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Abstract. Are currently available CFD techniques able to model the motion of a submilimiter-scale
liquid drop falling in another (quiescent) liquid? In this work we define a very simple two-dimensional
test: An initially circular drop of water of diameter 0.1 mm is placed at the center of a square box (size
0.6 mm) filled with oil (relative density 0.8). The goal is to compute the fall of the drop towards the
bottom of the box, which would take several seconds based on typical terminal velocities found in the
problem. It seems easy, doesn’t it? We have tested several CFD techniques on this problem: FOAM (two
available VOF-based methods within FOAM’s platform), GERRIS (free software from Popinet’s group),
level-set finite elements (interface capturing) and finally ALE finite elements (interface tracking). The
aim is to illustrate on the serious limitations this methodologies have to accurately and efficiently track
the dropet’s trajectory.
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1 INTRODUCTION

The study of sedimentation of water droplets in oil is of great interest for the petroleum
industry (Frising et al., 2006). Crude oil is seldom produced alone. In majority of cases the
oil is produced along with water. Due to the presence of active agents in the oil, a water-in-
oil emulsion is produced, i.e., an emulsion with oil being the continuous phase and water the
dispersed one. Several factors can influence the formation of such emulsions, such as the flow
through the porous medium or the turbulence mixing at pipes and valves (Barnea and Mizrahi,
1975). After extraction the two phases are separated which is usually acomplished by using the
so called gravity settlers where two important phenomena are observed: droplet coalescence
and droplet sedimentation. Both are interesting and challenging phenomena to deal with from
a computational standpoint. The former because it involves merging of interfaces and therefore
requires robust numerical techniques to handle topological changes of the fluid phases. The
latter, which is the main interest here, although simple at a first glance, also presents challenges
because it requires tracking of the droplet trajectory for several seconds until it settles down at
the bottom of the separator. The diameter of droplets of interest for these applications are in the
submilimiter scale with values near 0.1mm. Under these conditions the flow is highly dominated
by viscous and surface tension effects and droplets remain spherical along their sedimentation.

State-of-the-art CFD techniques for two-phase flows dominated by surface tension in this op-
erating range suffer from severe time step restrictions (Galusinski and Vigneaux, 2008) and/or
from the so called parasitic currents (Scardovelli and Zaleski, 1999) if coarse meshes or low
order approximations are used, in which case simulation results may end up being totally mean-
ingless. Refining the time step and the mesh render numerical simulations for the whole history
of sedimentation, even for a single droplet, extremely costly. The aim of this article is pre-
cisely to illustrate on this point by using several numerical techniques which include, various
VOF solvers (Weller et al., 1998; Popinet, 2009; Márquez Damián, 2013), a finite element level
set method as proposed in Ausas (2010) and an Arbitrary Lagrangian Eulerian method as pro-
posed in Montefuscolo (2012). The simulation results show the behavior and robustness of the
different methodologies to predict the evolution of a single submilimiter water droplet in oil.

By means of outline, after this introduction, the equations and non-dimensional parameters
governing the sedimentation of droplets are presented. Next, the different numerical method-
ologies considered to discretize the problem are suscintly recalled and numerical results from
each one are shown to illustrate on their limitations for different time step and mesh resolutions.
Finally, some conclusions are drawn.

2 GOVERNING EQUATIONS

All the numerical methodologies used in this work to assess the sedimentation of the droplet
implement the resolution of the mathematical problem describe in this section. We consider
two-phase immiscible Newtonian flows. The fluid domain Ω is divided into a “plus” (+) region
and a “minus” (−) region by a closed (smooth) interface Γ as shown in figure 1, such that

Ω = Ω+(t) ∪ Γ(t) ∪ Ω−(t). (1)

The density ρ and viscosity µ are assumed homogeneous and constant within each region,
namely

(ρ(x, t), µ(x, t)) =

{
(ρ+, µ+) if x ∈ Ω+(t)
(ρ−, µ−) if x ∈ Ω−(t)

(2)
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Figure 1: Schematic diagram of the problem setting.

