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Abstract. We discuss a model derived from the Williams population balance equations, written in mix-

ture form, to represent water-in-oil emulsions undergoing separation by gravity. The model includes

the treatment of the disperse phase, represented by a discrete distribution function at each material point,

leading to the solution of the Population Balance Equations. This approach allows for a better representa-

tion of the physics of emulsions, providing a general framework to include phenomena such as inter-drop

coalescence, coalescence with the homophase and the presence of dense-packed layers. The goal is to

devise a solver for the complete system of equations (including momentum and mass conservation), so

as to push forward the state of the art in the area, which nowadays relies mainly on one-dimensional

kinematic separation models. Such an advanced solver is necessary to model the complete flow within

separators of arbitrary geometries. This work includes a first description and discussion of the poly-

disperse model and the selection of a fast and accurate method for the solution of the system of one

dimensional hyperbolic equations resulting from the treatment of the disperse phase.
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1 INTRODUCTION

The presence of water in crude oil extraction has always been a part of the petroleum indus-

try. The water plays the role of a passive component of the obtained mixture in case of new

oil wells or has the objective of pressurization in the Enhanced Oil Recovery techniques. The

emulsification of both fluids is the natural consequence of the presence of surfactants in the oil

composition such as resins or asphaltenes. In addition, the components are intimately mixed by

flowing through the porous structure of the reservoir and by the shear stresses due to the action

of valves, pumps and other equipment present in the upstream (Frising et al., 2006).

Separation of water and oil is required mainly for reasons of product quality and water reuse.

This is achieved by several methods being the gravity settlers the least expensive and simplest

one. The physical mechanisms involved in these separation units have been studied using dif-

ferent approaches, including careful observation and interpretation of experiments. Barnea and

Mizrahi (1975a,b,c,d), in a series of four seminal papers, gave a first systematic explanation of

the process of gravity-induced liquid-liquid separation. The authors identify a dispersion layer

within the settlers, composed of two sub-layers: a dense-packed layer and an even or sedimen-

tation layer. The latter corresponds to a layer in which the droplets of the disperse phase are

highly mobile, with some probability of growth in size by binary coalescence, depending on the

local volume fraction. The settling droplets leave the sedimentation layer when they reach the

dense-packed layer, where droplets eventually coalesce with their homo-phase (see Figure 1).

clear water

clear oil

sedimenting interface

coalescing interface

dense-packed zone

sedimentation zone
final
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a) b)

Figure 1: Scheme of batch settler and the evolution of the different front present within it. a)

transient, b) final settled state.

Hartland and co-workers (Jeelani and Hartland, 1998, 1986; Hartland and Jeelani, 1987) gave

important insights in the phenomenon of liquid-liquid separation, making the role of droplet size

evolution within the dispersion layer clear and relating the batch laboratory experiments to more
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real steady-state devices. They discussed the dynamics of the dense-packed layer, showing that

it grows until a critical point at which sedimentation ends (when in batch configuration). After

that, the system evolves only by drainage and coalescence with the homo-phase reaching the

complete settled state. As a result of their studies they presented models for the kinematics of

the coalescing and sedimentation fronts as well as the height of the dense-packed layer. Such

models are based on experimental parameters such as the settling time, the initial dispersed

phase diameter and the single-drop coalescing time.

Other authors presented similar models based on different parameters. In the work of Nadiv

and Semiat (1995) they are the coalescence velocity and the sedimentation velocity. The work

of Henschke et al. (2002) presents the most elaborate model to date, which addresses the droplet

sedimentation, the evolution of the height of the dense-packed zone and the droplet deforma-

tion in the dense phase. In addition they introduce a coalescence equation containing the only

free parameter of the model. Recent similar models, applied specifically to water-petroleum

mixtures, can be found in the work of Frising et al. (2008) and Noïk et al. (2013). All these

approaches can be classified as phenomenological models based on experimental data. Many

assumptions are made which are inspired on basic research on the coalescence dynamics of two-

drop systems. Related to this is the work Polderman and Bouma (1997), which puts forward

general design rules on the sole basis of the Stokes law for droplet dynamics and a series of

characteristic experiments. These rules set a basis for the dimensioning of industrial facilities,

which can eventually be improved by using Hartland or Henschke models.

