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Abstract. It is widely accepted that wall shear stress is associated to aneurysm formation, growth and 

rupture. Early identification of potential risk factors may contribute to decide the treatment and 

improve patient care. Previous studies have shown associations between high aneurysm wall shear 

stress values and both elevated risk of rupture and localization of regions of aneurysm progression. 

Based on the assumption that damaged regions of the endothelium have different mechanical 

properties, regions with differentiated wall displacement amplitudes are expected. A previous 

approach based on the analysis of bidimensional dynamic tomographic angiography images at a 

limited number of points during the cardiac cycle showed only small displacements in some patients 

using that simplified and semi-automatic low resolution methodology. The purpose of this work is to 

overcome some of those limitations. High time and spatial resolution four dimensional computerized 

tomographic angiography images of cerebral aneurysms were acquired and analyzed in order to 

identify and characterize wall motion. Images were filtered and segmented at nineteen time points 

during the cardiac cycle. An average image was computed to generate the vascular model. An 

unstructured mesh of tetrahedral elements was generated using an advancing front technique. A finite 

element blood flow simulation was carried out under personalized pulsatile flow conditions. A fuzzy 

c-means clustering algorithm was used to estimate regions that exhibit wall motion within the 

aneurysm sac. A good correlation between localization of regions of elevated wall shear stress and 

regions exhibiting wall motion was found. 
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1 INTRODUCTION 

 Stroke is the loss of brain function due to disturbances in the blood supply to the brain. 

This can be due to ischemia (lack of blood flow) caused by blockage (thrombosis or arterial 

embolism), or hemorrhage (Sims, et al., 2009). Stroke is the leading cause of long-term 

disability and the third cause of death in the Western World. Subarachnoid hemorrhage is one 

of the most severe types of stroke, which usually occurs when an intracranial aneurysm 

ruptures (Hwang, et al., 2007). This kind of aneurysms tends to initiate at or near arterial 

bifurcations, mostly in the circle of Willis, located at the base of the brain. Although the 

prevalence of cerebral aneurysm is high (roughly 5%), the yearly risk of subarachnoid 

hemorrhage for unruptured intracranial aneurysms is low (roughly 1%, for lesions 7 to 10 mm 

in diameter). However, the consequences are grave: about 50% of mortality, and 50% of 

morbidity for those who survive. Additionally, treatment of unruptured aneurysms can also be 

risky. The optimal management of unruptured cerebral aneurysms is controversial and current 

decision making is mainly based on aneurysm size and location, as derived from the 

International Study of Unruptured Intracranial Aneurysms (ISUIA) (Wiebers, et al., 2003). 

Current guidelines suggest that, with rare exceptions, all symptomatic unruptured aneurysms 

should be treated. On the other hand, incidental aneurysms less than 5mm in diameter should 

be managed conservatively in virtually all cases, while almost all larger aneurysms should be 

treated. Exceptions depend on patient age, among other factors (Komotar, et al., 2008). 

However, it is widely accepted that hemodynamics, particularly the wall shear stress (WSS), 

plays an important role on the development, growth and rupture of cerebral aneurysms 

(Castro, 2013a). Previous studies showed that ruptured aneurysms tended to have small 

impaction zones and complex or unstable flow patterns (Cebral, et al., 2005a). An association 

between concentrated jets, high WSS and high rupture rate was found in two other studies 

where cohorts of patients with cerebrovascular networks harboring aneurysms were analized 

using an image-based patient-specific computational fluid dynamics (CFD) methodology in 

the anterior communicating artery (Castro, et al., 2009a), and a set of terminal aneurysms 

(Castro, et al., 2009b). That trend was corroborated in a patient population of 210 brain 

aneurysms at different locations (Cebral, et al., 2011). Other authors analyzed twenty middle 

cerebral artery aneurysms and also found high WSS values in the group of ruptured aneurysms 

accompanied with low WSS in their domes, which would suggest that low WSS values may 

be responsible for aneurysm rupture (Shojima, et al., 2004). However, in that study CFD 

models were truncated close to the aneurysm neck resulting in a simplified flow lacking of 

secondary flows. The effect of parent artery on intra aneurysmal hemodynamics was later 

studied and higher WSS in the aneurysm domes was found to be systematically related to 

those secondary flows (Castro, et al., 2006a; Castro, et al., 2006b). Another study showed that 

more than 80% of bleb formation occurs in regions of high WSS (Cebral, et al., 2010). 

