Asociación Argentina



de Mecánica Computacional

Mecánica Computacional Vol XXXII, págs. 3497-3512 (artículo completo) Carlos G. García Garino, Aníbal E. Mirasso, Mario A. Storti, Miguel E. Tornello (Eds.) Mendoza, Argentina, 19-22 Noviembre 2013

# VIBRACIONES TRANSVERSALES DE PLACAS SUPERELÍPTICAS CON FUERZAS EN SU PLANO Y MASAS ADOSADAS

# Santiago Maiz<sup>a</sup>, Carlos A. Rossit<sup>a,b</sup> and Diana V. Bambill<sup>a,b</sup>

<sup>a</sup>Departamento de Ingeniería, Instituto de Mecánica Aplicada, (IMA), Universidad Nacional del Sur, (UNS), Bahía Blanca, Argentina.

<sup>b</sup>Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.

smaiz@uns.edu.ar, carossit@criba.edu.ar, dbambill@criba.edu.ar

Keywords: Vibración de placas, Placas elípticas, Fuerzas en el plano, Masas adosadas.

**Abstract**. Los trabajos que estudian la vibración transversal de placas elípticas no son numerosos en la literatura científica. Más contados aún son los casos en que además se considera la acción de fuerzas en el plano medio de la placa o de una masa adosada a su superficie.

En el presente trabajo se evalúa la influencia de ambas perturbaciones actuando simultáneamente sobre el comportamiento dinámico de una placa delgada superelíptica.

Se determinan frecuencias naturales de vibración transversal de diversas configuraciones de placas superelípticas sometidas a fuerzas de distinta magnitud en su plano y con la presencia de una masa de magnitud variable adosada en una posición arbitraria

En el modelo planteado, se define el contorno de la placa con una función superelíptica lo que permite analizar en un proceso unificado desde placas elípticas, pasando por la circular, hasta placas rectangulares.

El problema es analizado mediante el método de Ritz, aproximando las amplitudes de desplazamiento transversal con expresiones polinómicas en las coordenadas cartesianas. Los resultados obtenidos mediante el enfoque propuesto, son comparados satisfactoriamente con casos particulares del modelo en análisis disponibles en la literatura técnico-científica.

### 1 INTRODUCCIÓN

El estudio de las vibraciones de placas tuvo sus comienzos en los albores del siglo XIX a través de los trabajos experimentales de Chladny y los teóricos de Sophie Germaine con las correcciones de Lagrange.

A lo largo de estas últimas dos centurias el tema se ha ido enriqueciendo con las contribuciones de numerosos investigadores de distintos países de la Tierra. Ello es debido a la importancia y variedad de las aplicaciones que el tema tiene en diversos campos de la ingeniería: desde las clásicas en ingeniería civil hasta la modelización de lentes de telescopios o plaquetas de circuitos impresos.

En algunas situaciones tecnológicas, es menester recurrir a placas de diferentes formas en su contorno. En ese aspecto, adquiere trascendencia el estudio de placas superelípticas.

Es sabido (Maiz et al, 2009, 2010, 2012) que el concepto de placa superelíptica permite un tratamiento unificado para un amplio rango de placas considerando desde placas circulares a cuadradas, y desde elípticas a rectangulares.

A pesar de lo extendido del estudio de vibraciones de placas, no son numerosos los trabajos sobre placas superelípticas e incluso elípticas en la literatura. Más contados aún son los casos en que además se considera la acción de fuerzas en el plano medio de la placa o de una masa adosada a su superficie

Entre los trabajos sobre placas elípticas merecen consignarse las contribuciones de Sato (1972, 1973, 1976 y 2002) quien investigó profundamente las vibraciones transversales de placas elípticas macizas con distintas condiciones de borde.

También, entre los trabajos pioneros debe mencionarse el de DeCapua y Sun (1972) que estudiaron las frecuencias de placas ortótropas superelípticas utilizando polinomios como funciones aproximantes en el método de Ritz

En lo que hace al estudio de la vibración transversal de una placa superelíptica con la presencia de fuerzas en el plano, numerosos investigadores han estudiado el tema, pero por su actualidad se consigna el reciente trabajo de Hasheminejad (2013).

La presencia de masas adosadas sobre placas elípticas fue estudiada por Nallim y Grossi (2008) y por Maiz et al. (2009a, 2009b).

En el presente trabajo se estudia el efecto que la presencia simultánea de una masa adosada y fuerzas en el plano tienen sobre la vibración transversal de una placa superelíptica. En el caso de la masa adosada, además de su efecto traslacional se tendrá en cuenta la influencia de su inercia rotatoria al vibrar la placa.



Figura 1: Placa superelíptica con esfuerzos uniformes en el plano y una masa m adosada

## 2 EL MÉTODO DE RITZ

El funcional de energía que gobierna el problema de la placa vibrante de la Figura 1 es:

$$I(W) = \iint_{A} D\left\{\frac{1}{2}\left(\frac{\partial^{2}W}{\partial x^{2}} + \frac{\partial^{2}W}{\partial y^{2}}\right)^{2} - 2(1-v)\left[\frac{\partial^{2}W}{\partial x^{2}}\frac{\partial^{2}W}{\partial y^{2}} - \left(\frac{\partial^{2}W}{\partial x\partial y}\right)^{2}\right] + S\left[\left(\frac{\partial W}{\partial x} + \frac{\partial W}{\partial y}\right)^{2}\right]\right\} dxdy - \frac{1}{2}\omega^{2}\left\{\rho h \iint_{A} W^{2} dxdy + \left[mW^{2} + J_{x}\left(\frac{\partial W}{\partial x}\right)^{2} + J_{y}\left(\frac{\partial W}{\partial y}\right)^{2}\right]_{(x_{m}, y_{m})}\right\};$$

$$(1)$$

donde *A* es el dominio de la placa, *v* es el coeficiente de Poisson,  $\rho$  es la densidad del material de la placa, *h* su espesor uniforme, *S* es la carga en el plano medio de la placa y normal a su borde expresada en *N/m* como se observa en la Figura 1, *m* es la masa concentrada adosada a la placa en la posición  $x_m$ ,  $y_m$ , con inercia rotatoria  $J_{x_x}$  y  $J_{y_y}$  con respecto al plano medio de la placa en la placa en los ejes *x* e y respectivamente.