On each region we need to solve the dynamical equilibrium equations, i.e.,

ρ (∂tu + u · ∇u)−∇ · τ +∇p = −ρ g ê2 in Ω+(t) ∪ Ω−(t) (3)

where u is the velocity field, p is the pressure field, −g ê2 is the gravitational force and τ =
µ (∇u +∇Tu) is the stress tensor. The incompressibility restriction reads

∇ · u = 0 in Ω+(t) ∪ Ω−(t) (4)

In this work we also consider the following initial and boundary conditions{
u(x, t = 0) = 0 x ∈ Ω+(t) ∪ Ω−(t)

u(x, t) = 0 x ∈ ∂Ω
(5)

Interface conditions

Important for this problem are the jump conditions at the interface Γ. For capillary interfaces,
the jump conditions for velocity and stresses on the interface read{

JuK = 0 on Γ
Jτ · ňK = σ κ ň−∇Γσ on Γ

(6)

In which J·K represents the jump of any quantity at Γ, σ is the surface tension coefficient, κ is the
mean curvature of Γ and ň is the normal vector to Γ pointing towards Ω+. The first condition
implies that incompressibility is satisfied at the interface. The second condition incorporates
the dynamical effects at Γ. Here, σ is assumed constant and uniform along Γ for the sake of
simplicity and therefore we neglect Marangoni effects coming from its surface gradient ∇Γσ.
These effects are generally due to chemical or thermal gradients. The variables that are expected
to be discontinuous at Γ are thus the pressure field and the velocity gradient. For more details
see Buscaglia and Ausas (2012).
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The interface conditions appear naturally in a variational formulation of the problem which is
well suited for the finite element methods used later on. An alternative equivalent approach use-
ful for discretization in other frameworks, is to consider the surface tension force as a singular
force at the interface, i.e.,

Fσ = δΓσ κ ň on Γ (7)

This is the approach followed in the VOF formulation presented in the following section. The
Dirac distribution δΓ can be further regularized for discretization purposes leading to different
formulations in turn.

2.1 Sedimentation velocity

In this work our aim is to assess different numerical methodologies to simulate the sedimen-
tation of a single water droplet in oil as shown in figure 1. For the sake of simplicity, we consider
a two dimensional (planar) setting and therefore study the sedimentation of “large cylinders”.
The behavior of droplets in different flow regimes is studied in the classical work of Clift et al.
(2005). Here it is reasonable to assume that surface tension effects dominate the problem and
the droplet remains circular along its evolution. Since the Reynolds number is also expected
to be small, a simple estimation based on Stokes’ flow gives the following expression for the
sedimentation velocity

Us =

√
g d π

Cd

ρw − ρo
ρo

, (8)

where ρw and ρo are the densities of water and oil respectively, d is the droplet’s diameter, and
Cd is the drag coefficient which for low Reynolds number is roughly proportional to ∼ 1/Re,
yielding (see Perry (1950))

Us =
(ρw − ρo) g d2

18µo
, (9)

where µo is the oil viscosity (the continuous phase). Different estimations can be made for the
Drag coefficient as proposed in Finn (1953)

Cd =
8 π

[1
2
− 0.577− ln(Re/8)] Re

, (10)

but an iterative procedure is then needed to compute Us. The velocity Us is used to effectively
compute the non-dimensional parameters in the next subsection and confirm the assumptions
already made.

