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Abstract. The possibility of improving the performance of lubricated surfaces through surface textur-
ing has been a topic of intense research in the latest years. Considerable efforts in both experimental
and numerical works have been made to study the effects of micro-textures in load capacity, friction and
wear. In the industry it has been known for a long time that some texturing is required in the liners of
combustion engines to avoid stiction with the piston rings. The numerical simulation of that problem
poses a challenge in modeling the intervening phenomena (cavitation, starvation, ring dynamics) and
solving it efficiently.

In this work we present numerical simulations of the piston ring/liner problem in the hydrodynamic
lubrication regime using the Elrod-Adams model and a mass-conserving algorithm. Realistic values are
assumed for the parameters defining the problem. The formation of cavitation bubbles and its relation
with the load-carrying capacity, friction and clearance is analyzed by considering different texture con-
figurations and shapes in one-dimensional tests. Afterwards, two-dimensional dimpled surfaces are sim-
ulated for more than a hundred different texture configurations in the hydrodynamic lubrication regime
for several Stribeck numbers. A robust code accelerated by means of a multigrid implementation al-
lowed the realization of this extensive study. Results show that friction and wear reduction are attainable
by virtue of dimples of the size of the contact, although the gain decreases or disappears as the mixed
lubrication regime is approached.
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1 INTRODUCTION

Modifying the contacting surfaces in lubricated pairs in order to improve its tribological
performance has been a long-term practice. In the specific case of cylinder liners of combustion
engines the abrasive machining process known as honing is used to generate a cross-hatched
finish to ensure proper lubrication, as well as to avoid deleterious effects such as stiction.

The availability of new microengineering techniques such as Laser Surface Texturing (LST)
(Etsion (2005)) allowing tailor-made surfaces to be produced, has made the topic of the optimal
geometry for a certain application the subject of intensive research in the last years.

There seems to be a general consensus for the beneficial effects of textures (dimples and
micro-grooves) in devices such as thrust bearings, where conformal contact (parallel or almost
parallel surfaces) is involved. This is shown in Mishra and Polycarpou (2011), Ramesh et al.
(2013), Yuan et al. (2011), Wang et al. (2006), Bifeng et al. (2012) and Cho and Park (2011).
On the other hand, opposite results have been reported in a few cases (Pettersson and Jacobson
(2007); Kovalchenko et al. (2005)).

Some applications, as is the case of the piston ring/liner contact, do not fall in the previous
category. In the non-conformal situation, the experimental study of Costa and Hutchings (2007)
showed that larger curvature radius in cylinder against textured flat surface tests led to a benefit
in texturing, while smaller radii had the opposite effect. Gadeschi et al. (2012) studied the effect
of the curvature on minimum film thickness, load capacity, friction force and friction coefficient
for barrel shaped textured rings using the Reynolds equation with Gümbel boundary condition
for cavitation. Similar conclusions were reached: for large ring curvatures the textured cases
would perform worse than their untextured counterparts, and vice-versa. These findings are
also supported by Kovalchenko et al. (2011), Ali et al. (2012), Tomanik (2008) and Dobrica
et al. (2010).

Most works addressing textured surfaces in the piston ring/liner problem consider the tex-
tures on the ring (Etsion and Sher (2009); Qiu and Khonsari (2011); Gadeschi et al. (2012)).
It seems preferable to put textures on the liner instead of the ring, as textures on the ring are
expected to last only the break-in period. LST on the bore is expected to last the engine lifetime
(Tomanik (2013)). Besides, this also allows to texture only selected parts of the engine cycle.

Few numerical works (Organisciak and Cavallaro (2005); Tomanik (2013)) consider textures
on the liner, and even fewer contemplate that the dynamical behavior of the ring must be taken
into account (Buscaglia et al. (2010); Checo et al. (2014)). Textures on the ring are stationary
and thus the ring reaches a equilibrium position, stabilizing at the point where equilibrium of
forces take place. When textures are set on the liner they are moving through the domain. The
passing of a texture under the ring causes a oscillatory motion, hence the simulation must be
transient in this case, incorporating the rigid-body dynamics.