La expresión  $D = Eh^3 / [12(1-v^2)]$  corresponde a la rigidez flexional de la placa; con *E* módulo de Young y v coeficiente de Poisson.

Cuando la placa ejecuta uno de sus modos normales de vibración, el desplazamiento de la superficie media de la placa w(x, y, t) puede ser representado mediante el producto:

$$w(x, y, t) = W(x, y) e^{i\omega t};$$
<sup>(2)</sup>

donde W es una función continua que representa la amplitud de la deformación de la superficie media y  $\omega$  es la frecuencia circular natural.

Se obtendrá una solución aproximada del problema mediante el método de Ritz. Para ello es necesario utilizar como aproximación para la amplitud W, alguna expresión que satisfaga al menos las condiciones esenciales de borde. En este caso la expresión para W será definida como una sumatoria con coeficientes indeterminados  $C_i$ .

$$W(x, y) \cong W_a(x, y) = \sum_{i=1}^{R} C_i f_i(x, y); \qquad (3)$$

en la que f representa funciones continuas:

$$f_i(x, y) = \left[ \left(\frac{x}{a}\right)^{2\alpha} + \left(\frac{y}{b}\right)^{2\alpha} - 1 \right]^n \phi_i(x, y).$$
(4)

La expresión en el corchete define el contorno de la placa, el parámetro *n* depende de la vinculación de la placa y los  $\phi'_i$ 's son monomios elegidos de un set de monomios de la forma:

$$x^{q-p}y^p.$$
 (5)

Entonces, la solución aproximada (3) deviene en:

$$W_{a}(x,y) = \sum_{i=1}^{R} C_{i} f_{i}(x,y) = \left[ \left( \frac{x}{a} \right)^{2\alpha} + \left( \frac{y}{b} \right)^{2\alpha} - 1 \right]^{n} \sum_{q=0}^{s} \sum_{p=0}^{q} C_{i} x^{q-p} y^{p} ; \qquad (6)$$

$$\cos\left( i = \frac{q(q+1)}{2} + (p+1); R = \frac{(s+1)(s+2)}{2} \right).$$

La ecuación (6) satisface las condiciones de borde de placas libres cuando n=0, simplemente apoyadas cuando n=1 y empotradas cuando n=2.

Es conveniente normalizar las coordenadas:

$$\xi = \frac{x}{a}, \ \eta = \frac{y}{b} \ , \tag{7}$$

con lo cual:

$$W_{a}(\xi,\eta) = \sum_{q=0}^{s} \sum_{p=0}^{q} \overline{C}_{i} \left[ \xi^{2\alpha} + \eta^{2\alpha} - 1 \right]^{n} \xi^{q-p} \eta^{p} \quad ; \tag{8}$$

donde  $\overline{C}_i = C_i a^{q-p} b^p$ .

De acuerdo con el método de Ritz, luego de introducir la expresión aproximada  $W_a(\xi,\eta)$ , Ec. (8) en la Ec. (1), la integración de  $J(W_a)$  conduce a una función cuadrática homogénea en los desconocidos coeficientes de desplazamiento  $\overline{C}_i$ . La minimización de dicha función lleva a un sistema de ecuaciones homogéneas de primer orden en los  $C_i$ :

$$\frac{\partial J\left(W_{a}\right)}{\partial \overline{C}_{i}} = 0 \quad ; \quad i = 1, 2, 3, \dots, R \quad ; \tag{9}$$

El sistema de ecuaciones obtenido puede ser escrito en la forma:

$$\left[\mathbf{K} + N\mathbf{H} - \Omega^2 \mathbf{L}\right] \overline{\mathbf{C}} = \mathbf{0}; \qquad (10)$$

donde N = Sab/D, es el valor adimensional de la carga en el plano,  $\Omega = \omega ab \sqrt{\rho h/D}$  son los coeficientes de frecuencia naturales de vibración del sistema y K, H y L son matrices simétricas cuyos elementos vienen dados respectivamente por:

$$k_{ij} = \iint_{\overline{A}} \left[ \left( \frac{b}{a} \right)^{2} \varphi_{i,\xi\xi} \varphi_{j,\xi\xi} + \left( \frac{a}{b} \right)^{2} \varphi_{i,\eta\eta} \varphi_{j,\eta\eta} + v \left( \varphi_{i,\xi\xi} \varphi_{j,\eta\eta} + \varphi_{j,\xi\xi} \varphi_{i,\eta\eta} \right) + 2 (1-v) \varphi_{i,\xi\eta} \varphi_{j,\xi\eta} \right] d\xi d\eta;$$

$$h_{ij} = \iint_{\overline{A}} \left( \varphi_{i,\xi} \varphi_{j,\xi} + \varphi_{i,\eta} \varphi_{j,\eta} \right) d\xi d\eta;$$

$$l_{ij} = \iint_{\overline{A}} \varphi_{i} \varphi_{j} d\xi d\eta + MR \varphi_{i} \left( \xi_{m}, \eta_{m} \right) \varphi_{j} \left( \xi_{m}, \eta_{m} \right) + MRr^{2} \left[ \varphi_{i,\xi} \varphi_{j,\xi} + \frac{a^{2}}{b^{2}} \varphi_{i,\eta} \varphi_{j,\eta} \right]_{\left( \xi_{m}, \eta_{m} \right)};$$

$$(11)$$

en las cuales  $\overline{A}$  es el dominio normalizado, *i*, *j* son enteros (1, 2, ..., *R*) y  $\varphi_i(\xi,\eta) = \left[\xi^{2\alpha} + \eta^{2\alpha} - 1\right]^n \xi^{q-p} \eta^p.$ 

 $M = m/m_p$  es la relación entre la masa concentrada *m* y la masa total de la placa superelíptica:  $m_p = \rho a b h A_N$ ; *r* es el radio de giro,  $J_x = J_y = m a^2 r^2$  y  $A_N$  es el área del dominio normalizado, en particular es  $A_N = \pi$  para  $\alpha = 1$  y es  $A_N = 4$  para  $\alpha \rightarrow \infty$ .

Los coeficientes de frecuencia natural  $\Omega$  son obtenidos estableciendo la nulidad del determinante de la Ec. (10), definiendo con anterioridad el valor N de la carga en el plano. La condición de no trivialidad conduce a una ecuación trascendente en  $\Omega$ .