2.2 Non-dimensional groups

Dimensional analysis on the governing equations leads to five non-dimensional parameters
for this problem: the Reynolds number, the Froude Number, the Weber number and the ratio
between densities ρo/ρw and viscosities µo/µw. However, some additional numbers are usu-
ally used in the literature to characterize these flows. The parameters of interest here are the
Reynolds number, the capillary number Ca, the Eötvos number Eo and the Laplace number La.
They can be all obtained as combinations of the formers and are defined as

Re =
ρU d

µ
, Ca =

µU

σ

Eo =
∆ρ g d2

σ
, La =

σ ρ d

µ2

(11)
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The characteristic velocity is chosen as the terminal or sedimentation velocity Us previously
introduced. The physical parameters adopted for the numerical simulations are summarized
in table 1. These values correspond to water droplets in oil. Notice the large viscosity ratio
µo/µw of 300 considered. Using the aforementioned rough estimation for the drag coefficient
the sedimentation velocity results in

Us ≈ 3.7× 10−6 m/s, (12)

finally yielding
Re = 1.16× 10−6, Ca = 6.54× 10−5

Eo = 10−3, La = 1.78× 10−2

(13)

Under these conditions, the flow is clearly in the Stokes regime and dominated by surface
tension and viscosity.

Table 1: Physical parameters adopted for the sedimentation of a water droplet in oil.

Parameter Symbol Value [SI]
Droplet diameter d 0.0001 m

Domain size L 0.0006 m
Gravity acceleration g 10 m/s2

Dispersed phase (Water Droplet):
Density ρw 1000 kg/m3

Viscosity µw 0.001 Pa s
Continuous phase (Oil):

Density ρo 800 kg/m3

Viscosity µo 0.3 Pa s
Interface:

Surface tension coefficient σ 0.02 kg/s2

3 NUMERICAL METHODS

3.1 Parasitic currents

Parasitic currents are a consequence of discretization errors in the numerical modeling of
capillary flows. They have been extensively discussed in the literature in various numerical
settings. References on the subject can be consulted e.g. in Popinet (2009) and Scardovelli and
Zaleski (1999). Some numerical techniques, specially those based on an implicit representation
of the interface non-conforming with the edges/faces of the underlying mesh where the flow
problem is being solved, are particularly affected by them. Examples of these techniques are
the well known level set and VOF methodologies used later on in this work. Several details of
the discretization affect the strenght and form of these parasitic currents. Although, a complete
review of this topic is out of the scope of the article, we may mention:

• mesh quality and resolution (Deshpande et al., 2012; Lafaurie et al., 1993; Harvie et al.,
2006);

• size of time step (Galusinski and Vigneaux, 2008);
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• treatment of discontinuous variables close to Γ, such as the pressure and the velocity
gradient (Ausas et al., 2012; Idelsohn et al., 2010);

• accuracy in the discrete representation of Γ and computation of normal and curvature
fields (Gross and Reusken, 2007; Cummins et al., 2005; Marchandise et al., 2007),

The behavior of different numerical methods with respect to these factors can vary a lot. As
an example, in VOF methods the magnitude of spurious velocities can even increase with mesh
refinement as reported in Deshpande et al. (2012). Other classes of methods, as those based
on an explicit Lagrangian representation of the interface, such as the Arbirtrary Lagrangian
Eulerian (ALE) method may exhibit better behaviors as we show later on.

In this work we assess three different classes of methods to solve the sedimentation of the
droplet. In the first place, the VOF method, based on a finite volume discretization of the prob-
lem. In the second place, an equal order finite element level set method in the form proposed by
Ausas (2010). Finally, a finite element ALE method proposed by Montefuscolo (2012). Here,
without entering into all the details, we suscintly recall the main ingredients involved on each
of them. Prior to this we briefly discuss the time step restrictions that are expected in these
problems.