In this article, the piston ring/liner problem with textures on the liner will be addressed,
taking into account the ring dynamics. The mass-conserving Elrod-Adams model (Elrod and
Adams (1974)) is used to model cavitation in lubrication. Mass-conservation has been proven
numerically (Ausas et al. (2009a)) and experimentally (Zhang and Meng (2012)) to be essential
to achieve meaningful physical results. Although the piston velocity and loads on the rings vary
along an engine cycle, constant values for those parameters are considered, corresponding to
those of mid-stroke of a four-stroke combustion engine. Only the hydrodynamic lubrication
regime is studied, by imposing a sufficiently low load on the ring.

This paper is organized as follows: in Section 2 the mathematical model is described. Sec-
tion 3 presents the numerical method. A finite volume discretization is employed to solve
the Elrod-Adams model, with convergence acceleration through a multigrid method. Multi-
grid performance results as well as mesh-converged numerical simulations for one and two-
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Figure 1: Figure (a) shows a scheme of a ring pack placed in the piston. The computational domain is bounded by
a red rectangle while figure (b) depicts a section along the piston’s direction of motion, with the forces acting on
it.

dimensional textures are shown and discussed in Section 4. The former set of tests (one-
dimensional) thoroughly explores sinusoidal textures for two ring curvature radius and fixed
velocity and loads on the ring. The latter considers dimples with dimensions inspired in those
produced by LST for 10 ring curvature radius, from 2 mm to 1024 mm. Finally, conclusions
are drawn in Section 5.

2 MODEL

A very thin stripe of the liner surface in the piston movement direction is chosen as the
computational domain, which is shown in fig. 1. The direction of the motion of the piston is
chosen to be x1, while the runner is assumed to coincide with the x1 − x2 plane. The frame
of reference is fixed on the ring and thus we assume that the liner moves with velocity u (the
piston is moving with velocity −u in a frame attached to the liner).

Textures on the liner are given by a function x3 = −hL(x1, x2) ≤ 0 (hL(x1, x2)=0 for the
untextured liner). They are periodic in both x1 and x2 directions, therefore 0 < x2 < w,
with w large enough to contain one texture period. In the x1 direction the domain extent is
xℓ < x1 < xr.

A single ring of length ℓ is considered with profile hU(x1, x2) satisfying min(x1,x2) hU(x1, x2) =
0. Its analytical expression corresponds to an arc of circumference of radius R located in
xℓ < a ≤ x1 ≤ b < xr. A uniform thickness e is assumed outside the pad’s location. Hence,
we have for the gap between the liner and the ring:

h(x1, x2, t) =

{

hL(x1 − u t, x2) + hU(x1, x2) + Z(t) if a < x1 < b
hL(x1 − u t, x2) + e otherwise

(1)

where Z(t) denotes the vertical distance between the pad and the x1 − x2 plane.
Besides the geometrical features we also need to model:

1. The fluid dynamics,

2. The ring dynamics (forces acting on it).
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2.1 Thin film fluid dynamics with cavitation

The very thin gap between the ring and liner allows the use of the lubrication approxi-
mation (Reynolds equation). Due to the convergent-divergent geometry of the ring/textured
liner contact and to the movement of the ring in its placement cavitation takes place. In this
work we adopt the well-known Elrod-Adams model (Elrod and Adams (1974)) which incor-
porates into a single formulation the Reynolds equation for the pressurized region and the
Jacobsson-Floberg-Olsson boundary conditions for cavitation. Comparison between results
with this mass-conserving model and experiments show excellent agreement (Zhang and Meng
(2012)).

The model postulates the computation of two fields, p and θ, which correspond to the hydro-
dynamic pressure and to an auxiliary saturation-like variable, respectively, that (weakly) satisfy
the equation

∇ ·

(

h3

12µ
∇p

)

=
u(t)

2

∂ hθ

∂x1

+
∂ hθ

∂t
(2)

under the complementarity conditions






p > 0 ⇒ θ = 1
θ < 1 ⇒ p = 0
0 ≤ θ ≤ 1

(3)

where µ is the viscosity of the lubricant.
Initial conditions for θ and p are provided. A constant film thickness of lubricant dlub is

assumed upstream of the ring, which amount to imposing θ = dlub/h at the boundary of the
computational domain. At x2 = 0 and x2 = w proper boundary conditions are set to enforce
periodicity in the x2 direction.