Recently, independent works showed that aneurysms tend to initiate in regions of moderate 

and elevated WSS (Castro, et al., 2011) and regions of high WSS or high WSS spatial 

gradient (Kulcsár, et al., 2011). All those findings have encouraged researchers to explore 

possible connections between hemodynamics, wall motion, wall weakness and aneurysm 

rupture. Many of the quantitative results of pulsation measurement reported in the literature 

correspond to experiments with phantoms, simulated images or experimental models 

(Boechert-Schwartz, et al., 2000; Ueno, et al., 2002, Yaghmai, et al., 2007, Zhang, et al., 

2008). A Methodology to estimate wall motion from X-ray dynamic imaging and impose the 

time-dependent deformation on the vascular CFD models reconstructed from 3D angiographic 

images was presented (Oubel, et al., 2010). The blood flow characterization obtained from 
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numerical integration of the Navier-Stokes equations in a rigid wall model did not 

significantly differ from that in compliant models where the deformation field was 

extrapolated from the bidimensional measurements (Dempere-Marco, et al., 2006; Castro, et 

al., 2008). The purpose of this work is to present a methodology to both estimate regions of 

high wall motion and reconstruct CFD vascular models from 4D computerized tomographic 

angiography (CTA) data sets. 

2 METHODS 

2.1 Angiographic images and vascular modeling 

 A patient with a cerebral aneurysm in the anterior communicating artery was selected 

from our data base. A four dimensional computerized tomographic angiography image 

containing nineteen time points along the cardiac cycle had been acquired using a Philips 

Integris System (Philips Medical Systems, Best, The Netherlands). Each three dimensional 

volume consisted of 512 x 512 x 205 pixels with a spatial resolution of 0.3125 x 0.3125 x 

0.6125 mm covering a field of view of 16.0 x 16.0 x 12.81 cm. The imaging protocol was 

approved by the institutional review board and informed consent was obtained from the 

subject. The data was exported into a PC for mathematic vascular modelling using a 

previously presented methodology (Yim, et al., 2003; Cebral, et al., 2005a; Castro, et al., 

2009b). Images were cropped (Nx x Ny x Nz) and averaged in order to reduce noise and 

computational cost. In the inferior regions of the carotid artery masks were applied to all 

images in order to differentiate the vasculature form extravascular structures, and thus 

properly reconstruct parent arteries, required for realistic blood flow simulations (Castro, et 

al., 2006a; Castro, et al., 2006b). Figure 1 shows three axial slices for the first time point. In 

order to reconstruct the vascular model, a low-noise average image was created. A high-

quality volumetric finite element grid composed of roughly 2.5 million tetrahedral elements 

was generated using an advancing front technique (Löhner, 1996a; Löhner, 1996b; Löhner, 1997) 

(see Figure 2). Element size was adjusted in order to approximately maintain the same number 

of elements in both large and small arteries that guarantees the accuracy of the solution. 

2.2 Blood flow numerical simulations 

 Finite element blood flow numerical simulations were performed. Blood was modelled 

as an incompressible fluid with density 1.0 g/cm
3
 and viscosity 0.04 Poise. The governing 

equations were the unsteady Navier-Stokes equations in 3D (Mazumdar, 1992). Vessel walls 

were assumed rigid, and no slip boundary conditions were applied at the walls. Pulsatile flow 

conditions derived from phase-contrast magnetic resonance measurement in a healthy subject 

were imposed at the inlet of the model. Flow waveforms were scaled with the inlet area to 

achieve a mean WSS of 15 dyne/cm
2
 at the inflows of the model according to a typical mean 

WSS value, and Murray´s and Poiseuille´s laws (Sherman, 1981; Cebral, et al., 2008). Fully 

developed pulsatile velocity profiles were prescribed with use of the Womersley solution 

(Womersley, 1955; Taylor, et al., 1998). Assuming that all distal vascular beds have similar 

total resistance to flow, traction-free boundary conditions with the same pressure level were 

applied at outlet boundaries. Navier-Stokes equations were numerically integrated by using a 

fully implicit finite-element formulation (Cebral, et al., 2005b). Our methodology is based on 

a projection scheme which arises from the hyperbolic character of the advection operator and 

the elliptic character of the pressure-Poisson equation. A fully implicit finite element 

formulation that yields to stable solutions for arbitrary time steps was utilized. The discretized 
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momentum equation is solved using a generalized minimal residual (GMRES) algorithm, 

while the pressure equation, which is obtained by taking the divergence of the momentum and 

considering the incompressibility constraint, is solved using an incomplete lower-upper (ILU) 

preconditioned conjugate gradient solver. The algorithm is iterated until convergence is 

achieved at each time step. Two cardiac cycles using 100 time-steps per cycle were computed, 

and all of the results reported correspond to the second cardiac cycle. 