En tanto que el coeficiente de carga crítica  $N_{cr}$  se determina haciendo nulo el coeficiente de frecuencias  $\Omega$  y procediendo de manera similar a lo antedicho, quedando el problema de carga crítica de la siguiente forma:

$$\left[\mathbf{K} + N_{cr}\mathbf{H}\right]\overline{\mathbf{C}} = \mathbf{0}.$$
 (12)

### **3 RESULTADOS NUMÉRICOS**

Se han realizado pruebas de convergencia y comparaciones con trabajos anteriores llegando a una predicción óptima de los coeficientes de frecuencias y de carga crítica de compresión con R=136.

La Tabla 1 muestra los coeficientes de carga crítica de compresión  $N_{cr}$ , pandeo, para diferentes placas superelípticas empotradas en su contorno, con v=0,30.

|               |   |        | a/b    |        |                         |
|---------------|---|--------|--------|--------|-------------------------|
| Geometría     | α | 1      | 1,5    | 2      | Obs.                    |
|               | 1 | 14,682 | 16,856 | 20,868 |                         |
| Superelíptica | 2 | 13,175 | 15,361 | 19,484 |                         |
|               | 5 | 13,076 | 15,250 | 19,362 |                         |
| Rectangular   |   | 13,087 | 15,253 | 19,362 | Timoshenko et al., 1961 |

Tabla 1: Coeficientes de carga crítica de compresión  $|N_{cr}| = \begin{vmatrix} S & a & b \\ D \end{vmatrix}$  en el plano para diferentes geometrías

Los valores presentes en la Tabla 1, para la placa rectangular, fueron calculados por Timoshenko y Gere (Timoshenko et al., 1961).

Debido a la cantidad y variabilidad de parámetros involucrados en la descripción del comportamiento del modelo propuesto, se presentan algunos casos representativos que son considerados para demostrar la conveniencia del procedimiento.

A continuación se muestran los coeficientes adimensionales de frecuencia natural para los primeros cinco modos en función de distintas cargas N en el plano de la placa y para la masa m concentrada aplicada en el centro de la placa. Se adopta el parámetro  $\lambda = S a b / D / |N_{cr}|$  para relacional la carga S en el plano con el valor de la carga crítica.

En la Tabla 2, se muestra los coeficientes adimensionales para la placa circular, se consideraron 4 valores para la masa concentrada, M = 0; 0,5; 1; 2. Cuando no hay carga en el plano los valores obtenidos son los clásicos de la bibliografía para la placa circular empotrada

vibrante.

|              | compre  | esión  | sin carga     |        | tracción |        |
|--------------|---------|--------|---------------|--------|----------|--------|
|              | λ=-1    | -1/2   | 0             | 1/2    | 1        | 2      |
|              |         |        | M=0           |        |          |        |
| $arOmega_1$  | 0       | 7,2750 | 10,216        | 12,440 | 14,296   | 17,376 |
| $arOmega_2$  | 14,2449 | 18,114 | 21,260        | 23,975 | 26,396   | 30,633 |
| $arOmega_3$  | 27,976  | 31,624 | 34,876        | 37,837 | 40,572   | 45,527 |
| $arOmega_4$  | 33,024  | 36,554 | 39,771        | 42,743 | 45,517   | 50,598 |
| $arOmega_5$  | 44,129  | 47,709 | 51,029        | 54,138 | 57,070   | 62,506 |
|              |         |        | <i>M</i> =0,5 |        |          |        |
| $arOmega_1$  | 0       | 3,6054 | 5,0410        | 6,1146 | 7,0021   | 8,4591 |
| $arOmega_2$  | 14,2449 | 18,114 | 21,260        | 23,975 | 26,396   | 30,633 |
| $arOmega_3$  | 21,006  | 23,143 | 25,081        | 26,865 | 28,525   | 31,553 |
| $arOmega_4$  | 27,976  | 31,624 | 34,876        | 37,837 | 40,572   | 45,527 |
| $\Omega_5$   | 44,129  | 47,709 | 51,029        | 54,138 | 57,070   | 62,506 |
|              |         |        | M=1           |        |          |        |
| $arOmega_1$  | 0       | 2,7109 | 3,7772        | 4,5696 | 5,2219   | 6,2889 |
| $arOmega_2$  | 14,2449 | 18,114 | 21,260        | 23,975 | 26,396   | 30,568 |
| $arOmega_3$  | 20,106  | 22,235 | 24,162        | 25,931 | 27,575   | 30,633 |
| $arOmega_4$  | 27,976  | 31,624 | 34,876        | 37,837 | 40,572   | 45,527 |
| $\Omega_5$   | 44,129  | 47,709 | 51,029        | 54,138 | 57,070   | 62,506 |
|              |         |        | M=2           |        |          |        |
| $arOmega_1$  | 0       | 1,9821 | 2,7552        | 3,3271 | 3,7972   | 4,5642 |
| $arOmega_2$  | 14,245  | 18,114 | 21,260        | 23,975 | 26,396   | 30,062 |
| $arOmega_3$  | 19,605  | 21,743 | 23,671        | 25,439 | 27,079   | 30,633 |
| $arOmega_4$  | 27,976  | 31,624 | 34,876        | 37,837 | 40,572   | 45,528 |
| $\Omega_{5}$ | 44 129  | 47 709 | 51 029        | 54 138 | 57 070   | 62,506 |

Tabla 2: Coeficientes adimensionales de frecuencia de la placa circular con masa en el centro

Puede observarse en las tablas el efecto rigidizante de la carga N de tracción, casos  $N/N_{cr} = -1/2, -1, -2;$  y el efecto contrario si la carga es de compresión  $N/N_{cr} = 1, 1/2;$  pues todas las frecuencias disminuyen.

La presencia de la masa centrada en la placa circular tal como es de esperarse no altera los coeficientes de frecuencia que corresponden a las formas modales que tienen al centro de la placa como un punto de sus líneas nodales.

