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Abstract. The study of the dynamic properties of frames is very important in structural design, as they 

are the cornerstone for many resistant structures. A crack on a structural member introduces a local 

flexibility which is a function of the crack depth. This new flexibility condition changes the dynamic 

behavior of the structure. The knowledge of the influence of the crack on the characteristic dynamic 

parameters of the frame makes it possible to determine both the position of the crack and its 

magnitude in damaged frames. In this paper, the crack is modeled by means of an elastically 

restrained hinge using Chondros’ formulation while the analytical analysis is based on variational 

calculus and the Euler-Bernoulli beam theory to describe the transversal displacements of the frame 

members. In the laboratory a device was built to measure experimentally the natural frequencies of 

steel frames. The first ten natural frequencies of in plane vibration of cracked L-frames are obtained, 

different locations and depths of the crack are considered. The experimentally measured frequencies 

are compared with the frequencies obtained from the proposed analytical solution, the finite element 

method and with values reported in previous studies published on the subject by other authors. 

Mecánica Computacional Vol XXXII, págs. 3563-3574 (artículo completo)
Carlos G. García Garino, Aníbal E. Mirasso, Mario A. Storti, Miguel E. Tornello (Eds.)

Mendoza, Argentina, 19-22 Noviembre 2013

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

mailto:alejandro.ratazzi@uns.edu.ar
mailto:dbambill@criba.edu.ar


1 INTRODUCTION 

The problem of the influence of a crack in a welded joint on the dynamic behavior of a 

structural member has been studied in a thorough paper by Chondros and Dimarogonas, 1980. 

The static and dynamic analysis of beams with single or multiple concentrated damages, 

produced by cracks, has received an increasing interest in recent years.  

A very complete description of the state of the art in the field with the mention and 

description of the most important work was done by Caddemi and Morassi, 2013. 

There it is explained that generally, it is assumed that the amplitude of the deformation is 

enough to maintain the crack always open, this model offers the great advantage to be linear 

and, therefore, it leads to efficient formulations for solving both static and dynamic problems. 

From the first studies, it became clear that localized damage produces a local reduction in 

the stiffness of the beam (Thomson, 1943). Many models have been proposed in the literature 

to describe open cracks on beams, the flexibility modeling of cracks is quite common (Adams 

et al., 1978). In the case of beams under plane flexural deformation, a crack is modeled by 

inserting a massless, rotational elastic spring at the damaged cross section (Gudmnundson, 

1983; Sinha et al., 2002). 

The aim of this study is to verify, through an experimental device, the accuracy of the 

representation of the crack by a rotational spring. 

2 STRUCTURAL MODEL AND ANALYTICAL SOLUTION 

We deal with the vibration of L-frames assuming an internal crack in different positions of 

the horizontal part of the frame.  

The two parts of the L-shaped geometry are joined at right angle, with the end of one of 

them clamped and the end of the other elastically restrained. Figure 1 depicts the structure 

under study. 

The position of the crack is defined by the coordinate l2 and locally affects the flexural 

stiffness of the L-frame. It is modeled as a massless, rotational elastic spring at the damaged 

cross section connecting the two adjacent segments of the beam (Gudmnundson, 1983; Sinha 

et al., 2002) 

The magnitude adopted for the flexibility constant of the equivalent spring (C), is obtained 

by means of the expression proposed by Chondros et al., 1998 which was found with fracture 

mechanics methods. 
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where /Cz h h , h  is the height of the cross section and Ch  is the depth of the crack. 
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Figure 1: L-frame structure 

The frame-structure has three beam members: the beam FO of length l1, the beam OP of 

length l2 and the beam PH of length l3; each of them having uniform properties. The beams are 

modeled using the Euler-Bernoulli beam theory.  

The external end H is a classical clamped support and the external end F is supported by 

two translational springs of stiffness tw and tu and a rotational spring of stiffness rz. At point P, 

and modeling the crack, there is an internal hinge elastically restrained against rotation 

between beams 2, OP, and 3, PH, this semi-rigid connection is materialized by a rotational 

spring of stiffness: 

1
m

C

r


  (2) 

The flexural rigidity, the mass density, the length and the area of the cross section of each 

beam are EiIi, ρi, li and Ai, with i=1, 2, 3. 

