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Abstract. Direct Numerical Simulation (DNS) is a very powerful tool to investigate turbulent flow;
e.g. to scrutinize fundamental physical aspects, to validate turbulent models, etc. In the past, however,
DNS had the limitation of low-Reynolds number effects, since almost all these simulations were done
for relatively low Reynolds numbers. Owing to the rapid increase in the computer power, moderately
high Reynolds number turbulent flows are now been investigated using DNS. In the present study, DNS
of fully developed turbulent channel flow with heat transfer, at four Reynolds numbers based on friction
velocity and channel half width (Reτ = δuτ/ν) up to Reτ = 930 and at molecular Prandtl number
equal to 1 are reported. The objective of this study is to analyze the Reynolds number dependency of the
flow and heat transfer turbulent quantities. The computed fields are also examined to investigate some
aspects related with the similarity/dissimilarity of the fluctuations of the temperature and the streamwise
velocity.
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1 INTRODUCTION

Wall bounded turbulent flows with heat transfer impact a large number of technologically
important applications. For this reason this topic has received continuous attention in the last
decades. In such flows there are many physical aspects related with momentum and heat trans-
fer, that deserve to be studied in detail aiming at to improve the prediction of the transfer coef-
ficients at the wall, to study the momentum and heat similarity/dissimilarity in the wall layer,
to improve turbulence models, etc. The study of the physical phenomena of a turbulent flow
near a solid boundary, however, have always been a major challenge, not only for those using
numerical techniques, but also for experimentalists. For numerical simulations the major ob-
stacles were, and continue to be, to accurately resolve the smallest and fastest scales near the
wall, the need for high performance computers to simulate flows with high Reynolds numbers,
etc. Experimentalists, on the other hand, have among other the challenges of measure with-
out disrupting the flow, to maintain a small measurement volume to avoid spatially averaging
the smallest scales when the size of the experimental facilities are important, and give special
attention to the calibration and response of the instrumentation.

In the last decades there was an enormous research effort on wall bounded turbulence in
pipes, channels and boundary layers at high Reynolds numbers, as new experimental facili-
ties and advance in experimental diagnostics (Marusic et al., 2010), as well as new big com-
puter clusters have been incorporated; e.g. notably the super cluster Blue Gene Sequoia, at the
Lawrence Livermore National Laboratory. All these new efforts have brought a critical review
of almost all aspects of wall bounded turbulent flows in pipes, channels and boundary layers,
since the mean velocity profile near the wall, the von Karman ’constant’ value, and the friction
velocity and kinematic viscosity as the parameters to construct the universal scaling next to the
wall, among other aspects.

Since channel flow is one of the simplest geometry that allows isolating complex physical
phenomena, at the beginning channel geometry was one of the most used. At this time only
channel flows with very low Reynolds numbers equal to 150 or 180 (Reτ = uτδ/ν, where uτ
is the friction velocity, δ is half the distance between walls and ν is the kinematic viscosity)
were simulated (Kim et al., 1987; Moser et al., 1999). But in recent years DNS with more and
more higher Reynolds numbers are being simulated (Hoyas and Jimenez, 2008; Kozuka et al.,
2008) (it is appropriate to say that nowadays there is a renewed effort for DNS in pipes for high
Reynolds numbers, since pipe flow experimental facilities seems to be less expensive than those
for channel flows).

In this study the results of DNS at four Reynolds numbers up to 930, for a channel flow with
heat transfer is presented. These simulations are the first step to do DNS of perturbed turbulent
flows with heat transfer for moderately high Reynolds numbers. Therefore, the goal of this
paper is to do a comparison of the computed statistics with similar results from the literature,
discussing aspects related with the scaling and the Reynolds number dependence of the data,
as well as to discuss a few aspects of the velocity-temperature similarity/dissimilarity for fully
developed flows for this range of Reynolds numbers.

2 NUMERICAL DETAILS

In this section the computational domain sizes, the grids, and other numerical details for the
four DNS cases are presented.

In this paper, û, v̂, and ŵ are the instantaneous velocities in the stream-wise (x), wall-normal
(y), and span-wise (z) directions, respectively. All instantaneous variables are decomposed as
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Table 1: Simulation parameters for the four direct numerical simulations of a channel flow with heat
transfer.