3.2 Time step restrictions

We consider here numerical schemes in which velocity and pressure are solved with a fixed
interface geometry and then geometry is updated with the last computed velocity. These are
called staggered schemes for which a time step restriction is expected. According to Galusin-
ski and Vigneaux (2008) the time step ∆t needs to satisfy the following limiting criterion for
stability

∆t ≤ ∆tlim ≈
1

2

{
C2

hµ

σ
+

√
(C2

hµ

σ
)2 + 4C1

ρh3

σ

}
, (14)

where h is the element size and C1 and C2 are constants depending on the specific method but
not on the mesh size and the physical parameters of the problem. For instance, in Deshpande
et al. (2012) the authors assess the behavior of interFoam solver (Weller et al., 1998) and
experimentally find values of 0.01 and 10 for C1 and C2 respectively. One would expect that
a reasonable value for the mesh size h in our problem be of the order of d/10, meaning that a
single droplet in a 3D simulation is resolved with 1000 discretization points. This would be an
affordable quantity if the aim is at simulating for instance 1000 droplets. The numerical values
for viscosity and density considered in table 1 yield ∆tlim ≈ 10−5 s (at worst). According to the
terminal velocity previously computed of 3.7 × 10−6 m/s, the droplet requires ∼ 80s to settle
down at the bottom of the computational domain, which means that 8 millon time steps are
needded to complete the simulation!. Of course, this restriction can be improved for some of
the formulations by using a semi-implicit scheme as proposed by Bänsch (2001) or an implicit
scheme as done in Buscaglia and Ausas (2012); Ausas et al. (2009) to deal with the surface
tension force.

Now, we describe the main features of the numerical schemes to be tested. Again, we em-
phatize that a staggered scheme is used in which u and p are first solved with a fixed interface,
and then Γ is transported with the last computed u.
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VOF - Finite volume methods

In the Volume of Fluid (VOF) method initially proposed by Hirt and Nichols (1981) the
incompressible Navier-Stokes equations (3) are solved by using a density and viscosity defined
by

µ = αµ− + (1− α)µ+,
ρ = α ρ− + (1− α) ρ+,

(15)

α being the volume fraction of the primary phase, i.e., it is a scalar field that assumes values
equal to 1 at those cells completely in Ω−, 0 at those cells completely in Ω+ and varies between
0 and 1 in those cells on the interface. The advection of α is governed by the following equation
in conservative form

∂tα +∇ · (αu) +∇ · [α (1− α)vr] = 0, (16)

where vr is the relative velocity between the two phases. Theoretically, this velocity should
be zero, however, in some implementations it is retained to add some compressibility at the
interface, which actually turns the problem non-linear. In this work several formulations or im-
plementations are tested, specifically, the InterFoam solver of Weller et al. (1998), a derived
solver called interDyMFoam, both in the free software suite OpenFOAM R© and the also pub-
licly available Gerris software proposed by Popinet (2003). Some ingredients common to all
the aforementioned VOF implementations that were adopted in this work are:

- Discretization of the computational domain into finite volume quadrilateral cells.

- Cell-centered finite volume method.

- Derivation of the PISO method for pressure-velocity coupling.

- Geometric properties and surface tension force computed based on the volume fraction
without regularizations.

- Multidimensional Universal Limiter with Explicit Solution (used in FOAM implementa-
tions, see Deshpande et al. (2012); Márquez Damián (2013)) and TVD scheme in Gerris
to solve the advection equation.

Regarding the computation of the surface tension force mentioned in the itemized list above,
at each cell, the normal vector and curvature are computed based on α as (Brackbill et al., 1992)

ň =
∇α
‖ ∇α ‖

, κ = −∇ · ∇
(
∇α
‖ ∇α ‖

)
(17)

yielding the following form for the surface tension force

Fσ = σ κ ň (18)

Level set - Finite element method

In the level set method (Osher and Sethian, 1988) the interface is defined as the zero set of a
scalar function φ(x, t), i.e.,

Γ = {x ∈ Ω, φ(x) = 0}, (19)

this function should satisfy the condition

∇φ(x) 6= 0 x ∈ Γ, (20)
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so as the normal to Γ is well defined and given by

ň(x) =
∇φ(x)

‖ ∇φ(x) ‖
x ∈ Γ (21)

The level set function and implicitly Γ, are transported by the velocity field u that follows
after solving the Navier-Stokes equations (3). This transport is done by means of solving the
hyperbolic advection equation

∂tφ+ u · ∇φ = 0 in Ω, t > 0 (22)

where the initial condition φ(x, 0) = φ0(x) is defined according to the initial position of the
interface. Also, appropriate Dirichlet boundary conditions are needed at the inflow boundaries
if present. A thorough description of the complete formulation and details adopted here can
be found elsewhere (see Ausas (2010)). The finite element method is adopted for spatial dis-
cretization, whose main ingredients are summarized below.