 

Three co-ordinate systems are located as they are shown in Fig. 1, and its origins are taken 

to be at points F, O and P of each beam. At abscissa xi (0 xi  li), wi is the transverse 

displacement of the beam i, i i iw x    is the section rotation and ui is the axial displacement 

at any time t. The deformation of a beam in x direction is not taken into account, since the 

beams are considered infinitely rigid in the axial direction.   
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The sign convention used for the positive shear force spins an element clockwise (up on the 

left, and down on the right). Likewise the normal convention for a positive bending moment 

elongates the reference fiber of the beam indicated by the dotted line. Fig. 2 shows the sign 

convention to be employed. 

 

 

 
 

Figure 2: Sign convention for positive shear force (Q) and bending moment (M) 

For free vibration, the bending moment and the shear force expressions are: 
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To express equations in dimensionless form, the non-dimensional parameter is introduced: 
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i
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The displacements ui and wi, and 
i  may be expressed in terms of the dimensionless 

coordinates as follows 
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The characteristics of beam 1 are used as ´reference´:  

EI =E1I1, 1 1A A  , 1l l , (6) 

to define the ratios: 
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and the dimensionless spring stiffness: 
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Finally the dimensionless frequency coefficient is expressed as: 

4 4 2 Al
EI

  , (9) 

where ω is the circular natural frequency of the vibrating system in radians per second. 
 

Under the described conditions and applying the technique of variational calculus (Grossi, 
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2010), (Ratazzi et al., 2012) the governing differential equations of the problem and the 

boundary and continuity conditions are: 
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The last term in expression (20) is due to the rigid body vertical translation of beam 1 of 

length l1, which is a consequence of assuming infinity axial rigidity. 
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Using the well-known separation of variables method (Grossi, 2010), solution of Eqs. (9) 

to (11), free vibrations of the system can be expressed in the form. 
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The functions W1n, W2n and W3n represent the corresponding transverse modes of natural 

vibration of each beam member and are given by  
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where 4
i i ii l A EIv v v   is a mechanical and geometrical parameter, with 1 2 3i , , ; 

 4 24
n nl A EI    is the dimensionless frequency coefficient of mode of vibration n and 

C1, C2,…, C12 are arbitrary constants to be determined. 

Replacing Eq. (27), (28) and (29) in Eq. (24), (25) and (26); and these ones in Eq. (12) to 

(23) a linear system of equations in the unknown constants C1, C2,…, C12 is obtained. 

For a non-trivial solution to exist the determinant of the coefficient matrix in the linear 

system of equations should be equal to zero and the roots of the transcendental frequency 

equation are the dimensionless frequency coefficients λn of the mechanical system in Figure 1. 

The results were determined by using the Mathematica software (Mathematica, 2012) with 

at least five significant figures. (They are indicated as “Analytical” in Table 1 and “Analytical 

(Eigenvalue)” in Tables 2 to 5). 

3 EXPERIMENTAL DEVICE 

The frame was modeled with a rod of steel 5/8 "× 1/8" (b=15.875mm, h= 3.175mm).  

Both members of the frame have the same length: 446 mm, cross sectional area and 

material properties: 

1 2 3
1; 1; 1,2,3; 2 2 1.

i iA EI l l lv v i v v v       
 

The constructed model was tested on a steel base composed of UPN 100 and linked to it by 

two welded presses (Fig. 3). According to the mass and inertia differences between the 

structure and the base, the outer connections can be assumed as two clamped edges (Fig. 4). 
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Figure 3: Experimental device: Clamped frame and proximiter 

 

Figure 4: Clamped edge 

The crack was modeled with a thickness of 1mm using a saw (Fig. 5). All precautions were 

taken so that the cut is made smoothly and its depth is uniform: A piece of hard steel was 

employed, with a gap where the beam is embedded up to the desired depth. (Fig. 6 a, b) 

 

 

Figure 5: Crack in the strip  
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Figure 6: Auxiliary device to model the crack 

In order to determine the mechanical parameters of the material of the strip was taken as 

reference a value widely verified in solid mechanics: the fundamental frequency of a 

cantilever beam of length 417 mm. built with the strap. It is known that the corresponding 

eigenvalue is 1.8751 

The measured frequency: 14.85 Hz, then: 

 
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22 2

22

1.87511 1
;  14.85     5034.7 .