La Tabla 3, contiene los coeficientes de una placa superelíptica,  $\alpha = 2$ , de relación a/b=1, los coeficientes disminuyen al colocar una masa M que varía entre 1 y 2 veces el valor de la masa de la placa, excepto en los casos en la forma modal correspondiente contiene el punto centro de la placa como un punto de alguna de sus líneas nodales, en cuyo caso los coeficientes de frecuencia no resultan alterados. Esta misma circunstancia puede observarse en los coeficientes de frecuencia de las tablas siguientes (Tablas 4 a 11).

|             | compr   | resión | sin carga     |        | tracción |        |
|-------------|---------|--------|---------------|--------|----------|--------|
|             | λ=-1    | -1/2   | 0             | 1/2    | 1        | 2      |
|             |         |        | M=0           |        |          |        |
| $arOmega_1$ | 0       | 6,1039 | 9,093         | 11,269 | 13,058   | 15,997 |
| $arOmega_2$ | 12,4007 | 15,512 | 18,671        | 21,343 | 23,696   | 27,773 |
| $arOmega_3$ | 21,945  | 24,905 | 28,173        | 31,082 | 33,728   | 38,449 |
| $arOmega_4$ | 26,849  | 29,728 | 32,978        | 35,922 | 38,631   | 43,520 |
| $arOmega_5$ | 28,132  | 30,948 | 34,163        | 37,098 | 39,812   | 44,733 |
|             |         |        | <i>M</i> =0,5 |        |          |        |
| $arOmega_1$ | 0       | 2,9762 | 4,4178        | 5,4576 | 6,3057   | 7,6871 |
| $arOmega_2$ | 12,4005 | 15,511 | 18,671        | 21,343 | 23,696   | 27,772 |
| $arOmega_3$ | 18,394  | 20,129 | 22,103        | 23,899 | 25,556   | 28,552 |
| $arOmega_4$ | 21,945  | 24,905 | 28,173        | 31,082 | 33,728   | 38,449 |
| $arOmega_5$ | 26,850  | 29,728 | 32,979        | 35,922 | 38,631   | 43,520 |
|             |         |        | M=1           |        |          |        |
| $arOmega_1$ | 0       | 2,2340 | 3,3042        | 4,0711 | 4,6943   | 5,7060 |
| $arOmega_2$ | 12,4005 | 15,511 | 18,671        | 21,342 | 23,695   | 27,704 |
| $arOmega_3$ | 17,660  | 19,386 | 21,345        | 23,123 | 24,761   | 27,781 |
| $arOmega_4$ | 21,945  | 24,905 | 28,173        | 31,082 | 33,728   | 38,449 |
| $arOmega_5$ | 26,850  | 29,728 | 32,979        | 35,922 | 38,631   | 43,520 |
|             |         |        | M=2           |        |          |        |
| $\Omega_1$  | 0       | 1,632  | 2,408         | 2,961  | 3,410    | 4,138  |
| $arOmega_2$ | 12,400  | 15,511 | 18,671        | 21,342 | 23,695   | 27,287 |
| $arOmega_3$ | 17,252  | 18,982 | 20,940        | 22,715 | 24,347   | 27,775 |
| $arOmega_4$ | 21,945  | 24,905 | 28,173        | 31,082 | 33,728   | 38,449 |
| $\Omega_5$  | 26,850  | 29.728 | 32,979        | 35.922 | 38.631   | 43.520 |

Tabla 3: Coeficientes adimensionales de frecuencia de la placa superelíptica  $\alpha = 2$  de relación a/b=1 con masa en el centro

|             | compre  | esión  | sin carga     |        | tracción |        |
|-------------|---------|--------|---------------|--------|----------|--------|
|             | λ=-1    | -1/2   | 0             | 1/2    | 1        | 2      |
|             |         |        | M=0           |        |          |        |
| $arOmega_1$ | 0       | 6,4093 | 8,990         | 10,938 | 12,561   | 15,253 |
| $arOmega_2$ | 12,1336 | 15,564 | 18,333        | 20,712 | 22,829   | 26,526 |
| $arOmega_3$ | 20,922  | 24,203 | 27,069        | 29,644 | 32,001   | 36,230 |
| $arOmega_4$ | 26,793  | 29,992 | 32,866        | 35,497 | 37,937   | 42,374 |
| $arOmega_5$ | 27,118  | 30,238 | 33,065        | 35,666 | 38,086   | 42,500 |
|             |         |        | <i>M</i> =0,5 |        |          |        |
| $arOmega_1$ | 0       | 3,0678 | 4,2935        | 5,2130 | 5,9753   | 7,2317 |
| $arOmega_2$ | 12,1332 | 15,563 | 18,332        | 20,711 | 22,828   | 26,523 |
| $arOmega_3$ | 18,0463 | 19,998 | 21,762        | 23,382 | 24,886   | 27,628 |
| $arOmega_4$ | 20,922  | 24,203 | 27,069        | 29,644 | 32,001   | 36,230 |
| $arOmega_5$ | 26,795  | 29,994 | 32,869        | 35,501 | 37,941   | 42,379 |
|             |         |        | M=1           |        |          |        |
| $arOmega_1$ | 0       | 2,2966 | 3,2050        | 3,8829 | 4,4432   | 5,3642 |
| $arOmega_2$ | 12,1331 | 15,563 | 18,332        | 20,711 | 22,827   | 26,516 |
| $arOmega_3$ | 17,3719 | 19,312 | 21,061        | 22,664 | 24,151   | 26,863 |
| $arOmega_4$ | 20,922  | 24,203 | 27,069        | 29,644 | 32,001   | 36,230 |
| $arOmega_5$ | 26,795  | 29,994 | 32,869        | 35,501 | 37,941   | 42,379 |
|             |         |        | M=2           |        |          |        |
| $arOmega_1$ | 0       | 1,6753 | 2,3331        | 2,8222 | 3,2261   | 3,8891 |
| $arOmega_2$ | 12,133  | 15,563 | 18,331        | 20,711 | 22,826   | 26,422 |
| $arOmega_3$ | 16,997  | 18,939 | 20,686        | 22,285 | 23,767   | 26,545 |
| $arOmega_4$ | 20,922  | 24,203 | 27,069        | 29,644 | 32,001   | 36,230 |
| $\Omega_5$  | 26,795  | 29,994 | 32.869        | 35,501 | 37.941   | 42.379 |