At each instant the domain spontaneously divides into a pressurized region, Ω+, where
p > 0, and a cavitated region, Ω0, where the film is not full (θ < 1, see figure 1). At the
boundary between Ω+ and Ω0, the so-called cavitation boundary Σ, the Elrod-Adams model
automatically enforces mass-conservation.

2.2 Ring dynamics

Several forces act on the ring in the x3 direction. Here we focus in two of them:

1. The pre-stress force W a: pointed downwards (i.e.; along −x3) and is assumed constant.
Comes from the elastic response of the ring to the deformation needed to fit its placement;

2. The hydrodynamic force W h: originates from the pressure p(x1, x2, t) that develops in
the ring/liner bearing:

W h(t) =
1

w

∫ w

0

∫ b

a

p(x1, x2, t) dx1 dx2 (4)

Notice that this two forces are forces per unit width. Other two relevant forces acting on
it are the contact force due to interaction between the surface’s asperities and the one coming
from pressure of the combustion gases acting on the back part of the ring. Only constant loads
on the ring in the hydrodynamic lubrication regime will be assessed in this work, and hence
these last two forces won’t be considered.
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We assume no tilting of the ring and then the ring dynamics is given by Newton’s second
law in the x3 direction:

m
d2Z

dt2
= −W a(t) +W h(t) (5)

where m is the ring’s linear mass. This is supplemented with initial conditions for Z and Z ′

at t = 0.

2.3 Non-dimensionalization

Three fundamental scales are chosen:

• U for velocity;

• L for lengths in the x1 − x2 plane and also for R;

• H for lengths in the x3 direction.

Their values are set to U=10 m/s, L = ℓ= 10−3m (equal to the ring’s length) and H=
1 µm. The lubricant viscosity is set to µ= 0.004 Pa.s A detailed description of the non-
dimensionalization can be seen in Checo et al. (2014).

Upon non-dimensionalization of all variables (non-dimensional variables will be kept from
this point on), the complete non-dimensional mathematical problem to be solved reads:

“Find trajectory Z(t), and fields p(t), θ(t), defined on Ω = (xℓ, xr)× (0, w) and periodic in
x2, satisfying























Z(0) = Z0, Z ′(0) = V0,
θ(xℓ, x2, t) = dlub/h(xℓ, x2, t) ∀x2 ∈ (0, w)
p > 0 ⇒ θ = 1
θ < 1 ⇒ p = 0
0 ≤ θ ≤ 1

(6)

and

m
d2Z

dt2
= −W a +W h(t) (7)

∇ ·
(

h3∇p
)

= u
∂ hθ

∂x1

+ 2
∂ hθ

∂t
(8)

where

h(x1, x2, t) =

{

hL(x1 − u t, x2) + hU(x1, x2) + Z(t) if a < x1 < b
hL(x1 − u t, x2) + e otherwise

, (9)

W h(t) =
1

w

∫ b

a

∫ w

0

p(x1, x2, t) dx1 dx2 , (10)

and the functions hL(x1, x2) and hU(x1, x2) are known explicitly.”

3 NUMERICAL METHOD

A finite volume, mass-conserving method with upwinding discretization of the Couette flux
and centered discretization of the Poiseuille flux is employed in a cartesian mesh to solve equa-
tion (8), as done by Ausas et al. (2009a). The rectangular domain Ω = (xℓ, xr) × (0, w) is
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divided in N1 ×N2 cells (∆x1 =
xr−xℓ

N1

, ∆x2 =
w
N2

). The adopted finite volume discretization
of the Elrod-Adams equation is:

2∆x2
1

cni,j − cn−1
i,j

∆t
+ Un∆x1(c

n
i,j − cni−1,j) =

sni,jp
n
i+1,j − (sni,j + sni−1,j)p

n
i,j + sni−1,jp

n
i−1,j + q2[sni,j+1p

n
i,j+1−

(sni,j+1 + sni,j−1)p
n
i,j + sni,j−1p

n
i,j−1] (11)

Where:

si,j+1 =
h3
i,j + h3

i+1,j

2
, ci,j = θi,jhi,j , q =

∆x1

∆x2

The complementarity conditions must be fulfilled:

0 ≤ pni,j , 0 ≤ θni,j ≤ 1

pni,j > 0⇔ θni,j = 1

i, j designate the position of a cell in the x1 and x2 directions, where i = 1, ..., N1 and
j = 1, ..., N2. n specifies at which time step the corresponding variable is assessed.