As was stated, the phenomenological models are based on knowledge obtained from exper-

iments and/or theoretical estimates of the coalescing process. This process consists of drop-to-

drop interaction/collision, drainage of the interfacial film subject to drop deformation, rupture

of the film due to van der Waals and other intermolecular forces and to the presence of thermal

and mechanical stresses (Palermo, 1991), and the redistribution after rupture of the surfactant

and impurity concentration.

The state of the art within the branch of chemistry of dispersions is mostly represented by

phenomenological models which describe the evolution of the different fronts present in batch

settlers (front kinematics based models). A second phenomenological approach can be devised

focused on the solution of the conservation equations which govern the problem. Recents works

(Cunha et al., 2008; Grimes, 2012; Grimes et al., 2012) summarize the efforts in this topic and

add new models and experimental validation based on Population Balance Equations (PBEs)

models (Ramkrishna, 2000; Yeoh et al., 2014). The use of PBEs represents a general frame-

work for the treatment of liquid-liquid dispersions respect to the conservervation of mass of

the dispersed phase, which is considered as polydisperse. The solution of the PBEs gives the

distribution of droplet volume for each material point of the separator. The discretization of

these equations respect to the external coordinates (space) is done using standard discrezation

techniques. On the other hand, the discretization of the distribution itself respect to the internal

coordinates (volume and other physical parameters) is faced either by point, constant or linear

approximations or the application of specific approaches such as Quadrature Moments Methods

(QMOM) (Yeoh et al., 2014). Here it is important to remark that, the cited works are related to

batch settlers with 1D approximations, which implies no solution for the flow of the continuous

phase.
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Then, an extension of the PBE approach is the coupling of PBE for the conservation of

mass of the dispersed phase and a flow solver for the continuous phase. The works of Drumm

(Drumm, 2010; Drumm et al., 2009) set a reference for this approach in the field of liquid-liquid

separation. Here the mass conservation of the dispersed phase is solved via the PBE, then a mo-

mentum conservation equation is solved for the continuous and dispersed phase as is done in

the two-fluids method (Drew and Passman, 1999). The momentum transfer between phases

is managed using a drag law calculated with a representative diameter for the dispersed phase

(Sauter diameter). A similar approach proposed in a more wide framework is given by Fevrier

et al. (2005), there, the authors present the Mesoscopic Eulerian Formalism (MEF) which starts

from the Williams-Boltzmann Equation (WBE) (Williams, 1958). This formalism considers a

probability distribution function (PDF) not only dependent on droplet size but also in droplet

velocity. It allows for writing both mass and momentum conservation equation in terms of

PDF’s. A complete generalization is presented by Vié (Vié et al., 2013; Vié, 2010) through the

Multifluid Mesoscopic Eulerian Formalism (MMEF). Here the droplet population is divided in

clasess, with its own momentum and mass conservation equations written in terms of PDF’s.

Then, the effect on the continuous phase is taken into account by an integrated drag term.

2 THEORETICAL FOUNDATION

Following the guidelines given by the MMEF the objective is to obtain a general mixture

model suitable to be coupled with the PBE. Let the behavior of the dispersed phase be de-

scribed by a PDF f (~x,~v, V, t), where f is the probability that a particle located in ~x at time t
had a volume V and velocity ~v. This PDF is governed by the WBE as it is presented in Eqn. (1)

∂f

∂t
+ ~∇~x · (~v f) + ~∇~v ·

(
~Fd

m
f

)
= 0 (1)