Tabla 4: Coeficientes adimensionales de frecuencia de la placa superelíptica  $\alpha = 5$  de relación a/b=1 con masa en el centro

|          |         | comp   | resión | sin carga     |        | tracción |        |
|----------|---------|--------|--------|---------------|--------|----------|--------|
|          |         | λ=-1   | -1/2   | 0             | 1/2    | 1        | 2      |
|          |         |        |        | M=0           |        |          |        |
| S        | $2_1$   | 0      | 8,1395 | 11,420        | 13,898 | 15,965   | 19,396 |
| <u>(</u> | $2_2$   | 10,454 | 15,354 | 18,981        | 21,986 | 24,603   | 29,095 |
| <u>(</u> | $2_3$   | 19,924 | 24,121 | 27,658        | 30,768 | 33,573   | 38,537 |
| S        | $Q_4$   | 21,407 | 25,836 | 29,593        | 32,908 | 35,904   | 41,219 |
| S        | $Q_5$   | 30,161 | 34,329 | 38,023        | 41,372 | 44,457   | 50,028 |
|          |         |        |        | <i>M</i> =0,5 |        |          |        |
| 5        | $Q_1$   | 0      | 3,9386 | 5,4936        | 6,6542 | 7,6131   | 9,1883 |
| <u>(</u> | $2_2$   | 10,454 | 15,354 | 18,981        | 21,986 | 24,603   | 29,095 |
| S        | $2_3$   | 17,331 | 20,683 | 23,454        | 25,858 | 28,006   | 31,770 |
| <u>(</u> | $2_4$   | 19,924 | 24,121 | 27,658        | 30,768 | 33,573   | 38,537 |
| 9        | $2_{5}$ | 30,161 | 34,329 | 38,023        | 41,372 | 44,457   | 49,917 |
|          |         |        |        | M=1           |        |          |        |
| <u>(</u> | $2_1$   | 0      | 2,9493 | 4,0982        | 4,9507 | 5,6525   | 6,8020 |
| <u>(</u> | $2_2$   | 10,454 | 15,354 | 18,981        | 21,986 | 24,603   | 29,095 |
| S        | $2_{3}$ | 16,856 | 20,161 | 22,889        | 25,253 | 27,364   | 31,064 |
| S        | $2_4$   | 19,924 | 24,121 | 27,658        | 30,768 | 33,573   | 38,537 |
| S        | $2_{5}$ | 30,161 | 34,329 | 38,023        | 41,372 | 44,457   | 49,518 |
|          |         |        |        | M=2           |        |          |        |
| 5        | $Q_1$   | 0      | 2,1508 | 2,9813        | 3,5953 | 4,0999   | 4,9248 |
| S        | $Q_2$   | 10,454 | 15,354 | 18,981        | 21,986 | 24,603   | 29,095 |
| S        | $2_3$   | 16,579 | 19,870 | 22,581        | 24,929 | 27,024   | 30,697 |
| <u>C</u> | $2_4$   | 19,924 | 24,121 | 27,658        | 30,768 | 33,573   | 38,537 |
| S        | $2_{5}$ | 30,161 | 34,329 | 38,023        | 41,372 | 44,339   | 49,321 |

Tabla 5: Coeficientes adimensionales de frecuencia de la placa elíptica de relación a/b=1,5 con masa en el centro

|             | comp   | resión | sin carga     |        | tracción |        |
|-------------|--------|--------|---------------|--------|----------|--------|
|             | λ=-1   | -1/2   | 0             | 1/2    | 1        | 2      |
|             |        |        | M=0           |        |          |        |
| $arOmega_1$ | 0      | 7,3041 | 10,244        | 12,464 | 14,316   | 17,387 |
| $arOmega_2$ | 7,9884 | 12,687 | 16,014        | 18,727 | 21,071   | 25,068 |
| $arOmega_3$ | 17,988 | 22,003 | 25,182        | 27,982 | 30,510   | 34,985 |
| $arOmega_4$ | 18,239 | 22,111 | 25,561        | 28,582 | 31,300   | 36,100 |
| $arOmega_5$ | 24,010 | 27,841 | 31,184        | 34,185 | 36,929   | 41,852 |
|             |        |        | <i>M</i> =0,5 |        |          |        |
| $arOmega_1$ | 00     | 3,5055 | 4,8842        | 5,9140 | 6,7662   | 8,1694 |
| $arOmega_2$ | 7,9883 | 12,687 | 16,014        | 18,727 | 21,071   | 25,068 |
| $arOmega_3$ | 14,163 | 17,320 | 19,901        | 22,127 | 24,108   | 27,565 |
| $arOmega_4$ | 18,239 | 22,003 | 25,182        | 27,982 | 30,510   | 34,985 |
| $arOmega_5$ | 24,010 | 27,841 | 31,184        | 34,185 | 36,929   | 41,852 |
|             |        |        | M=1           |        |          |        |
| $arOmega_1$ | 0      | 2,6209 | 3,6376        | 4,3931 | 5,0166   | 6,0408 |
| $arOmega_2$ | 7,9883 | 12,687 | 16,014        | 18,727 | 21,071   | 25,068 |
| $arOmega_3$ | 13,768 | 16,901 | 19,453        | 21,650 | 23,602   | 27,008 |
| $arOmega_4$ | 18,239 | 22,003 | 25,182        | 27,982 | 30,510   | 34,985 |
| $arOmega_5$ | 24,010 | 27,841 | 31,184        | 34,185 | 36,929   | 41,852 |
|             |        |        | M=2           |        |          |        |
| $\Omega_1$  | 0      | 1,9095 | 2,6437        | 3,1876 | 3,6358   | 4,3711 |
| $arOmega_2$ | 7,9883 | 12,687 | 16,014        | 18,727 | 21,071   | 25,068 |
| $arOmega_3$ | 13,540 | 16,669 | 19,211        | 21,396 | 23,336   | 26,719 |
| $arOmega_4$ | 18,239 | 22,003 | 25,182        | 27,982 | 30,510   | 34,985 |
| $\Omega_5$  | 24,010 | 27,841 | 31,184        | 34,185 | 36,929   | 41,852 |