From eq. (11 the following can be obtained:

P n,k
i,j =

1

sn,k−1
i,j + sn,k−1

i−1,j + q2(sn,k−1
i,j+1 + sn,k−1

i,j−1 )
(−2∆x2

1

cn,k−1
i,j − cn−1

i,j

∆t
−

Un∆x1(c
n,k−1
i,j − cn,k−1

i−1,j ) + sn,k−1
i,j pn,k−1

i+1,j +

sn,k−1
i−1,j p

n,k−1
i−1,j + q2(sn,k−1

i,j+1 p
n,k−1
i,j+1 + sn,k−1

i,j−1 p
n,k−1
i,j−1 )) (12)

Θn,k
i,j =

1

(
2∆x2

1

∆t
+ Un∆x1)h

n,k
i,j

(
2∆x2

1

∆t
cn−1
i,j + Un∆x1c

n,k−1
i−1,j

+ sn,k−1
i,j pn,k−1

i+1,j − (sn,k−1
i,j + sn,k−1

i−1,j )p
n,k−1
i,j + sn,k−1

i−1,j p
n,k−1
i−1,j

+ q2[sn,k−1
i,j+1 p

n,k−1
i,j+1 − (sn,k−1

i,j+1 + sn,k−1
i,j−1 )p

n,k−1
i,j + sn,k−1

i,j−1 p
n,k−1
i,j−1 ]) (13)

This is solved for each cell in a Gauss-Seidel iterative process (k indicates the actual itera-
tion), fulfilling the complementarity conditions, until the residue in the discrete Elrod-Adams
equation (11) reaches a certain tolerance.

h(x1, x2, t) is also an unknown that must be acquired solving the ring dynamic. It is com-
puted using equation (9), while Z(t) is approximated by the Newmark scheme:

Zn = Zn−1 +∆tUn−1 +
∆t2

2m
(W a(tn) +W h(tn)), (14)

Un = Un−1 +
∆t

m
(W a(tn) +W h(tn)) (15)

The proposed algorithm updates the dynamical variable Z(t) simultaneously with the pres-
sure and fluid fraction fields.
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3.1 Multigrid acceleration

In Ausas et al. (2009a), a robust and efficient algorithm to solve dynamical lubrication prob-
lems with cavitation was presented. However, this algorithm is expensive from a computational
point of view. A slow convergence on the long wave components of the pressure solutions is
experienced while solving equation (2) in Ω+.

Multigrid methods solve efficiently elliptic partial differential equations, particularly elliptic
boundary-value problems (Fulton et al. (1986)), as in this case. The method is based in approx-
imating a problem on multiple overlapping grids with widely varying mesh sizes and cycling
between these approximations, using relaxation to reduce the error on each grid.

To solve this nonlinear elliptic boundary-value problem we employ the Full Approximation

Scheme-FAS (Fulton et al. (1986)), which is based in solving for qH the following fixed point
problem:

NH(qH) = rH = IHh (Rh(qh, rh)) +NH(IHh qh), (16)

where the discrete operator NH is the left hand side of equation (11), rH its right hand side
and RH its residue. Ih2

h1
transfers variables from mesh h1 to mesh h2. Superscripts (or sub-

scripts) H and h indicate whether these are being computed on the coarse or the finer meshes.
Afterwards qH is transferred to the finer mesh, adding the short-wavelength components:

q̃h = IhHq
H + (qh − IhHI

H
h qh) (17)

This new approximation q̃h contains less error in the long wavelength components, and
therefore converges faster in the finest mesh. The operation qh −→ qH −→ q̃h is called a
V-cycle.

3.2 The cavitation boundary issue with the mesh transfer operators

The major drawback of the multigrid method with the Elrod-Adams model is the shifting of
the cavitation boundary done in the coarsest meshes. This situation is depicted in figure 2: a
ring sliding on a untextured liner generates a pressure field Ω+ (part of the domain with θ = 1)
is shown in the upper left corner. A zoom showing the finite volume centers occupies the upper
right corner.