Case ∆+
y

name Line Reτ Re2δ Lx Lz Nx×Ny ×Nz ∆+
x ∆+

z max.
Re150 solid 149 4289 5π 3/2π 256× 144× 128 9.20 4.90 5.28
Re300 − − 302 9379 3π 4/3π 256× 240× 256 11.0 4.90 6.59
Re600 −.− 602 20592 2.25π π 512× 336× 256 8.28 7.36 9.90
Re930 ....... 902 32489 2.25π π 1024× 464× 512 6.40 5.70 10.50

mean values and fluctuations; e.g., û = U + u. The brackets 〈·〉 represent averaging over
homogeneous directions, usually over wall-parallel planes and times.

The nondimensionalization of the variables in this study is done using the friction velocity
uτ , the viscous length scale ν/uτ , and the friction temperature Tτ = qw/ρ cp uτ . Here, θ is
the dimensionless temperature, qw is the heat flux at the wall, and cp and ρ are the constant
pressure-specific heat coefficient and density, respectively.

The numerical method, the geometry, the initial and boundary condition and other numerical
aspects for velocity and temperature is as in the channel flow reported in Pasinato (2007, 2011).
The Prandtl number of the fluid is equal to 1. Buoyancy effects are neglected, as the temperature
is considered as a passive scalar. For the thermal field (the boundary conditions for temperature)
a uniform heat source is used, similar to Case I solved in Kim and Moin (1989), in which a
dimensionless source term equal to 2/(ReτPr) was used. In the present study, however, the
source is a constant energy source uniformly distributed in the domain, equal to qw/δ in the
dimensional form and in the dimensionless form equal to1. For this case, the dimensionless
temperature θ = (Tw − T )/Tτ is zero at the walls, and the Reynolds-averaged problem for the
longitudinal velocity and temperatures in dimensionless form are analogous, since their mean
differential equations and mean boundary conditions are similar.

Table 1 show the Case name, the line type used in the plots for the present results, the nominal
friction Reynolds number Reτ = uτδ/ν, the Reynolds numbers as a function of the mean
velocity and twice the separation between plates Re2δ = U2δ/ν, the size of the computational
domain, and the grid spacing for every DNS data of a channel flow with heat transfer reported
here.

As regarding the computational domain size, it is appropriate to comment that in the last
decade the measurements of the spectra have revealed the presence of very large scales motion,
that contribute significantly to the total energy content at all positions away from the wall, for
high Reynolds turbulent bounded flows (Hites, 1997; Jimenez, 1998; Kim and Adrian, 1999).
The characteristic scale of these structures is of 10δ in channels (10R in pipes, where R is the
pipe radius). This finding has motivated that new direct numerical simulations with very large
computational domains were used for high Reynolds numbers, in order to study the importance
of these structures. Although, as commented above, their energy contribution is mainly away
from the wall and more important for high Reynolds numbers, it has raised new criteria to define
the size of the computational domain in numerical simulations. In the present simulations,
however, the computational domain has been defined as in Moser et al. (1999)’s DNS, looking
at the inner region near the wall.
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Figure 1: Longitudinal velocity and temperature mean values. Present results as in Table 1. (a)Mean
velocity, U+; ? · ? · ?, Moser et al. (1999), Reτ = 590; ◦ · ◦ · ◦ , and � ·� ·� , , Jimenez and Hoyas
(2008), Reτ = 550 and 930, respectively. (b)mean temperature, Θ+, ◦ · ◦ · ◦ , Kozuka et al.
(2008), Reτ = 395.

3 RESULTS AND DISCUSSION

Based on the classical theory of bounded turbulent flow, it is thought that for very high
Reynolds numbers there exist a fully developed state of turbulence. If a proper scaling is used,
it is thought that such kind of state of turbulence should present a universal behavior. This has
been, for example, the spirit of the law of the wall, first proposed by von Karman in 1930 for the
wall layer. This law is the result of the existence of an overlap layer between the inner region
near the wall and the outer region afar from it, where the unique velocity scale is the friction
velocity, uτ . One fundamental condition for the existence of this overlap layer next to a wall is
that there exist a region far from the wall for viscosity to be important, but close enough to it for
the total tangential stress not to be very different from its value u2τ at the wall (Millikan, 1993;
Tennekes and Lumley, 1972; Townsend, 1976). At the near-wall region the velocity and length
scales are uτ and ν/uτ , respectively. At the outer region these scales are the friction velocity
and the length scale is δ, half the distance between walls for a channel or a fraction of it. At the
overlap layer the velocity and length scales are the friction velocity and the wall distance (as
it restricts the size of the turbulence structures). Therefore uτ is the only velocity scale in the
whole flow and is the link between the inner and the outer region.