- Discretization of the computational domain into triangles.

- Equal order formulation to solve the Navier-Stokes equations (3) using linear elements
for velocity and pressure and algebraic subgrid scale method for stabilization (see e.g.
(Codina, 2001; Hughes et al., 1986)).

- SUPG formulation to solve the transport equation (22) with P1 elements for the level set
function.

- First order temporal accuracy.

- Modified pressure space proposed in Ausas et al. (2010) to capture discontinuities in the
pressure field.

- Laplace-Beltrami treatment of the surface tension force.

Using standard P1 elements for the level set function implies that the reconstructed interface is
elementwise planar. In the Laplace-Beltrami approach, the curvature computation is avoided by
means of integrating by parts along Γ (Buscaglia and Ausas, 2012).

ALE method

In an ALE formulation Hughes et al. (1981); Baiges et al. (2010); Rabier and Medale (2003)
the interface between the two fluids is represented by the edges (in 2D) or faces (in 3D) of the
mesh in which the flow problem is being solved. For the particular problem we have at hand,
this formulation is expected to be accurate and robust to follow the falling droplet. In the ALE
method the finite element partition moves with time. Each nodal position is a function of time
that is denoted by xj(t). The nodal velocity can be defined as

vj(t)=̇
dxj(t)

dt
, (23)

index j running over the nodes of the finite element partition. The velocity field is approximated
as

uh =
∑
j

N j(x, t)uj(t), N j(·, t) eα ∈ Wh(t) (24)
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where eα, α = 1, . . . , d is the canonical basis, and uj(t) are the nodal velocity values. In (24)
Wh(t) ⊂ (H1(Ω(t)))d is a finite dimensional space that depends parametrically on time. A key
point in the derivation of the ALE formulation is the following identity

∂tuh =
∑
j

N j du
j

dt
− (vh · ∇)uh (25)

which inserted into a classical spatial discretization of the variational form of (3) yields a differ-
ential algebraic equation system to which any temporal discretization scheme can be applied.
The formulation adopted here is presented with details in Montefuscolo (2012). The main
ingredients of the implementation are

- Discretization of the computational domain into triangles.

- Equal order formulation to solve the Navier-Stokes equations (3) using linear elements
for velocity and pressure and algebraic subgrid scale method for stabilization.

- Discontinuos elements for the pressure field at the interface.

- Linear elements for geometry interpolation.

- First order temporal accuracy.

- Elasticity-like problem for the mesh velocity equation.

- Laplace-Beltrami treatment of the surface tension force.

As noticed, many features of the approximation are shared with the finite element level set
methodology presented above.

4 NUMERICAL RESULTS

In this section we present results from each numerical methodology to illustrate on their lim-
itations. The numerical values adopted and the corresponding non-dimensional parameters are
the ones given in section 2.2. Similar numerical studies using Eulerian and Lagrangian formu-
lations are presented for instance in Bertaki et al. (2010) and Bäumler et al. (2011), however, in
none of these articles the authors address the submiliter scale as done here.