The position of the cavitation boundary changes when solved in the coarser meshes (fig.
2, bottom). The result is that the correction returned to the finest mesh will not resemble the
problem solved in the finest mesh. Therefore the residue of equation (11) increases at the end
of a V-cycle or at least stalls.

An effective strategy to solve this problem is maintaining the cavitation boundary position
computed in the finest mesh. This is achieved by keeping the pressurized cells pressurized: if
after a V-cycle the new value of pressure is null, the previous non-zero value is restored.

The definition of the mesh transfer operators IHh and IhH is also essential for a effective
multigrid. It is to be noticed that the residueRh(qh, rh) of equation (11) is the mass imbalance
of the system. The full weighting operator Fulton et al. (1986) preserves this quantity, which
was critical for an effective multigrid implementation.

The pseudo-code is given in algorithms 1 and 2.

Mecánica Computacional Vol XXXIII, págs. 129-145 (2014) 135

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



h

2h

4h

Cavitation boundary displaces!

cell centers
Finite volume

−5e−05

 0

 5e−05

 0.0001

 1.304  1.305  1.306  1.307  1.308  1.309  1.31

p
re

ss
u

re

x1

Pressure

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 1.3  1.31  1.32  1.33  1.34  1.35  1.36  1.37

Pressure
Ring

Oil film

p
re

ss
u
re

x1

ΣΩ
0

Ω
+

Figure 2: The cavitation boundary shift through a V-cycle.

Algorithm 1 Solving the Elrod-Adams equation coupled with dynamics
Set initial conditions p0i,j , θ

0
i,j , Z

0, Z ′0

#Loop over time steps

for n = 1→ NT do

tn = n∆t
mesh = 0 (start at the finest mesh)
pn−1
i,j ← pni,j , θ

n−1
i,j ← θni,j , Z

n−1 ← Zn, Un−1 ← Un

while residue > tolerance do

Compute forces acting on the ring (W a, eq. (10))
Update h(x1, x2, t) according to (9)

Compute RHSh = 2
∆x2

1

∆t
hn−1
i,j θn−1

i,j

V − cycle(mesh, (pn−1
i,j , θn−1

i,j ), RHSh)
Check residue on eq. (11)

end while

end for
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Algorithm 2 V − cycle(mesh, (pn−1
i,j , θn−1

i,j ), rh): a recursive routine

#Solving the problem in mesh
relaxation(mesh, (pn−1

i,j , θn−1
i,j ), rh)

if mesh ! = coarsest mesh then

Compute the RHS of the problem solved in mesh+ 1: rH = IHh rh + IHh (rh −Nh(rh))
#Descending in a V-cycle

V − cycle(mesh+ 1, (IHh pn−1
i,j , IHh θn−1

i,j ), rH)
#Ascending...

Return the corrected value q̃ = IhHq
H + (qh − IhHI

H
h qh) to mesh

Update p values without changing the cavitation boundary position in mesh
relaxation(mesh, (pn−1

i,j , θn−1
i,j ), rh)

end if
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4 NUMERICAL TESTS

The importance of the conformity degree between the matching surfaces of a lubrified pair
has been shown by Gadeschi et al. (2012) in numerical experiments involving textured rings
(therefore steady state simulations) with a non mass-conserving algorithm. With this in mind
the curvature radius of the ring R is varied in the interval 4 ≤ R ≤ 1024. Typical values of R/L
for barrel shaped compression rings are between 10 and 50. Notice that R = 1024 corresponds
to a quasi conformal contact.

The assumed value of the ring mass per unit width m0 = 2 × 10−5 corresponds to a di-
mensional value of 0.048 kg/m (with the chosen scales), which is realistic for the type of ring
studied here. All simulations are computed with constant piston non-dimensional velocity
u = 1. This matches mid-stroke velocity (where hydrodynamic lubrication can take place) for
common diesel engines at high revolutions per minute. Furthermore, fully flooded conditions
are addressed by setting dlub= 20.