 

   
a) b) c) 

 

Figure 1: Axial slices for the first time point. The following vascular structures are shown: a) both internal carotid 

arteries (largest and brightest spots) along with the basilar artery (smaller spot); b) both A1 segments of the 

anterior cerebral arteries, the anterior communicating artery and the inferior part of the aneurysm (at the center of 

the image); c) both A2 segments of the anterior cerebral arteries along with the superior part of the aneurysm (at 

the center of the image). See Figure 2 for A1 and A2 segments. 

 

 
a) 

 
b) 

 
c) 

Figure 2: a) Vascular model containing both internal carotid arteries, anterior cerebral arteries and middle 

cerebral arteries; b) Grid of triangles (anterior view); c) Grid of triangles (posterior view). Red dotted lines 

indicate the location of the axial slices displayed in Figure 1. The aneurysm is located at the anterior 

communicating artery, which has two afferent arteries (the A1 segments of both anterior cerebral arteries), and 

two efferent arteries (the A2 segments of both anterior cerebral arteries). 

2.3 Fuzzy c-means algorithm for wall motion estimation 

 In order to detect the regions where wall motion is not negligible, images were 

segmented in different clusters, and the time evolution of segmented clusters at every slice 

within the volume of interest was analysed. For each of the N=19 three dimensional images 

(Nx x Ny x Nz) the same selected number of NS slices covering the whole aneurysm was taken 

for the analysis. A set of NS images Nx x Ny x N was created to analyse the time evolution of 

pixel intensities in all NS slices. Four classes were identified with intensities well 

differentiated, two of which corresponded to the background (C1 and C2), and the other two 

are associated to the border of the vascular domain (C3) and the vasculature itself (C4). A 

four-class fuzzy c-means algorithm was utilized to create the four images corresponding to the 

membership value W (0<W<1) in each of the NS images, which estimates the probability of 

each pixel to belong to the corresponding class. Particularly, for the image associated to C4, 

the pixel intensity is an estimation of the probability of that pixel to belong to the vasculature. 
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The fuzzy c-means algorithm minimizes the cost function J over all pixels NP=Nx*Ny, and all 

classes K, for each slice (1) 

 
 

(1) 

where Mc is the centroid of class c, Ij is the intensity of pixel j, Wcj is the corresponding 

membership value at pixel j for class c, and q is the weighting exponent on each membership 

value, which determines the amount of fuzziness of the resulting segmentation. The centroids 

for each class are given by (2). 

 
 

(2) 

 The membership values, which are defined by (3), must meet the normalization 

constraint given by (4), 

 
 

(3) 

 
 

(4) 

where Im is the image, and the normalization constant A in (3) can be computed using (4), 

resulting in the following expression for the membership values (5). 

 

 
 

(6) 

 Assuming a weighting exponent q=2, the final expression for the membership values 

and the centroids of each class are given by (7) and (8), respectively. For single spectral 

analysis, the norm in equation (7) is equivalent to the absolute value of the difference between 

the given centroid and current pixel intensity. 

 

 
 

(7) 

 
 

(8) 

 Minimization is achieved by an iterative process that performs two computations. First, 

the minimization process computes the membership functions using the current estimate of 

the centroids. Note that centroids are initialized at the beginning by equally dividing the 
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sample in the given number of classes. Afterwards, the minimization process computes the 

centroids using the current estimates of the membership functions (Chuang, et al., 2006). 

 It is expected that membership values should significantly change in time for pixels 

close to a moving boundary. In order to characterize that change, the maximum difference 

along the N time slices was computed for each of the Nx*Ny pixels and for each of the NS 

images. This information was used to reconstruct a Nx x Ny x NS image where the pixel 

intensity represents the maximum difference in time of the membership value of class C4. 

Since C1 and C2 clusters correspond to the lowest intensities and C4 to the highest ones, 

pixels that change from vasculature to background due to wall motion are expected to have 

significant different membership values for class C4. That change is used as an estimation of 

the probability of those pixels to experiment a wall motion. That image was segmented using 

different thresholds.  