Tabla 6: Coeficientes adimensionales de frecuencia de la placa superelíptica  $\alpha = 2$  de relación a/b=1,5 con masa en el centro

|             | compr  | esión  | sin carga     |        | tracción |        |
|-------------|--------|--------|---------------|--------|----------|--------|
|             | λ=-1   | -1/2   | 0             | 1/2    | 1        | 2      |
|             |        |        | M=0           |        |          |        |
| $arOmega_1$ | 0      | 7,2225 | 10,125        | 12,316 | 14,141   | 17,169 |
| $arOmega_2$ | 7,6578 | 12,345 | 15,634        | 18,307 | 20,613   | 24,537 |
| $arOmega_3$ | 17,429 | 21,522 | 24,805        | 27,569 | 30,063   | 34,479 |
| $arOmega_4$ | 17,940 | 21,663 | 24,934        | 27,917 | 30,596   | 35,321 |
| $arOmega_5$ | 22,874 | 26,666 | 29,958        | 32,905 | 35,594   | 40,407 |
|             |        |        | <i>M</i> =0,5 |        |          |        |
| $arOmega_1$ | 00     | 3,4103 | 4,7533        | 5,7581 | 6,5910   | 7,9653 |
| $arOmega_2$ | 7,6575 | 12,345 | 15,634        | 18,307 | 20,612   | 24,536 |
| $arOmega_3$ | 13,708 | 16,859 | 19,431        | 21,647 | 23,618   | 27,059 |
| $arOmega_4$ | 17,940 | 21,663 | 24,805        | 27,569 | 30,063   | 34,479 |
| $arOmega_5$ | 22,874 | 26,666 | 29,958        | 32,905 | 35,594   | 40,407 |
|             |        |        | <i>M</i> =1   |        |          |        |
| $arOmega_1$ | 0      | 2,5447 | 3,5341        | 4,2710 | 4,8804   | 5,8841 |
| $arOmega_2$ | 7,6575 | 12,345 | 15,633        | 18,306 | 20,612   | 24,536 |
| $arOmega_3$ | 13,343 | 16,475 | 19,020        | 21,209 | 23,154   | 26,545 |
| $arOmega_4$ | 17,940 | 21,663 | 24,805        | 27,569 | 30,063   | 34,479 |
| $arOmega_5$ | 22,874 | 26,666 | 29,958        | 32,905 | 35,594   | 40,407 |
|             |        |        | <i>M</i> =2   |        |          |        |
| $arOmega_1$ | 0      | 1,8519 | 2,5661        | 3,0966 | 3,5347   | 4,2556 |
| $arOmega_2$ | 7,6575 | 12,345 | 15,633        | 18,306 | 20,612   | 24,536 |
| $arOmega_3$ | 13,134 | 16,263 | 18,799        | 20,977 | 22,910   | 26,279 |
| $arOmega_4$ | 17,940 | 21,663 | 24,805        | 27,569 | 30,063   | 34,479 |
| $arOmega_5$ | 22,874 | 26,666 | 29,958        | 32,905 | 35,594   | 40,407 |

Tabla 7: Coeficientes adimensionales de frecuencia de la placa superelíptica  $\alpha = 5$  de relación a/b=1,5 con masa en el centro.

|             | comp   | resión | sin carga     |        | tracción |        |
|-------------|--------|--------|---------------|--------|----------|--------|
|             | λ=-1   | -1/2   | 0             | 1/2    | 1        | 2      |
|             | -      |        | M=0           |        |          |        |
| $arOmega_1$ | 0      | 9,7730 | 13,689        | 16,644 | 19,107   | 23,193 |
| $arOmega_2$ | 8,8406 | 15,356 | 19,749        | 23,277 | 26,303   | 31,431 |
| $arOmega_3$ | 17,569 | 23,383 | 27,988        | 31,908 | 35,375   | 41,402 |
| $arOmega_4$ | 25,505 | 30,604 | 34,929        | 38,746 | 42,197   | 48,317 |
| $arOmega_5$ | 28,236 | 33,768 | 38,497        | 42,691 | 46,495   | 53,261 |
|             |        |        | <i>M</i> =0,5 |        |          |        |
| $arOmega_1$ | 00     | 4,5072 | 6,2669        | 7,5790 | 8,6640   | 10,450 |
| $arOmega_2$ | 8,8406 | 15,356 | 19,749        | 23,277 | 26,303   | 31,431 |
| $arOmega_3$ | 14,754 | 19,542 | 23,254        | 26,368 | 29,094   | 33,781 |
| $arOmega_4$ | 25,505 | 30,604 | 34,929        | 38,746 | 42,197   | 48,317 |
| $arOmega_5$ | 28,236 | 33,768 | 38,497        | 42,691 | 46,495   | 53,261 |
|             |        |        | M=1           |        |          |        |
| $arOmega_1$ | 0      | 3,3510 | 4,6415        | 5,5993 | 6,3893   | 7,6869 |
| $arOmega_2$ | 8,8406 | 15,356 | 19,749        | 23,277 | 26,303   | 31,431 |
| $arOmega_3$ | 14,459 | 19,225 | 22,903        | 25,985 | 28,679   | 33,308 |
| $arOmega_4$ | 25,505 | 30,604 | 34,929        | 38,746 | 42,197   | 48,317 |
| $arOmega_5$ | 28,236 | 33,768 | 38,497        | 42,691 | 46,495   | 53,261 |
|             |        |        | M=2           |        |          |        |
| $arOmega_1$ | 0      | 2,4334 | 3,3626        | 4,0504 | 4,6170   | 5,5466 |
| $arOmega_2$ | 8,8406 | 15,356 | 19,749        | 23,277 | 26,303   | 31,431 |
| $arOmega_3$ | 14,289 | 19,050 | 22,715        | 25,781 | 28,461   | 33,063 |
| $arOmega_4$ | 25,505 | 30,604 | 34,929        | 38,746 | 42,197   | 48,317 |
| $\Omega_5$  | 28,236 | 33,768 | 38,497        | 42,691 | 46,495   | 53,144 |