Besides the surface texture only the load on the pad remains to be determined, which is set
at its lowest value to W a

0 = 1.666× 10−4. A common non-dimensionalization in the tribology
area is the Stribeck number:

S =
µu

W a
=

H2

6L2

û

Ŵ a
(18)

4.1 Multigrid performance

The multigrid speedup (quotient between the runtime without and with multigrid) is proba-
bly the most representative metric to measure its performance. In order to do so, we choose a
representative texture composed of semi-ellipsoidal dimples (which will be defined in section
4.2.2) with parameters l= 0.05, d=10 and period λ= 0.2 (19.6% of textured surface). The ring
curvature radius is R=64 while the load imposed on it leads to a Stribeck number of S = 10−3.

Meshes of 512 × 32, 1024 × 64 and 2048 × 128 elements lead to cell sizes of 4, 2 and
1 microns. Courant number is fixed to 1, while 1000, 50 and 10 time steps are computed in
each mesh respectively. Tolerance in the residue of equation (11) is set to 10−5 of the residue
in the first relaxation at each time step (computed in the Euclidian norm). Enough relaxation
sweeps/V-cycles are taken to achieve this precision, with up to 20 Gauss-Seidel iterations per
multigrid level.

This test was carried out in a Intel Xeon 5430 machine (8 cores of up to 2.66 Ghz, 12 Mb
of cache) with 32 Gb of RAM. The coarsest mesh used in every case was of 64 × 4 elements,
thus giving 4, 5 and 6 meshes used in every V-cycle.

This is shown in table 1: execution times with Gauss-Seidel relaxation (column 1) and
FAS (column 4) depict the benefits of the multigrid. The speedup grows with the problem
size reaching the value 345.2 for the finest mesh, which is satisfactory for a highly nonlinear
problem.

Mesh
Runtime without
multigrid (s)

# of meshes in
each V-cycle

Runtime with
multigrid (s)

Multigrid
speedup

512× 32 30244 4 211 143.3
1024× 64 4972 5 33 150.7
2048× 128 20024 6 58 345.2

Table 1: Multigrid acceleration.
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4.2 One and two-dimensional tests

The instantaneous non-dimensional clearance and friction force per unit width are given by:

C(t) = min
x1,x2

h(x1, x2, t)

and

F =
1

w

∫ w

0

∫ b

a

(

µu g(θ)

h
+ 3h

∂p

∂x1

+ 6p
∂hL

∂x1

)

dx1 dx2 (19)

where the function g(θ) is taken as

g(θ) = θ s(θ) (20)

with s(θ) the switch function

s(θ) =

{

1 if θ > θs
0 otherwise

(21)

In this friction model θs is a threshold for the onset of friction, interpreted as the minimum
lubricant fraction needed for shear forces to be transmitted from one surface to the other. In all
calculations the value θs = 0.95 has been adopted. The friction coefficient then results from

f =
H

6L

F

W a
(22)

where all quantities are non-dimensional.
Two quantities of interest are computed from the simulations, once the transients have passed

and a periodic regime has been established. The average friction coefficient is related to power
losses in engines

f =
1
λ
u

∫ T+λ

u

T

f(t) dt (23)

while the minimum clearance

Cmin = min
T≤t≤T+λ

u

C(t) (24)

is related to surface wear. As mentioned, T is large enough so that the periodic regime has
been set.

4.2.1 One-dimensional textures

To study the effects of textures in the tribological performance of the lubrified pair, a sinu-
soidal texture is placed on the liner:

hL(x1, x2) = d
1 − cos(2 π x1/λ)

2
(25)

Thus, the two parameters defining the surface are its period λ and the depth d. The ranges
0 ≤ λ ≤ 2 and 0 ≤ d ≤ 10 are explored with respective increases of 0.04 and 0.2 in each
variable, leading to 2500 simulations for each ring curvature radius R, comprising a total of
5.000 transient simulations.
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Every simulation is checked for spatial and time convergence: meshes of at least 512 (∆x1 ≃

4 × 10−3) and up to 4096 elements (∆x1 ≃ 5 × 10−4) are chosen to ensure independence of
spatial discretization. A Courant number of one is enforced.