2.4 Wall shear stress analysis 

 Maps of WSS magnitude were created to visualize the distribution of shear forces on the 

aneurysm wall at the systolic peak where the maximum values are expected. Regions that are 

likely to change from vasculature to background (Section 2.3) were isolated and compared to 

the shear stress distribution over the wall. Although in this preliminary study the model walls 

were rigid, it is expected that flow patterns should remain roughly unchanged for moderate 

wall displacements (Dempere-Marco, et al., 2006; Oubel, et al., 2010). This hypothesis will be 

further tested in large aneurysms with high deformations using dynamic tomographic 

angiography images. Streamlines were created and the velocity field was imaged in order to 

investigate the relation between the localisation of the impaction zone, the maximum wall 

motion and the elevated WSS values, and the flow characterization. 

3 RESULTS 

 Figure 3a corresponds to a selected axial slice and a given time were the brightest spots 

correspond to both A2 segments of the anterior cerebral arteries (upper left corner) and the 

superior part of the anterior communicating artery aneurysm (brightest and largest spot). 

Visual inspection of that image revealed a background (extravascular structures) with a large 

range of pixel intensities, while the highest intensities corresponded to the vasculature. A 

transition takes place in the boundary between the vasculature and the background. Figures 3b 

through 3e correspond to membership values for classes C1 through C4, respectively. Darker 

regions in the image for class Ci (i=1,2,3,4), correspond to pixels that unlikely belong to that 

particular class. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Figure 3: a) Selected axial slice at a given time; b) Membership values for class C1; c) Membership values for 

class C2; d) Membership values for class C3; e) Membership values for class C4.  

 

 Slightly localised changes in the aneurysm morphology along the cardiac cycle were 

observed. The difference between C4 images at different times was computed. Changes due to 

noise are not extremely high and are observed in small disconnected regions. On the other 
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hand, changes due to wall motion are associated to higher values and are observed in larger 

areas. An intensity-based segmentation for different thresholds (T1=0.325 and T2=0.400) was 

performed in order to investigate the location where the highest displacements take place. The 

WSS distribution at the systolic peak is displayed in Figure 4a. The segmented pixels are 

shown along with the WSS distribution at the systolic peak (Figure 4b and 4c, for T1 and T2, 

respectively). The grey regions in those images correspond to pixels that experiment a change 

in the membership value for class C4 higher than T1 and T2, respectively, displayed over the 

WSS distribution. As it was expected, the lower the threshold, the larger the segmented 

region. For example, in Figure 4c, if any of the grey pixels belongs to class C4 with a 

membership value of 0.80 at a given time, there exists another time when that value drops 

below 0.40. 

 Streamlines were computed in order to study whether or not the aneurysm behaves as a 

bilateral aneurysm (e.g., it receives blood from two differences sources), and to investigate the 

dependence of the WSS on the flow pattern. Blue streamlines are originated in the right 

internal carotid artery, and red ones do it in the left carotid artery (see Figure 5c). Complex 

velocity field observed in Figures 5b and 5c is due to the collision of both jets. However, 

intraaneurysmal flow pattern is dominated by the left inflow. The impaction zone is located at 

the peak of the WSS distribution, and close to where the wall motion is observed, and where 

both jets collide (Figure 5a). The WSS averaged within the impaction zone at the systolic peak 

was as high as 69.2 dyn/cm
2
, while in the opposite low WSS region it was 0.51 dyn/cm

2
. 

 

 
a) 

 
b) 

 
c) 

Figure 4: WSS distribution at the systolic peak (a). WSS distribution at the systolic peak along with the 

segmented region where higher wall displacements are expected for T1=0.325 (b) and T2=0.400 (c).  

 

4 DISCUSION 

 The purpose of this work was to design and test a methodology to estimate both the 

aneurysm wall shear stress, and aneurysm wall motion from 4D computerized tomographic 

angiography images. A test case was randomly selected from our data base. The patient had a 

large aneurysm in the anterior communicating artery. Acquired data consisted of nineteen high 

resolution three dimensional images along the cardiac cycle. Images were averaged to reduce 

the impact of noise on the reconstruction of the vascular model used to generate the finite 

element unstructured volumetric grid for the blood flow simulation and wall shear stress 

estimation. In order to estimate the localization of regions that exhibit an important wall 

displacement, the time evolution of individual slices across the aneurysm was analysed and a 