Now it is worthy to define the following averages. The ensemble average for a quantity q, as

in Eqn. (2)

q =

∫
q f (~x,~v, V, t) d~vdV (2)

and the mass-weighted average (Favre)

q̂ =
1

ρ

∫
mq f (~x,~v, V, t) d~vdV (3)

where m is the mass of a single particle and ρ is the partial density defined as the ensemble

average of the mass particles of the dispersed phase, as it is shown in Eqn. (4)

ρ =

∫
mf (~x,~v, V, t) d~vdV (4)

Therefore, multiplying Eqn. (1) by m and m~v and integrating in ~v in a class of Vi + dV the

mass and momentum conservation equations for class i are obtained as it is shown in Eqn. (5)

S. MARQUEZ DAMIAN, G.C. BUSCAGLIA456

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar







∂ρi
∂t

+ ~∇ ·
(
ρi ~̂vi

)
= 0

∂ρi ~̂vi
∂t

+ ~∇ ·
(
ρi~̂vi ⊗ ~̂vi

)
=
∫
~Fd ·

(
~v ⊗ ~∇~vf

)
d~v − ~∇ ·

(
1

3
ρi| ~̂w|

2 − ρi ~̂w ⊗ ~w
) (5)

where ~Fd,i is the drag force over class i due to the interaction with the continuous phase. Now,

due to the integration was done in each phase and the density was defined as a partial density,

the extension for the whole domain implies the use of phase fractions, αi (Drew and Passman,

1999), as it is presented in Eqn. (6)





∂αw,iρw,i

∂t
+ ~∇ ·

(
αw,iρw,i ~̂vw,i

)
= 0

∂αw,iρw,i ~̂vw,i

∂t
+ ~∇ ·

(
αw,i ρw,i~̂vw,i ⊗ ~̂vw,i

)
=
∫
~Fd ·

(
~v ⊗ ~∇~vf

)
d~v

−~∇ ·
(

1

3
αw,iρw,i| ~̂w|2 − αw,iρ ~̂w ⊗ ~w

)
(6)

where the subscript w indicate the water phase. The conservation equations for the continuous

phase follow the standard multi-fluid form, as in Eqn. (7)





∂αpρp
∂t

+ ~∇ · (αpρp ~vp) = 0

∂αpρp ~vp
∂t

+ ~∇ · (αpρp~vp ⊗ ~vp) = −αp
~∇pp + ~∇ ·

(
αpτp

)
−
∫
~Fd ·

(
~v ⊗ ~∇~vf

)
d~v dV

(7)

the last term is due to momentum exchange between petroleum and water phases taking into

account the polydispersity of the water phase. The volume fractions for petroleum and water

are such that αp +
∫
αw(V ) dV = 1. Summing up both the momentum and mass conserva-

tion equations it is possible to obtain a simplified mixture formulation (Buscaglia et al., 2002)

presented in Eqn. (8)





∂ρm
∂t

+ ~∇ · (ρm ~vm) = 0

∂ρm ~vm
∂t

+ ~∇ · (ρm~vm ⊗ ~vm) = −~∇pm + ~∇ ·
(
τm
)
− ~∇ ·

[∫
αw(V )ρw(V )~vwp ⊗ ~vwp dV

]

(8)

where ρm = αpρp + ρw is the mixture density, ~vm = (αpρp~vp + ~̂vw)/ρm is the center-of-mass

velocity and ~vwp is the relative velocity of water (dispersed) phase for each droplet size respect

to the petroleum (continuous phase). In addition, an expression for τm is needed. The solution

of the system also requires to know the distribution of phases, which is achieved by the solution

of the mass conservation equation for each class. In the particular case of class i [first equation

in Eqn.(6)] it reads as in Eqn. (9).

∂αw,i

∂t
+ ~∇ ·

(
αw,i ~̂vw,i

)
= 0 (9)
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The mass conservation equation for the mixture can be simplified using a center-of-volume

velocity ~u = αp~vp +
∫
αw(V )~vw(V ) dV leading to the system in Eqn. (10) (Manninen et al.,

1996; Márquez Damián, 2013; Márquez Damián and Nigro, 2014).