It is interesting to see the texture’s effect compared to that of an untextured liner maintaining
the rest of the parameters. For that purpose we define:

• The relative variation Vf of the average friction factor:

Vf (d, λ) =
f̄(d, λ)− funtextured

funtextured

• The relative variation VC of the minimal clearance:

VC(d, λ) =
Cmin(d, λ)− Cmin,untextured

Cmin,untextured

These variables are plotted in the d− λ maps (figures) 3 and 4 for m = m0.
The first map depicts the situation of a ring profile with R = 32, i.e. with a moderately

pronounced convergent-divergent wedge, while the other one with a large curvature radius
(R = 256) corresponds to an almost flat ring. This choice of R values is due to the fact that for
the studied range of d and λ no reduction in friction nor increase in clearance was registered
for R ≤ 16.

Figure 3 shows the results for R = 32 and W a = 3W a
0 . No increase in Cmin is seen, as all

VC values in figure 3(b) are negative. Deeper textures lead to even lower clearances. Moreover,
the highest VC value is VC = 0 at d = 0 which is the untextured case.

It is interesting to see that even in this context of lower clearances, considerable reductions
can be obtained in friction, as seen in fig. 3(a).

The previously described situation for VC at R=32 changes when the sliding surfaces are
nearly parallel, as with R = 256. A widespread region with high VC > 0 values has now ap-
peared in figure 4(b). For every depth, a maximum in clearance is reached for λ approximately
between 0.75 ≤ λ ≤ 1.1. This is shown for every d by the full thick line in black crossing
the chart. Clearances are increased up to 30%. These higher clearances are accompanied by
a substantial improvement in friction, as expected. The same previous texture with d = 5 and
λ=1 for R = 256 returns 58% less friction than the untextured liner.

These results can be explained in terms of the load carrying capacity of textures with a size
of about the contact length. In figure 5 the ring position has been fixed for textures with d=5
and three periods: λ=1.0, 0.5 and 0.25. Two instants are shown: (i) when the trough of the
texture with λ=1.0 is centered with the ring (figures 5(a) for R=32 and 5(b) for R=256) and
(ii) when the crest of the texture with λ=1.0 is centered with the ring (figures 5(c), 5(d)). It
is clear from the figure that each dimple works as a moving wedge, with a pressurized region
moving along with it. The pressure peak, the pressurized region and therefore the load carrying
capacity grow with the dimple’s period until it is approximately of the size of the ring’s length.
This effect is more pronounced for high conformity bearings, as a flat surface provides limited
load carrying capacity.

4.2.2 Two-dimensional textures

In this section we assess semi-ellipsoidal textures as portrayed in figure 6. This resembles
more the ones produced by LST than the simplified one-dimensional textures of the preced-
ing section. They are defined by a radius l (circular section in the x1-x2 plane) and a depth
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Figure 3: Relative differences for R=32 in (a) Vf and (b) VC (expressed in percentages) with respect to the
untextured liner, as functions of the texture parameters d and λ for a pad with W a

= 3W a
0

. The colorbars (as the
isolines) indicate these percentages. The black line indicates the optimum λ for d > 3 in figure (a).
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Figure 4: Same organization of results as in Fig. 3, but changing the curvature radius to R = 256. The black lines
mark the optimum λ for every d.

d arranged in a square lattice of side λ. Notice that in this case textures are allowed to be
"separated": a plateau is formed between dimples when 2l < λ.

The texture parameters for the simulations in this section are chosen to be:

• l=0.01, 0.025, 0.05, 0.1 to 0.5 with increment of 0.1;

• λ=0.05, 0.1 to 1.0 with increment of 0.1;

• d= 2, 5, 10, 20 and 30.

The maximum dimple size is equal to the pad’s length ℓ = L. Excluding those cases not sat-
isfying the thin film hypothesis (l ≤ 5d) and non-overlapping of dimples (2l ≤ λ) 112 different
configurations remain. Again, f and Cmin are extracted from the simulations once a periodicity
has been established. Only one load W a = W a

0 on the ring is analyzed. Convergence (in time
and space) was checked with 512×32, 1024×64 and 2048×128 meshes and a Courant number
of 1.0. Computations are performed for 10 curvature radius yielding 1120 solved cases.