Tabla 8: Coeficientes adimensionales de frecuencia de la placa elíptica de relación a/b=2 con masa en el centro

|             | comp           | resión | sin carga     |        | tracción |        |
|-------------|----------------|--------|---------------|--------|----------|--------|
|             | $\lambda = -1$ | -1/2   | 0             | 1/2    | 1        | 2      |
|             |                |        | M=0           |        |          |        |
| $arOmega_1$ | 0              | 8,8801 | 12,442        | 15,131 | 17,374   | 21,094 |
| $arOmega_2$ | 5,4064         | 12,267 | 16,397        | 19,629 | 22,367   | 26,966 |
| $arOmega_3$ | 12,875         | 18,757 | 23,158        | 26,818 | 30,013   | 35,507 |
| $arOmega_4$ | 22,717         | 28,129 | 32,454        | 35,971 | 39,153   | 44,799 |
| $arOmega_5$ | 23,787         | 28,472 | 32,639        | 36,581 | 40,124   | 46,374 |
|             |                |        | <i>M</i> =0,5 |        |          |        |
| $arOmega_1$ | 00             | 4,1003 | 5,6808        | 6,8617 | 7,8408   | 9,4581 |
| $arOmega_2$ | 5,4064         | 12,267 | 16,397        | 19,629 | 22,367   | 26,966 |
| $arOmega_3$ | 10,469         | 15,401 | 19,005        | 21,959 | 24,512   | 28,858 |
| $arOmega_4$ | 22,717         | 28,129 | 32,454        | 35,971 | 39,153   | 44,799 |
| $arOmega_5$ | 23,787         | 28,472 | 32,639        | 36,581 | 40,124   | 46,373 |
|             |                |        | M=1           |        |          |        |
| $arOmega_1$ | 0              | 3,0433 | 4,1990        | 5,0596 | 5,7720   | 6,9473 |
| $arOmega_2$ | 5,4064         | 12,267 | 16,397        | 19,629 | 22,367   | 26,966 |
| $arOmega_3$ | 10,235         | 15,171 | 18,755        | 21,686 | 24,216   | 28,518 |
| $arOmega_4$ | 22,717         | 28,129 | 32,454        | 35,971 | 39,153   | 44,799 |
| $arOmega_5$ | 23,787         | 28,472 | 32,639        | 36,581 | 40,124   | 46,373 |
|             |                |        | M=2           |        |          |        |
| $arOmega_1$ | 0              | 2,2077 | 3,0384        | 3,6560 | 4,1668   | 5,0090 |
| $arOmega_2$ | 5,4064         | 12,267 | 16,397        | 19,629 | 22,367   | 26,966 |
| $arOmega_3$ | 10,100         | 15,047 | 18,623        | 21,544 | 24,063   | 28,345 |
| $arOmega_4$ | 22,717         | 28,129 | 32,454        | 35,971 | 39,153   | 44,799 |
| $\Omega_5$  | 23,787         | 28,472 | 32.639        | 36.581 | 40.123   | 46.373 |

Tabla 9: Coeficientes adimensionales de frecuencia de la placa superelíptica  $\alpha = 2$  de relación *a/b*=2 con masa en el centro

|             | compre | esión  | sin carga     |        | tracción |        |
|-------------|--------|--------|---------------|--------|----------|--------|
|             | λ=-1   | -1/2   | 0             | 1/2    | 1        | 2      |
|             |        |        | M=0           |        |          |        |
| $\Omega_1$  | 0      | 8,7736 | 12,290        | 14,944 | 17,157   | 20,826 |
| $arOmega_2$ | 4,8474 | 11,828 | 15,917        | 19,100 | 21,790   | 26,298 |
| $arOmega_3$ | 12,099 | 18,021 | 22,391        | 26,006 | 29,153   | 34,551 |
| $arOmega_4$ | 21,791 | 27,197 | 31,675        | 35,485 | 38,631   | 44,211 |
| $arOmega_5$ | 23,425 | 28,065 | 32,006        | 35,577 | 39,076   | 45,237 |
|             |        |        | <i>M</i> =0,5 |        |          |        |
| $arOmega_1$ | 00     | 3,9994 | 5,5412        | 6,6964 | 7,6565   | 9,2463 |
| $arOmega_2$ | 4,8472 | 11,828 | 15,917        | 19,099 | 21,789   | 26,297 |
| $arOmega_3$ | 9,7801 | 14,771 | 18,369        | 21,304 | 23,835   | 28,137 |
| $arOmega_4$ | 21,790 | 27,196 | 31,674        | 35,485 | 38,631   | 44,211 |
| $\Omega_5$  | 23,425 | 28,065 | 32,006        | 35,575 | 39,074   | 45,234 |
|             |        |        | M=1           |        |          |        |
| $arOmega_1$ | 0      | 2,9635 | 4,0901        | 4,9320 | 5,6309   | 6,7872 |
| $arOmega_2$ | 4,8472 | 11,828 | 15,917        | 19,099 | 21,789   | 26,297 |
| $arOmega_3$ | 9,5634 | 14,564 | 18,144        | 21,059 | 23,569   | 27,832 |
| $arOmega_4$ | 21,790 | 27,196 | 31,673        | 35,485 | 38,631   | 44,211 |
| $\Omega_5$  | 23,425 | 28,065 | 32,006        | 35,575 | 39,074   | 45,234 |
|             |        |        | M=2           |        |          |        |
| $arOmega_1$ | 0      | 2,1478 | 2,9574        | 3,5616 | 4,0629   | 4,8919 |
| $arOmega_2$ | 4,8472 | 11,828 | 15,917        | 19,099 | 21,789   | 26,297 |
| $arOmega_3$ | 9,4395 | 14,453 | 18,027        | 20,932 | 23,432   | 27,676 |
| $arOmega_4$ | 21,790 | 27,196 | 31,673        | 35,485 | 38,631   | 44,211 |
| $\Omega_5$  | 23,425 | 28.065 | 32,006        | 35.575 | 39.073   | 45.233 |

Tabla 10: Coeficientes adimensionales de frecuencia de la placa superelíptica  $\alpha = 5$  de relación a/b=2 con masa en el centro



Figura 2: Variación de coeficiente de frecuencia fundamental en función del valor de la masa M y de la relación  $\lambda$  de carga, aplicada en el plano medio de la placa.