Before passing to the results, some comments are in order. For both finite element based for-
mulations, namely, the level set and the ALE methods, simulations are carried out for different
grid resolutions. The central region of the computational domain is refined so as to have mesh
resolutions h equal to d/10, d/20 and d/40, while a coarser mesh is generated far a way from
the region of interest. For the VOF simulations, uniform and locally refined meshes only near
the interface are used. This allows us to save some computational time and assess the behavior
of the different formulations with respect to grid resolution. Simulations runs until one second
of physical time when possible. Although this is a short time compared to the total one needed
for complete sedimentation, and the steady state velocity may not be even reached for some
of the simulations, we have found this sufficient to characterize the behavior of the numerical
schemes. Finally, we also report on the center of mass position and velocity computed as

rcm(t) =
1

meas(Ω+(t))

∫
Ω+(t)

x dΩ, ucm(t) =
1

meas(Ω+(t))

∫
Ω+(t)

u(x, t) dΩ (26)

rembembering the value previously estimated for the sedimentation velocity is 0.0037 mm/s.
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4.1 VOF results

In this section we present results corresponding to different VOF formulations: interFoam,
interDyMFoam and Gerris. Other formulations also tested as iInterFoam showed very
similar results or did not succeed in completing a significant part of the total simulation time
and therefore are not shown here for the sake of brevity. The finite volume meshes used in
the simulations are shown in figure 2. For interFoam two meshes are considered: a regular
one with a cell size ∆x = d/10 and a adaptively locally refined one with up to three levels of
refinement obtained by uniform cell splitting near the droplet’s interface. In Gerris code the
grid is also adaptively refined as the simulation proceeds similarly to interDyMFoam. The
initial grid is always consisting of an uniform regular grid with ∆x = d/10. The time step
∆t used in simulations are 10−6s for the uniform mesh used by interFoam and 10−7s for
the refined grids used by interDyMFoam and Gerris. For the finer meshes, simulations
are computationally very demanding and we were able to report results only for the different
times indicated. The velocity fields are shown in figure 3. As observed the strenght of parasitic
currents is totally polluting the results for interFoam and interDyMFoam. The droplet
remains essentially at its initial position during most part of the simulation and for this reason
the plot is not shown. Further mesh and time step refinements do not solve the problem. For
Gerris, on the other hand, results start to improve with the level of refinement considered.
This is due to the improved treatment for the curvature field by means of the so called height
functions used in this implementation. The droplet did not attain the terminal velocity but the
flow pattern is clearly symmetric as expected. These results already show serious limitations of
some of the VOF implementations, even when very fine meshes are used.

Using Gerris software, with the adaptevely refined grid and time step, the complete sed-
imentation can be simulated in approximately 67 days on a 4-core desktop computer with i7
processor at 2.9 GHz.

h = d/80h = d/10

Figure 2: Finite volume meshes used for the VOF simulations.

4.2 Level set results

The finite element meshes built for the level set simulations are displayed in figure 4. As
previously mentioned they are finer in the region of intereset, being this more than sufficient to
simulate 1 s of time. The time step ∆t used in simulations is 10−4s for the first mesh, 5× 10−5s
for the second one and 2.5 × 10−5s for finest one. Remember the modified pressure space
is being used to capture the discontinuous behavior of p at the interface, however, this is not
enough to avoid the nocive effect of the parasitic currents as shown in figure 5 where the velocity
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interDyMFoam (refined) - t = 0.01 Gerris - t = 0.27interFoam , regular - t = 0.75

Figure 3: Velocity field (in m/s) obtained with the VOF formulation for the different implementations at the final
simulated time for each case.

field at t = 1 is plotted. The maximum of the colour scale in these figures is dictated by the
maximum parasitic current which sometimes is limited to few elements, hindering the fact that
most of the droplet phase is moving at the same velocity. This is particularly the case for
the third refinement level and to some extent for the second refinement. Figure 6 shows the
droplet’s vertical position and velocity as a function of time for the three meshes. Results start
to be acceptable for the third refinement in which the size of the parasitic currents is sufficiently
reduced being their effect limited to a very small region and/or for small periods of time. For the
sake of clarity, in these plots only a fraction of the total number of simulated points is shown.
The poorest results are obtained for the first refinement (red dots) for which the strenght of the
spurious velocities completely pollutes the droplet’s trajectory.