fuzzy c-means clustering algorithm was applied to simultaneously segment all time points in 
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four different classes for each slice. Four classes were identified. The membership values for 

each class were recorded. Pixels within the vascular domain but close to a moving boundary 

exhibited a change in those values. That difference was segmented using two different 

thresholds. The regions exhibiting important displacements were overlapped with the WSS 

distribution. Maximum WSS values at the systolic peak occurred close to the region where 

noticeable displacements took place. Particularly, this anterior communicating artery 

aneurysm behaved as a bilateral aneurysm, which means that received blood from both A1 

segments of the anterior cerebral arteries (Castro, et al., 2009a), and high wall motion 

occurred close to where both jets collided. This strategy estimates the wall motion from a 3D 

analysis and overcomes some of the limitations from a previous methodology where the 

motion was measured in a plane and extrapolated to the aneurysm (Oubel, et al., 2010). 
 

 
a) 

 
b) 

 
c) 

Figure 5: a) WSS distribution at the systolic peak along with the segmented region where higher wall 

displacements are expected (T1=0.325); b) Velocity field; c) Streamlines colored according to the source of 

inflow. Blue streamlines are originated at the right internal carotid artery, and red to the left internal carotid 

artery.  

 

 

 
 

Figure 6: Flow rate waveforms imposed at the Right Internal Carotid Artery (blue) and Left Internal Carotid 

Artery (red) of the vascular model at 60 bpm. Lower flow rates correspond to smaller cross sectional areas, 

according to Murray´s Law. 
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 The methodology has some limitations. First, the computational fluid dynamics 

simulation was performed under the assumption of rigid walls. Although this assumption is 

not accurate, it was observed in a previous work that moderate wall displacements along the 

cardiac cycle do not significantly change the WSS distribution over the wall of the aneurysm 

sac (Dempere-Marco, et al., 2006; Castro, et al., 2008). However, in future works wall motion 

will be also included in CFD blood flow simulations. Second, bilateral anterior 

communicating artery aneurysms have flow patterns that may depend on inflow conditions. 

We imposed the same waveform at both internal carotid arteries, but scaled according to their 

cross-sectional areas based on a typical wall shear stress value, and both Murray´s and 

Poiseuille´s laws (Figure 6). It was previously observed that differences in either those mean 

flow rates at the inflow segments or waveform phases may slightly relocate the region where 

the maximum wall shear stress appeared. However, the impact region is always located where 

the individual jets impact the aneurysm in the hemodynamic unilateral cases. Therefore, in 

this case slightly relocated may be expected. It is also worth mentioning that numerical 

solution strongly depend on the geometry (Cebral et al., 2005b), therefore accurate 

reconstructions of the aneurysm sac and parent arteries are required for clinical applicability 

(Castro et al., 2006a; Castro et al., 2006b). Other parameters and assumptions like blood 

rheology (Castro et al., 2013b), distal flow division, and inclusion of smaller arteries in the 

model, do not affect the hemodynamic characterization, like impaction zone, WSS 

distribution, jet concentration, etc., whose association with initiation, growth and rupture are 

sought (Cebral et al., 2005b). In previous works the methodology was evaluated and validated 

by means analytical solutions, in vivo and in vitro measurements (Cebral et al., 2007; Castro et 

al., 2008; Cebral et al., 2009; Castro, 2013a). From those studies a typical number of elements 

in a cross sectional area to achieve accuracy and mesh independence was determined and used 

to automatically decrease element size in small arteries and thus keep the number of elements 

in an arterial cross sectional area roughly constant (Castro et al., 2008). Finally, in order to 

estimate the probability to belong to a given class, images were not pre-processed. 

Consequently, pixels in the background that changed from one class to another due to the 

noise were also detected as possible candidates. However, those regions were isolated and the 

change in the probability was not as large as that observed in boundary pixels. It was observed 

that higher thresholds kept the large regions where displacements occurred due to wall 

motion, and discarded those small regions due to the noise. 

CONCLUSIONS 

 The present work shows that dynamic computerized tomographic angiography images 

can be used to estimate the location of regions with both aneurysm wall motion and high wall 

shear stress by means of a combination of image segmentation algorithms and image-based 

computational fluid dynamics blood flow simulations. The results suggest that aneurysm wall 

tends to exhibit higher displacements along the cardiac cycle in regions with elevated wall 

shear stress and complex flow pattern. Further analysis will be carried out to corroborate this 

trend. 
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