La Figura 2 muestra cómo varían los coeficientes de frecuencia fundamental cuando la carga aplicada en la placa crece desde el valor crítico hasta dos veces ese valor en tracción y la masa centrada aumenta de 0 a 2 su magnitud. Este comportamiento es también observable en para las otras frecuencias y todas las relaciones de  $\alpha$  y *a/b* presentadas en los ejemplos numéricos seleccionados.

|             | compr  | esión  | sin carga     |        | tracción |        |
|-------------|--------|--------|---------------|--------|----------|--------|
|             | λ=-1   | -1/2   | 0             | 1/2    | 1        | 2      |
|             |        |        | M=0           |        |          |        |
| $arOmega_1$ | 0      | 8,7736 | 12,290        | 14,944 | 17,157   | 20,826 |
| $arOmega_2$ | 4,8474 | 11,828 | 15,917        | 19,100 | 21,790   | 26,298 |
| $arOmega_3$ | 12,099 | 18,021 | 22,391        | 26,006 | 29,153   | 34,551 |
| $arOmega_4$ | 21,791 | 27,197 | 31,675        | 35,485 | 38,631   | 44,211 |
| $arOmega_5$ | 23,425 | 28,065 | 32,006        | 35,577 | 39,076   | 45,237 |
|             |        |        | <i>M</i> =0,5 |        |          |        |
| $arOmega_1$ | 0      | 4,4506 | 6,0224        | 7,1858 | 8,1482   | 9,7389 |
| $arOmega_2$ | 3,8752 | 10,598 | 14,391        | 17,309 | 19,759   | 23,842 |
| $arOmega_3$ | 12,050 | 17,766 | 21,813        | 25,036 | 27,781   | 32,439 |
| $arOmega_4$ | 15,896 | 20,217 | 23,912        | 27,218 | 30,219   | 35,508 |
| $arOmega_5$ | 22,693 | 27,686 | 31,866        | 35,523 | 38,810   | 44,607 |
|             |        |        | M=1           |        |          |        |
| $arOmega_1$ | 0      | 3,3149 | 4,4553        | 5,2972 | 5,9932   | 7,1436 |
| $arOmega_2$ | 3,7273 | 10,533 | 14,319        | 17,227 | 19,668   | 23,734 |
| $arOmega_3$ | 12,038 | 17,703 | 21,671        | 24,828 | 27,531   | 32,140 |
| $arOmega_4$ | 15,388 | 19,833 | 23,633        | 27,015 | 30,061   | 35,393 |
| $arOmega_5$ | 22,684 | 27,684 | 31,865        | 35,523 | 38,810   | 44,605 |
|             |        |        | M=2           |        |          |        |
| $arOmega_1$ | 0      | 2,4085 | 3,2245        | 3,8262 | 4,3236   | 5,1459 |
| $arOmega_2$ | 3,6352 | 10,500 | 14,283        | 17,186 | 19,622   | 23,680 |
| $arOmega_3$ | 12,030 | 17,661 | 21,583        | 24,709 | 27,394   | 31,984 |
| $arOmega_4$ | 15,109 | 19,640 | 23,505        | 26,926 | 29,993   | 35,342 |
| $arOmega_5$ | 22,679 | 27,683 | 31,865        | 35,523 | 38,809   | 44,604 |

Tabla 11: Coeficientes adimensionales de frecuencia de la placa superelíptica  $\alpha$  =5 de relación *a/b*=2 con la masa ubicada en *x*=1/4*a* y *y*=1/4*b* 

La última Tabla, 11, muestra el conjunto de coeficientes de frecuencia para una placa con una masa ubicada en:  $\xi = 1/4$ ;  $\eta = 1/4$ . En este caso se observa poca influencia del incremento de la magnitud de la masa partir de la segunda frecuencia.

#### **4** CONCLUSIONES

Se ha demostrado que el presente enfoque resulta ser una herramienta eficaz para estudiar el problema de vibración de placas superelípticas con una masa adosada y sometidas a la acción

de fuerzas en su plano medio. La precisión es pasible de ser mejorada incrementando el número de términos en la expresión aproximante de la deflexión de la placa.

El presente procedimiento pude ser adaptado para considerar diferentes condiciones de borde en la placa y ciertas complejidades adicionales como la presencia de orificios, ortotropía en el material entre otras.

#### AGRADECIMIENTOS

El presente realizado fue auspiciado por la Universidad Nacional del Sur y por el Consejo Nacional de Investigaciones Científicas y Técnicas.

#### REFERENCES

- De Capua, N. J., Sun, B. C., Transverse vibration of a class of orthotropic plates. *Journal of Applied Mechanics*—*ASME*, 39: 613–615, 1972.
- Hasheminejad, S. M., Ghaheri A., Rezaei S., Semi-analytic solutions for the free in-plane vibrations of confocal annular elliptic plates with elastically restrained edges. *Journal of Sound and Vibration*, 331: 434-456, 2012.
- Maiz S., Bambill D. V., Rossit C. A., Rossi R. E., Vibraciones de placas delgadas superelípticas con masas adosadas. *Mecánica Computacional*, Vol. XXVIII: 573-586, 2009a.
- Maiz, S., Rossit, C.A., Bambill, D.V., Susca, A., Transverse vibrations of a clamped elliptical plate carrying a concentrated mass at an arbitrary position. *Journal of Sound and Vibration*, 320:1146-1163, 2009b.
- Mai, S., Bambill, D. V., Rossit, C. A., Rossi R. E., Free vibration of othotropic thin superelliptical plates with concentrated masses. *Mecánica Computacional*, Vol. XXIX, 1225-1241, 2010.
- Maiz S., Bambill D. V., Rossit C. A., Vibraciones de placas superelípticas con fuerzas en su plano. *Mecánica Computacional*, Vol. XXXI, 2485-2496, 2012.
- Nallim, L. G., Grossi, R. O., Natural frequencies of symmetrically laminated elliptical and circular plates, International Journal of Mechanical Sciences 50: 1153–1167, 2008.
- Sato, K., Free flexural vibrations of an elliptical plate with simply supported edge. *The Journal* of the Acoustical Society of America, 52: 919-922, 1972
- Sato, K., Free flexural vibrations of an elliptical plate with free edge. *The Journal of the Acoustical Society of America*, 54:547-550, 1973.
- Sato, K., Free flexural vibrations of an elliptical plate with edge restrained elastically. *The Japan Society of Mechanical Engineers*, 129:260-264, 1976.
- Sato, K., Vibration and Buckling of a Clamped Elliptical Plate on Elastic Foundation and under Uniform In-Plane Force. Theor Appl Mech Jpn, 51:49-62, 2002.

Timoshenko, S. P., Gere, J. M., Theory of elastic stability. Mc Graw Hill, 1961.