As a result of this wall-scaling, a universal behavior is expected basically of the dimension-
less mean value of the mean streamwise velocity, as it is specified by the law of the wall, which
states that U+ = ln(y+)/0.41 + 5.5, where 0.41 is the von Karaman ’constant’ and the sec-
ond number depend on the wall roughness and the Reynolds number (here ’constant’ means
that nowadays there is not a complete agreement whether it is a constant or actually a weak
Reynolds number function). Here the old values published by Dean (1978) for channel flows
are used, even though it is known that there are small differences in the value of κ for flows in
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Figure 2: R.m.s. of fluctuation of velocity and temperature. Present results as in Table 1; ? · ? · ?, Moser
et al. (1999), Reτ = 590; ◦ · ◦ · ◦ , and � ·� ·� , , Jimenez and Hoyas (2008), Reτ = 550 and 930,
respectively .(a)u+; (b) v+; (c) w+; (d) θ+.

pipes, channels and boundary layers.
Related with this physics of the developed state of turbulence, more universal behavior is

expected in such overlap layer for other turbulent quantities when properly nondimensionalized
(Townsend, 1976; Jimenez and Hoyas, 2008). In this trend a universal behavior is expected
near the wall for the r.m.s. of the velocities fluctuation, u+, v+, w+, the pressure fluctuation,
p+, the kinetic energy of the turbulence and its dissipation, κ+, and ε+, respectively, among
other. This universal behavior does not seems to be the case, however; in contrast, there exit a
weak function of the Reynolds numbers of the major part of the turbulence quantities.

In the last decades several experimental and numerical studies have addressed this wall-
scaling (Wei and Willmarth, 1989; Antonia and Kim, 1994; Kim et al., 1987; Moser et al.,
1999; Jimenez and Hoyas, 2008; Hoyas and Jimenez, 2008), and the existence of a unique state
of turbulence behavior for sufficiently large, but finite Reynolds number, is being questioned,
and also has been questioned the logarithmic law for channels, pipes, and boundary layers, even
though it seems to be the most likely behavior (Barenblatt, 1993; George et al., 2000). Also, the
von Karman ’constant’ seems to be not the same for channels, pipes or boundary layers flows,
and the values for channels seems to be not the classical 0.41 and 5.5 values published by Dean
(1978). On the other hand, the location of the maximal of the r.m.s of the velocity fluctuations
seems to scale with the uτ and ν/uτ , but their values are Reynolds dependent, and the same
seems to be the case for the r.m.s of the pressure fluctuations and mean pressure.

In the following, a synthesis of the main results of the present numerical simulations for the
four Reynolds numbers of the channel flow with heat transfer are presented, together with some
discussion.

Figure 1-a shows the distribution of U+ with y+ for the 4 Reynolds together with the Moser
et al. (1999)’s DNS data for Reτ = 590 and the Jimenez and Hoyas (2008)’s DNS data for
Reτ = 547 and 934, and Figure 1-b shows the Θ+ with y+ together with Kozuka et al. (2008)’s
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DNS data for Reτ = 395. In Figure 2a-c the r.m.s of velocities and again the data from Moser’s
and Jimenez’s group are included, and in Figure 2-d the r.m.s. of the temperature fluctuation is
shown with the Kozuka et al. (2008)’s data for Reτ = 395. Note that in general there is a good
agreement in the comparisons of these turbulent quantities.
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Figure 3: Two-point correlations for the longitudinal velocity fluctuation at y+ ' 18. Lines as in Table 1.
(a)Streamwise; (b)Spanwise.

Table 2: Wall values for different turbulent quantities; where ε+ is the total turbulence dissipation, ε+11
and ε+33 are the longitudinal and spanwise turbulence dissipation, ε+θ is the turbulence dissipation of the
thermal field, ω+

11 and ω+
33 are the longitudinal and spanwise vorticity components, and (p,x)+, (p,y)

+ and
(p,z)

+ are the r.m.s. of the streamwise, wall-normal and spanwise gradient of the pressure fluctuation.