2 2 120.417

EI Eh E m
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This value is employed in the numerical determinations. 

4 FINITE ELEMENT METHOD 

Numerical examples are solved by means of the finite element method, using the software 

ALGOR 23.1 (ALGOR software, 2009). The column and the beam are divided into 100 

beams elements respectively, each beam element with three degrees of freedom.  

The crack was modeled by a very small beam element, its length is equal to the width of 

the cut (1 mm) and height equal to the portion of the material that is not affected by cutting.  

5 NUMERICAL RESULTS 

Table 1 presents the first ten coefficients of natural frequency of vibration of a 

clamped-clamped frame, without internal hinge. The values obtained by means of the 

analytical approach are in very good concordance from an engineering viewpoint with 

those obtained using the finite element method and with particular cases available in 

the literature. Experimental data show a striking agreement with aforementioned 

values.  

 

 

 

 

 

a) b) 

A.R. RATAZZI, D.V. BAMBILL, C.A. ROSSIT3570

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
i 1 2 3 4 5  

λi 3.9331 4.7235 7.0540 7.8255 10.149 Analytical 

λi 3.9222 4.7145 7.0376 7.7588 10.007 Albarracín et al.(2005) 

(fi) 56.62 82.08 183.07 225.29 378.99 Analytical (Hz) 

(fi) 56.76 83.01 182.50 228.88 382.08 Experimental (Hz) 

(fi) 56.70 82.71 183.69 227.86 383.01 FEM (Hz) 

       

i 6 7 8 9 10  

 λi 10.839 13.310 14.137 16.345 17.179 Analytical 

(fi) 432.19 651.784 735.28 982.92 1085.7 Analytical (Hz) 

(fi) 448.00 653.080 737.92 992.43 1105.3 Experimental  (Hz) 

(fi) 446.31 654.400 736.86 997.42 1098.8 FEM (Hz) 

Table 1: First ten natural frequencies for C-C frames. 

Tables 2 to 5 exhibit the results for the same frame with a crack artificially produced which 

varies in depth and location as indicated in each case.  

The crack is located in the first third of the horizontal beam (Tables 2 and 3), in the middle 

(Table 4) and in the second third (Table 5) 

Applying Eqs. (1), (2) and (8) one obtains Rm=8.40 if the crack depth hc involves 75% of 

the height of the section (Tables 3, 4 and 5), and Rm=44 for hc=0.5 (Table 2). 

 

 

l2/l1 hc/h Rm  i=1 2 3 4 5  

   λi 3.9195 4.7144 7.0155 7.7862 10.1331 
Analytical 

(Eigenvalue) 

   (fi) 56.45 81.67 180.86 217.40 377.32 
Analytical 

(Hz) 

   (fi) 56.45 83.01 181.88 225.22 382.26 
Experimental 

 (Hz) 

   (fi) 56.65 82.52 182.48 226.46 380.86 
FEM 

(Hz) 

0.33 0.50 44  i=6 7 8 9 10  

   λi 10.8305 13.2873 14.0833 16.2749 17.0768 
Analytical 

(Eigenvalue) 

   (fi) 431.05 648.79 728.86 975.50 1071.64 
Analytical 

(Hz) 

   (fi) 447.39 650.63 731.20 979.78 1093.75 
Experimental 

 (Hz) 

   (fi) 445.93 652.85 733.77 989.88 1091.85 
FEM 

(Hz) 