In figure 7 results are shown for the 1120 cases computed, each one represented by a small
circle and organized by ring curvature radius R. The lowest friction coefficient of all computed
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Figure 5: Pressure profiles with fixed ring position at Z = 3.0 for (a) R=32, t=0 ; (b) R=256, t=0; (c) R=32,
t=0.5 ; (d) R=256, t=0.5. Notice that t=0 has been redefined as the instant at which the trough of the texture with
λ=1.0 coincides with the ring centerline.

cases is 0.074 at R=4 and the highest clearance is Cmin=6.4 at R=8. Both values correspond
to the untextured liner. Improvements with texturing are achieved only for R > 8 in friction
and R > 16 in clearance. For lower R values, no benefits over the untextured surface where
obtained.

However, for sufficiently large R there are dimpled configurations that show enormous im-
provements over the untextured liner: up to 65% in friction and 75% in clearance. This is
interesting since R/L ratios for compression rings are in the range 10-50 and are even higher
for oil control rings (Gadeschi et al. (2012); Priest and Dowson (1999); Smith (2010)).

We now want to know which ones of the 112 dimpled arrangements returns the highest
gains. The five textures with the best performance are listed in Table 2. The classification was
made according to the distance to the best result (lower friction, higher clearance: the dotted
lines in fig. 7) for each curvature radius R.

A clear trend is seen from the data of Table 2: λ, which is in all five cases is equal or
approximately equal to 1.0 is also close or equal to 2l. Those parameters represent a close-
packed array of dimples of the size (or about the size) of the ring length ℓ. This is consistent
with the results of the previous section. f and Cmin for the texture with l=0.5, λ=1.0 and d=10
are highlighted in figures 7(a) and 7(b) with a red line.

5 CONCLUSIONS

In this work we have first addressed the problem of solving the piston/ring lubrication prob-
lem with the Elrod-Adams model. The robust mass-conserving finite volume algorithm pre-
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(a) Best textures for large R

f Cmin

# l λ d # l λ d
1 0.5 1.0 10 1 0.5 1.0 10
2 0.4 1.0 10 2 0.4 0.9 10
3 0.5 1.0 20 3 0.4 0.8 5
4 0.5 1.0 5 4 0.3 0.7 5
5 0.4 0.8 5 5 0.4 0.9 5

Table 2: Best textures for large R values in terms of average friction coefficient and minimum clearance.

x1

x3

d

l
l

λ

λ

Figure 6: Pockets on the liner surface, resembling the ones produced with Laser Surface Texturing. λ, l and d are
the texture’s period, radius and depth.

sented in Ausas et al. (2009b) is modified to accelerate convergence by means of the Full

Approximation Scheme (Fulton et al. (1986)). The shortcomings of a straightforward multi-
grid were studied and discussed, making emphasis on the problem of the shifting cavitation
boundary. Solutions were offered for a efficient implementation.

Subsequently, the tribological effect of textured surfaces in the hydrodynamic regime was
examined by virtue of extensive one and two-dimensional space and time converged numerical
simulations. The piston velocity, oil viscosity and ring mass were chosen to mimic real engine
cycle conditions at mid-stroke.

It was observed in both one and two-dimensional simulations that the ring profile determines
whether texturing is beneficial or not. The performance of rings with moderate to high curvature
radius (as is the situation of compression and more markedly oil control rings) is benefited by
texturing. The more conformal the contact, the higher the gain, reaching reductions of up
to 65% in friction. These gains decrease with the load as the mixed lubrication regime is
approached.

In this context, the best textures for friction reduction and for maximizing ring/liner clear-
ances are close-packed textures with a size of about the length of the ring. Two observations
must be made: (a) this corresponds to an idealization, as tangent pockets (with thin walls be-
tween them) will render a surface prone to wear; and (b) all the results were obtained for
specific conditions (hydrodynamic regime , constants piston velocity and load on the ring). For
practical selection of liner textures the conditions (loads, velocities, oil feeding) along whole
real engine cycle should be contemplated.
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Figure 7: (a) Average friction coefficient f and (b) minimum clearance Cmin for the 1120 two-dimensional cases
computed. The two full lines link the circles of the results for (i) the dimpled surface of line 1 of Table 2 (in red)
and (ii) the untextured surface (in blue). The dotted line in green connects the points with lowest friction (fig. (a))
and highest clearance (fig. (b)).
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