Case name ε+ ε+11 ε+33 ε+θ ω+
1 ω+

3 p+ (p,x)
+ (p,y)

+ (p,z)
+

Re150 0.155 0.122 0.033 0.127 0.182 0.352 1.440 0.046 0.004 0.067
Re300 0.199 0.146 0.053 0.152 0.227 0.382 1.889 0.058 0.005 0.080
Re600 0.239 0.184 0.055 0.182 0.232 0.423 2.170 0.067 0.007 0.084
Re930 0.259 0.201 0.058 0.200 0.250 0.452 2.401 0.074 0.008 0.086

In Figures 3-a and 3-b the streamwise and spanwise two-point correlations for u are shown,
respectively, for y+ ' 18. Figure 3-a shows that the streamwise structures near the wall scales
with the inner variables for the different Reynolds numbers, showing also (as it is known) that
the length of the streamwise structures is approximately 1000 wall units. On the other hand,
in Figure 3-b is seen (as it is also known) that the spanwise separation of these structures is
approximately 100 wall units, for all Reynolds numbers. Therefore, the size and spanwise
separation of the streamwise vortical near-wall structures seems to scale with the inner scales,
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Figure 4: Mean pressure and root mean square of pressure fluctuation. Lines as in Table 1. (a)Mean
pressure; (b) r.m.s., p+.

which are a function of the skin friction. This result shows, on the other hand, that these
structures are linked, in same way, with the skin friction at the wall. Or, in other words, that
these structures control the friction at the wall. Furthermore, based on the strong similarity that
exist between velocity and temperature in the near-wall region, it is also expected that these
structures have importance on the heat transfer at the wall (Pasinato, 2007).

Figures 4-a and 4-b show the mean pressure and the r.m.s. of the pressure fluctuation. These
figures show that pressure does not scale with the inner variables; it is a function of the Reynolds
number. The value of p+ increases for the different Reynolds numbers while the location of its
maximum scales with the inner scales. In contrast, the mean pressure collapse at the wall
for the different Reynolds numbers, but also it is a function of the Reynolds number far from
the wall. In short, no one of these plots for the different Reynolds numbers collapse when
nondimensionalized with the wall parameters, they all show a clear dependence on the Reynolds
number.

In Table 2 the r.m.s. of some turbulent quantities at the wall are presented. In the present
DNS the value of ε at the wall for Reτ = 149 is 0.155, while from a DNS for a similar flow but
at Reτ = 180 performed by Kim et al. (1987) was 0.166, which shows a reasonable agreement
with the numeric value of the present study. In this table ε is the total of the turbulent kinetic
energy dissipation, homogeneous plus non-homogeneous; on the other hand, it was verified -no
data shown- for the four Reynolds numbers that the non-homogeneous part of the turbulence
dissipation of the velocity field is about 2% in the whole domain, as it was previously published
by Bradshaw and Perot (1993)).

Any turbulent quantity in Table 2 shows some kind of universality based on the usual inner
wall scales; all of them depend of the Reynolds number. Antonia and Kim (1994) used the
Kolmogorov’s inner length and velocity scales, η = (ν3/εw)1/4 and v = (νεw)1/4, respectively,
where εw is the dissipation at the wall, and found that in the near-wall region most of the
turbulence quantities scale better on Kolmogorov’s scales, although not perfect, than on the
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usual wall scales uτ and ν/uτ .
In Figure 2-a and 2-d the r.m.s. of u and θ were shown, respectively. These figures show

that the values of both fluctuations do not scale with the inner variables, but the locations of
the maximal for both fluctuations agree for the different Reynolds numbers. The correlation or
decorrelation, similarity or dissimilarity, between both fluctuations can be measured in different
ways. It can be used the second moment of both fluctuations 〈uθ〉 normalized by their r.m.s.
as ρuθ = 〈uθ〉/(u+θ+). But also the variance of the difference between these fluctuations,
normalized by the product of the r.m.s., can be used as a measure of the similarity.

In other words, using a new variable φ̂ = (û − θ̂) that, as all turbulent variables, is decom-
posed in a fluctuation plus a mean value, φ̂ = Φ +φ, for Pr = 1, the fluctuation of this variable
is φ = (u − θ) and its variance is 〈φφ〉 = 〈uu〉 + 〈θθ〉 − 2〈uθ〉, which can be normalized by
u+ and θ+ as a measure of the dissimilarity (Pasinato, 2013, 2012). In Figure 5-a the plot of
φ+2/(u+θ+) is shown. This figure shows that for the four Reynolds numbers the variance of
the difference normalized presents a minimum approximately at y ' 10 and then it increases
toward the central region.