Table 2: First ten natural frequencies for C-C frames with a crack ( 0.5ch h  ) in the third of the horizontal beam
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.l2/l1 hc/h Rm  i=1 2 3 4 5  

   λi 3.9117 4.6886 6.9269 7.7234 10.093 
Analytical 

(Eigenvalue) 

   (fi) 56.22 80.78 174.25 217.64 374.35 
Analytical 

(Hz) 

   (fi) 56.15 80.57 167.24 217.9 377.81 
Experimental 

 (Hz) 

   (fi) 56.36 81.35 174.06 219.89 378.82 
FEM 

(Hz) 

0.33 0.75 8.40  i=6 7 8 9 10  

   λi 10.831 13.238 13.939 16.056 16.883 
Analytical 

(Eigenvalue) 

   (fi) 430.26 643.97 714.02 947.31 1047.4 
Analytical 

(Hz) 

   (fi) 446.78 626.22 705.57 927.12 1080.3 
Experimental 

 (Hz) 

   (fi) 445.00 643.86 718.84 947.03 1071.7 
FEM 

(Hz) 

Table 3: First ten natural frequencies for C-C frames with a crack ( 0.75ch h  ) in the third of the horizontal 

beam 

 

 

l2/l1 hc/h Rm  i=1 2 3 4 5  

   λi 3.8482 4.6617 7.03645 7.8254 9.9059 
Analytical 

(Eigenvalue) 

   (fi) 54.41 79.18 181.44 224.73 360.59 
Analytical 

(Hz) 

   (fi) 52.49 78.13 183.72 227.05 348.51 
Experimental 

 (Hz) 

   (fi) 54.27 79.61 182.32 227.74 362.42 
FEM 

(Hz) 

0.50 0.75 8.40  i=6 7 8 9 10  

   λi 10.698 13.270 14.1316 16.084 16.847 
Analytical 

(Eigenvalue) 

   (fi) 420.66 647.582 733.76 950.08 1043.3 
Analytical 

(Hz) 

   (fi) 429.69 656.74 741.58 925.29 1067.50 
Experimental 

 (Hz) 

   (fi) 430.01 649.88 738.44 950.24 1068.08 
FEM 

(Hz) 

Table 4: First ten natural frequencies for C-C frames with a crack ( 0.75ch h  ) in the middle of the horizontal 

beam
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l2/l1 hc/h Rm  i=1 2 3 4 5  

   λi 3.842 4.7007 6.9814 7.7194 10.136 
Analytical 

(Eigenvalue) 

   (fi) 54.02 80.86 177.82 217.27 376.77 
Analytical 

(Hz) 

   (fi) 52.49 81.18 173.95 217.29 380.86 
Experimental 

 (Hz) 

   (fi) 53.84 81.55 177.94 219.26 381.56 
FEM 

(Hz) 

0.66 0.75 8.40  i=6 7 8 9 10  

   λi 10.8319 13.088 13.978 16.223 16.857 
Analytical 

(Eigenvalue) 

   (fi) 432.21 629.46 717.98 967.16 1044.3 
Analytical 

(Hz) 

   (fi) 442.12 610.35 728.15 949.71 1073.6 
Experimental 

 (Hz) 

   (fi) 444.62 621.84 724.18 971.67 1067.0 
FEM 

(Hz) 

Table 5: First ten natural frequencies for C-C frames with a crack ( 0.75ch h  ) in the second third of the 

horizontal beam 

 

 

 

Figure 7: Dynamic response of the frame with a crack ( 0.75ch h  ) in the second third of the horizontal beam 
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As it can be seen, the experimental values are again in surprisingly agreement with those 

obtained by means of the analytical procedure and the finite element method. There´s no case 

where the difference exceeds than 5 %, and generally it is less than 2%. 

6 CONCLUSIONS 

Through the study of the presented simplified model, it has been analyzed the effect of a 

crack on the natural frequencies of vibration of a clamped L-frame. 

It has been demonstrated that the expressions proposed by Chondros et al., 1998 constitute 

a simple and reliable tool for modeling a crack in a plane flexural problem. 
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