~∇ · ~u = 0

∂ρm ~vm
∂t

+ ~∇ · (ρm~vm ⊗ ~vm) = −~∇pm + ~∇ ·
(
τm
)
− ~∇ ·

[∫
αw(V )ρw(V )~vwp ⊗ ~vwp dV

]

∂αw,i

∂t
+ ~∇ · (αw,i ~u) + ~∇ · (αw,i ~vdr,wi) = 0

(10)

where it is necessary to solve as many mass conservation equations as classes were selected.

This system has the great advantage to have a divergence free velocity which simplifies the

pressure-velocity coupling resolution and the integration of the mass conservation equation for

αw,i. The distribution of each phase is known by solving the mass conservation equation for a

class i [third equation in Eqn.(10)] as it is presented in Eqn. (11).

∂αw,i

∂t
+ ~∇ · (αw,i ~u) + ~∇ · (αw,i ~vdr,wi) = 0 (11)

where ~vdr,wi = ~vw,i − ~vm is a relative velocity between the dispersed phase and the center-of-

volume and can be calculated as it is Eqn. (12)

~vdr,wi = ~vwp,i (1− αw,i)−
N∑

j 6=i

αw,j ~vwp,j (12)

where N is the number of classes used for the discretization of the problem. The closure of such

a model involves the determination of relative velocity, ~vwp, which in principle requires the so-

lution of each one of the disperse phase momentum equations [second expression in Eqn. (5)]

and thus the knowledge of mometum exchange terms, for which no closed formula is available.

Another possibility is to plug into Eqn. (12) an expression for ~vwp based on experimental

evidence and/or micro-mechanical models. Frising et al. (2008), for example, proposed an

expression based on their experiments which is presented in Eqn. (13)

~vwp,i = V0 (1− αw,i)
6

(13)

where V0 is the velocity of a single droplet.

2.1 One dimensional problem reduction

For one dimensional batch problems it is easy to prove that ~u = 0 and the solution of the

problem reduces to the integration of the dispersed phase mass conservation equations which

are simplified to Eqn. (14)

∂αw,i

∂t
+ ~∇ ·

{
αw,i

[
~vwp,i (1− αw,i)−

N∑

j 6=i

αw,j ~vwp,j

]}
= 0 (14)
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This equation allows to know the distribution of phases within the settler and the evolution

of the fronts discussed in the previous models. The fronts are solved as traveling shock waves,

while the smooth transitions constitute traveling rarefaction fans (Bürger et al., 2008). This

equation has a flux function given by Eqn. (15)

F(αw,i) = αw,i

[
~vwp,i (1− αw,i)−

N∑

j 6=i

αw,j ~vwp,j

]
(15)

where it is again necessary to define an expression for the relative velocity, ~vwp,i. Following the

concepts presented in the last section it is possible to define a law for the relative velocity such

as presented in Eqn. (16)

~vwp,i = ~v0,i (βmax − βw)
ai (16)

where βw =
∑N

i=1
αw,i, is the total phase fraction of water in each point and βmax is the maxi-

mum allowable water phase fraction before coalescence with homophase, or in other words, the

phase fraction of the dense-packed layer. Here it is important to remark that the velocity laws

must include βw instead of each class water phase fraction, since the combined effect of water

droplets of different sizes determines the possibility of drop sedimentation.