It is interesting to see what are the source terms of this variance. The conservation law of
〈φφ〉 is

∂

∂t
〈φφ〉 =

1

Rτ

d2

dy2
〈φφ〉 − d

dy
〈φφv〉 − 2〈φv〉dΦ

dy
− 2〈φ∂p

∂x
〉 − 2

Rτ

〈 ∂φ
∂xj

∂φ

∂xj
〉 (1)

where equation (1) has been simplified for developed conditions; the term on the left (1) is zero,
while the first term on the right is the molecular diffusion, the second is the turbulent transport,
the third and fourth are production terms, and the last term is the dissipation of the variance of
the difference between the fluctuations.

The interest here are the production terms in equation (1); the terms which are the re-
sponsible of the production of the differences between the fluctuations of longitudinal ve-
locity and temperature. One of these terms is the third term on the right −2〈φv〉dΦ/dy =
−2(〈uv〉 − 〈θv〉(dU/dy − dΘ/dy)), which is the product of the difference between the wall-
normal gradients of the mean fields by the difference between the wall-normal fluxes. For
developed conditions this term is almost zero, and it is clearly a minor term in comparison
with the other production term, the fourth term on the right of this equation, −2〈φ∂p/∂x〉 =
−2(〈u∂p/∂x〉 − 〈θ∂p/∂x〉), which is a ’difference u − φ pressure-gradient interaction’ term.
This term is a measure of how both turbulent fields, u and θ, correlate with the instantaneous
axial pressure gradient, and is also the only important generator of differences between u and θ
(from the conservation laws of 〈uu〉 and 〈θθ〉, not written here, it can be seen that the only dif-
ference between both equations is the velocity-pressure gradient interaction,−〈u∂p/∂x〉,which
redistributes energy among the velocity components). This term is always positive, representing
a source of 〈φφ〉, showing that the differences between u and θ is due to a better correlation of
the instantaneous axial pressure gradient with the scalar transported by the fluid than with the
axial velocity.

Figure 5-b shows the distribution of the production term responsible of this variance 〈φ∂p/∂x〉+ =
〈(u− θ)∂p/∂x〉+. This figure shows that 〈(u− θ)∂p/∂x〉+ almost scale with the inner param-
eters for the three higher Reynolds numbers, showing a low-Reynolds number effect only for
caseRe150. Data not shown here reveal that 〈θ∂p/∂x〉+ is almost twice the value of 〈u∂p/∂x〉+
in the whole domain, increasing in the central region.
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Figure 5: Normalized variance of the difference between the longitudinal velocity and temperature fluc-
tuations, and correlation of instantaneous axial pressure gradient with the difference of the longitudi-
nal velocity and temperature fluctuation. Lines as in Table 1.(a)φ+2/(u+θ+) = (u − θ)2/(u+θ+);
(b)〈φ∂p/∂x〉+.

Another result that deserve be commented is the dependence from the Reynolds number,
of the similarity relationship between the r.m.s. of the fluctuations and the mean wall-normal
gradient, for longitudinal velocity and temperature in the wall layer (Pasinato, 2013, 2012).
This similarity is a consequence of the phenomenology of the momentum and heat transfer
in the wall layer; e.g. almost 80% of u in the wall layer is associated with turbulent events for
which 〈uv〉 < 0, and the same is true for θ which are associated with events for which 〈θv〉 < 0.
This relation is

(∂U/∂y)+

u+
' (∂Θ/∂y)+

θ+
(2)

where θ+ and u+ are the r.m.s. of the fluctuations of temperature and longitudinal velocity and
(∂Θ/∂y)+ and (∂U/∂y)+ are the wall-normal mean gradient of the temperature and longitudi-
nal velocity, respectively.

Figure 6-a and 6-b show these relationship for Pr = 1 for the four Reτ . Since the wall-
normal gradients scale with the inner variables, but not the r.m.s. of the fluctuations, these plots
do not collapse in a unique plot. However it is clear that for a specific Reynolds numbers these
plots are similar in the wall layer and in a major part of the central region.

4 CONCLUSIONS

In this study the results of direct numerical simulations at four Reynolds numbers up to 930,
for a channel flow with heat transfer is presented. The statistics of the turbulent quantities of the
numerical simulations present a good agreement with similar results from the literature. Beside
the mean values of the longitudinal velocity and temperature, all other turbulent quantities have
a clear Reynolds number dependency (as it is already known), when scaled with the inner scales.
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Figure 6: (a)(dU/dy)+/u+; (b)(dΘ/dy)+/θ+. Lines as in Table 1.

As regarding the similarity between the r.m.s. of the fluctuations and the wall-normal gradient
(for the longitudinal velocity and the temperature), the results for higher Reynolds numbers give
a more solid foundation to this similarity for the wall layer.
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