final coordinates of the 16 control points are shown in Table 2. It can be noticed
from Figure 9 that the initial iterations imply in the greatest reduction of the objective function.
The final iterations do not reduce the objective function so much, but they play a role in fixing
the curvature, as can be observed in Figure 7. From the comparison between displacement and
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Figure 7: Sequence of shapes corresponding to different number of iteration for example 1.

Figure 8: Comparison between displacements and von Mises stresses in the initial and the final optimized geome-
tries for example 1.

von Mises stresses it can be noted the significant reduction of both in the optimized geometry.

R.V. LINN, L.F.D.R. ESPATH, A.M. AWRUCH2648

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



P x y

(0,0) 0.00 -14.98
(1,0) 1.67 -14.45
(2,0) 3.33 -13.02
(3,0) 5.00 -9.26
(0,1) 0.00 -14.93
(1,1) 1.67 -14.40
(2,1) 3.33 -12.97
(3,1) 5.00 -8.50
(0,2) 0.00 -14.88
(1,2) 1.67 -14.35
(2,2) 3.33 -12.92
(3,2) 5.00 -7.74
(0,3) 0.00 -14.83
(1,3) 1.67 -14.30
(2,3) 3.33 -12.87
(3,3) 5.00 -6.98

Table 2: Final coordinates of control points for example 1.

Figure 9: Relative objective function as a function of the iterations and final shape for example 1.

Along the optimization iterations, the original high flexural and shear stresses are progressively
reduced, while the membrane stresses are increased. The final geometry configuration tends to
approach a parabolic arc shape. It can be noticed that using the optimized shape with an applied
load in the inverse direction, i.e. oriented from the bottom to the external surface, the structure
will work primary with compression stresses. This is an important result and has been exten-
sively used for many engineering applications (such as the arc bridge). This type of geometry
is a well-known established result of minimization of strain energy. For the one-dimensional
case, this minimization leads to a catenary shape configurations. Analogous results for shell
structures are presented by Ramm and Wall (1961). An experimental work on this area was
performed by Isler (1961), where the form was found by hanging models and a membrane
configuration under compression was also obtained.
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4.2 Example 2

The initial geometry of this example is analogous to the example 1 but with a central hole.
An initial height of h = 1.5, internal radius Ri = 5 and external radius Re = 10 were adopted
using the same boundary condition of example 1 (simply supported) and a uniformly distributed
load of q = 268 × 103 is applied on the upper boundary (see Figure 10). No body forces are
considered in this example.

The finite element mesh has 952 nodes and 1742 elements as shown in Figure 11. The
NURBS parametrization is done with 42 control points, where 14 of them were adopted as
optimization variables (7 in the upper boundary and 7 in the bottom). Figure 12 shows the
adopted optimization nodes with red color and the others with blue color. The basis function
are defined over the knot vectors:

Ξ = {0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1} (27)

H = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1} (28)

Figure 10: Initial geometry and boundary conditions for example 2.

Figure 11: Finite element mesh for example 2.

Figure 12: Surface parametrization and adopted optimization variables for example 2.

The 14 optimization variables are allowed to move in the vertical direction bounded by an
upper limit of 7.5 and a lower limit of −7.5. Also, vertical distance between upper and lower
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boundary control points are limited to be great or equal to 0.15. Figure 13 shows the geometry
optimization evolution along the iterations.

At the 39th iteration, the optimum condition is reached. The final relative objective function
obtained Fopt is F39�Fini = 0.068. Figure 14 shows a comparison between the initial and
the final optimized geometry for displacements and von Mises stresses. The decrease of the

Figure 13: Sequence of shapes corresponding to different number of iterations for example 2.

relative objective function as a function of the iterations is presented in Figure 15. In this figure
the final geometry is also presented. The initial and final coordinates of the 16 optimization
variables are shown in Table 3.
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Figure 14: Comparison between displacements and von Mises stresses in the initial and the final optimized geome-
tries for example 2.

Figure 15: Relative objective function as function of the iteractions for example 2.

In can be seen from Figure 15 that in the first iteration a great reduction of the objective
function is obtained and in the next ones reduction of the value of the objective function con-
tinue but with a relatively lower intensity. This is a consequence of the shape optimization
evolution shown in Figure 13, where initially a double curvature shape is formed with the mass
being concentrated at the supports of the structure due to the stress concentration on this area.
However, it can be seen that the upper and lower bounds fixed for the optimization variables
displacements are reached. This way, these restrictions do not allow curvature to increase and
the optimal geometry obtained looks like two inverted parabolas.

In Figure 13 strong differences in thickness can be observed. Near the the support region of
the structure, where the optimal shape has the thickest region, it cannot be correctly described
with the shell theory approach. Thus, this example shows that a structural approach based on
solid is indispensable, when three different behaviors (related to thin, thick shells as well as
solids structures) are simultaneously present.
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P x yi yf

(0,0) 5.00 0.00 -7.50
(1,0) 5.83 0.00 -7.50
(2,0) 6.67 0.00 -7.05
(3,0) 7.50 0.00 -6.01
(4,0) 8.33 0.00 7.35
(5,0) 9.17 0.00 -7.50
(6,0) 10.00 0.00 -7.50
(0,5) 5.00 1.50 -7.35
(1,5) 5.83 1.50 -7.24
(2,5) 6.67 1.50 -6.90
(3,5) 7.50 1.50 -5.86
(4,5) 8.33 1.50 -7.50
(5,5) 9.17 1.50 -3.83
(6,5) 10.00 1.50 -3.13

Table 3: Initial and final coordinates of optimization control points for example 2.

5 CONCLUSION

The model developed to optimize axisymmetric solids showed to be very useful. The op-
timized shapes found are consistent, having direct physical interpretation and better structural
performance. The shape manipulation using a NURBS description promotes an easy form to
perform the changes in the geometry while preventing the use of many optimization variables.
The methodology applied to move the mesh, avoiding high mesh distortions and control points
interpenetration has shown to be a good option instead of the use of remeshing techniques,
which are much more expensive computationally and the imposition of this method is coupled
with the optimization algorithm, since constraints are imposed to move the mesh. The sensitiv-
ity analysis performed by reverse automatic differentiation guarantees not only exact derivative
computations but also computational efficiency, and, as previously mentioned, gradient evalua-
tion is one of the main well-known numerical difficulties of optimization problems. Indeed, the
use of AD for solid optimization is a little explored area until now. The SQP is a robust numer-
ical optimization approach, as it can be observed once the initial geometry is compared with
the final one obtained, both being very distinct in many attributes. The optimization procedure
provides here the possibility of a continuous variation of the thickness, which is harder to be
obtained with the use of a finite element shell formulation. On the other hand, axisymmetric
geometries and loads are a more limited problem. The use of this methodology for plane stress
and plane strain cases is straightforward.
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