3 NUMERICAL METHODS

In order to integrate the system of N transport equations which governs the evolution of the

PDF for the water dispersed phase an explicit method will be used as it is shown in Eqn. (17)

αn+1

w,i = αn
w,i −

∆t

Vk

∑

f

{[
~vwp,i

(
1− αn

w,i

)
−

N∑

j 6=i

αn
w,j ~vwp,j

]
αn
w,i

}

f

· ~Sf (17)

where n is the time-step index, f is the face index, Vk is the volume of the k-th cell and ~Sf face

area normal. The implementation using the OpenFOAM R© suite (Weller et al., 1998) is based

on the decomposition given in Eqn. (18)

αn+1

w,i = αn
w,i −

∆t

Vk

∑

f

{
[
~vwp,i

(
1− αn

w,i

)]
(αn

w,i)a −

[
N∑

j 6=i

αn
w,j ~vwp,j

]
(αn

w,i)b

}

f

· ~Sf (18)

which can be rewritten as in Eqn. (19),

αn+1

w,i = αn
w,i −

∆t

Vk

∑

f

{
~va,i (α

n
w,i)a − ~vb,i (α

n
w,i)b

}
f
· ~Sf (19)

Here the advective nature of the system is very clear, with two advection velocities: ~va,i or

the own class relative velocity and ~vb,i which takes into account the effect of all other classes.

The transported variable αw,i is separated in two different entities, (αn
w,i)a and (αn

w,i)b, in order

to allow for different face interpolation of each one. The values of αn
w,i for the calculation of

the relative velocities, ~va,i and ~vb,i are always interpolated linearly. It is important to remark

that in this method the face values of the advected quantities are calculated based only on the

information given by the relative velocities and no information about the eigenstructure of the
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hyperbolic system is used.

In addition, four other schemes specially tailored for hyperbolic problems, are used in order

to select the most suitable one for the integration of the system, namely: Lax-Friederichs (LxF),

Rusanov, Roe (Toro, 2009; LeVeque, 2002) and Kurganov and Tadmor (KT) (Kurganov and

Tadmor, 2000). The LxF scheme is known as a simple method for the integration of a system

of hyberbolic equations, however, its main drawback is the excessive numerical diffusion intro-

duced. Even though, using fine meshes and small time-steps reference solutions can be obtained

easily. All of these schemes, for the one dimensional case, can be written in the compact form

presented in Eqn. (20)

αn+1

w,i,k = αn
w,i.k −

∆t

∆x

[
F̃(αw,i,k+1/2)− F̃(αw,i,k−1/2)

]
(20)

which gives the solution for the phase fraction of class i in cell k. Here F̃ are numerically

stabilized fluxes which are given at the k + 1/2 and k − 1/2 interfaces. i.e. the left and right

interfaces of the k-th cell. Therefore, the following fluxes are defined:

Lax-Friederichs

F̃LxF =
F
(
αn
w,i,+

)
+ F

(
αn
w,i,−

)

2
−

1

2

∆x

∆t

(
αn
w,i,+ − αn

w,i,−

)
(21)

Rusanov

F̃Rus =
F
(
αn
w,i,+

)
+ F

(
αn
w,i,−

)

2
−

1

2
λmax

(
αn
w,i,+ − αn

w,i,−

)
(22)

Roe

F̃Roe =
F
(
αn
w,i,+

)
+ F

(
αn
w,i,−

)

2
−

1

2

∑

m

rm |λm| lm
(
αn
w,i,+ − αn

w,i,−

)
(23)

Kurganov and Tadmor

F̃KT =
F
(
αn
w,i,+

)
+ F

(
αn
w,i,−

)

2
−

1

2
a
(
αn
w,i,+ − αn

w,i,−

)
(24)

where αn
w,i,− and αn

w,i,+ represent the values of αn
w,i at left and right sides of a given interface,

F is the flux defined in Eqn. (15), λm is the m-th of the N eigenvalues of the jacobian matrix

for the flux A = ∂F
∂αw,i

, used for the linearization of the problem. In addition, rm and lm are

the corresponding right and left eigenvalues, λmax is the maximum eigenvalue and a is the

maximum of spectral radius evaluated at left and right sides of the interface. The Rusanov

and Roe fluxes require only one jacobian evaluation at each interface which is done using the