For the finest mesh (consisting of 14406 triangular elements), using a time step ∆t =
2.5× 10−5, the complete sedimentation can be simulated in approximately 15 days on a 4-core
desktop computer with i7 processor at 2.9 GHz.

h = d/10 h = d/40h = d/20

Figure 4: Finite element meshes used for the level set simulations.

4.3 ALE results

The finite element meshes built to compute the flow with the ALE formulation are shown
in figure 7. A finer region in the central part of the computational domain is also considered,
although a smoother transition from fine to coarse elements is used. The droplet interface is
coincident with the element edges as can be notice by zooming in at these plots. The corre-
sponding velocity fields are shown in figure 8. The time step ∆t used in simulations is 10−4s
for the first mesh and 10−5s for the rest of the meshes. The superior behavior of this formulation
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h = d/10 h = d/40h = d/20

Figure 5: Velocity field (in mm/s) obtained with the level set formulation on the different meshes at t = 1.

vcm =
0.0054 mm/s

h = d/10
h = d/20
h = d/40

0.294

0.295

0.296

0.297

0.298

0.299

0.3

0.301

0 0.2 0.4 0.6 0.8 1

y c
m

[m
m

]

t[s]

h = d/10
h = d/20
h = d/40

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

v c
m

[m
m

/s
]

t [s]

Figure 6: Droplet’s center of mass position (left) and velocity (right) as a function of time obtained with the level
set formulation for the different meshes.

as compared to previous ones is quite evident. This is also seen by plotting the evolution of the
center of mass position and velocity as a function of time (see figure 9). As observed in figure
9, the droplet does not attain the terminal value of the sedimentation velocity at the end of the
simulation, and the time needed to do so seems to be quite dependent on mesh resolution. The
main limitations observed are related to the size of the time step needed in principle for stability
if the staggered scheme is used, although this can be partially relaxed.

For the coarsest mesh (consisting of 1516 triangular elements) for which results are already
reasonably accurate, using a time step ∆t = 10−4, the complete sedimentation can be simulated
in approximately 30 days on a 4-core desktop computer with i7 processor at 2.9 GHz.

h = d/10 h = d/40h = d/20

Figure 7: Finite element meshes used for the ALE simulations.
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h = d/10 h = d/40h = d/20

Figure 8: Velocity field (in m/s) obtained with the ALE formulation on the different meshes at t = 1.

vcm = 0.0045 mm/s
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Figure 9: Droplet’s center of mass position (left) and velocity (right) as a function of time obtained with the ALE
formulation for the different meshes.

5 CONCLUSIONS

We have shown the behavior of three different classes of numerical methods for two-phase
capillary flows to assess a relevant problem for the oil industry related to the sedimentation
of submilimiter water droplets in oil. It has been shown that there exist serious limitations of
such methods to efficiently solve the problem: millons of very short time steps are needed to
follow the whole history of sedimentation when staggered schemes are used and/or very fine
meshes becomes necessary to reduce the size and extent of parasitic currents. If the final goal is
the simulation of real systems involving thousands of 3D droplets, these are extremely limiting
factors. For the VOF method, the only implementation that seems to be sufficiently accurate
for this problem is the one used in the publicly available software Gerris. In some of the
implementations tested, including some commercial ones, the simulation even reached the final
time, or the droplet’s behavior was totally polluted by the parasitic currents with desastrous
consequences. For the level set method, the linear interpolation used for interface representation
becomes a very limiting factor to as regards accuracy. Results start to be reasonably accurate for
moderately refined meshes. In this case, as well as for the ALE approach, adding implicitness
to the formulation is relatively easy and certainly mitigates the time step restriction issue as
has been verified although not reported here for the sake of brevity. As expected, the ALE
formulation outperformed the rest of the methodologies with respect to accuracy for a given
mesh resolution.
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