Roe’s mean as the argument. For the sake of simplicity the value of the Roe’s mean is taken

as αRoe
w,i = (αw,i,− + αw,i,+)/2. In the case of the KT scheme the jacobian is evaluated at both

sides of the interface. It is important to remark that in Rusanov and Roe fluxes the values of

αw,i are considered to be constant, in KT scheme the values at αw,i,− and αw,i,+ at interfaces

are reconstructed from the cell center values using TVD functions (Sweby, 1984). Therefore,

if constant reconstruction is used, KT and Rusanov fluxes are fairly similar.
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4 NUMERICAL RESULTS

The schemes presented in the previous section are tested in a model sedimentation problem.

It represents a one dimensional settler with height, h = 1m. The system is filled with a mixture

of petroleum and water, where the latter is divided in three classes, αw,1 = 0.1, αw,2 = 0.15
and αw,3 = 0.2. Then, the petroleum phase has αp = 0.55. The relative velocity constants are

V0,1 = −0.5 m

sec
, V0,2 = −1 m

sec
and V0,3 = −2 m

sec
while ai = 1 in all cases. The water fraction

for the dense-packed layer is set as βmax = 0.74.

The scheme given in Eqn. (19) was implemented (Márquez Damián et al., 2012) using

OpenFOAM R© and the other four schemes using octave-of (Márquez Damián et al., 2012).

The domain was discretized using 400 regular cells (∆x = 0.0025m, base mesh), with ∆t =
0.001 sec and the calculations were done until t = 1 sec and t = 8 sec. In addition, a refer-

ence solution was obtained for t = 1 sec using 10,000 regular cells (∆x = 0.0001m), with

∆t = 0.00004 sec and the LxF scheme.

Therefore, Figures 2-9 present the reference solution by LxF scheme and then solutions for

OpenFOAM R©, LxF, Rusanov, Roe and KT schemes for the base mesh at t = 1 sec. The thick

continuous line represents the total water fraction, short dashed line αw,1, long dashed line αw,2,

long and short dashed line αw,3 and continuous thin line the petroleum phase fraction. The

case in OpenFOAM R© was set such that (αn
w,i)a has TVD Minmod reconstruction (Roe, 1986)

and (αn
w,i)b has linear reconstruction. In case of KT schemes these were tested using constant,

Minmod and vanLeer (Van Leer, 1974) reconstructions. From the figures it is possible to affirm

that the OpenFOAM R© solution presents a good approximation to the reference case but exhibits

excessive compression in rarefaction waves and the dense-packed layer value is exceeded. In

the case of LxF in base mesh the solution is excessively diffusive. Then, solutions for Rusanov,

Roe, KT-constant are similar and slightly more diffusive than the reference solution. Finally,

the case of KT-Minmod presents excellent agreement and KT-vanLeer a little more compres-

sion than needed as it is shown in the rarefaction fans.

A second group of calculations, for t = 8 sec, is presented in Figures 11-16. There, the so-

lution for OpenFOAM R©, which was obtained using the reconstruction schemes selected in the

previous case, presents wiggles and overshoots exceeding the the dense-packed layer value. All

other schemes present bounded solutions. As is expected the LxF scheme gives an excessive

diffusive solution. Rusanov and KT-constant are less diffusive but still not appropriate solu-

tions. The best cases are those given by Roe, KT-Minmod and KT-van Leer schemes. Here

it is important to remark that since at long times the system evolves only by shock waves, the

preferable schemes result KT-van Leer or Roe.

5 CONCLUSIONS

In this work a mixture model for water-in-oil mixtures based on the Multifluid Mesoscopic

Eulerian Formalism was presented. The discretization of the PDF related to the evolution of the

dispersed phase requires the integration of a system of non-linear hyperbolic equations which

has to be done fast and accurately.

Therefore, a series of tests were carried out in order to select an appropriate scheme for such
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Figure 2: Solution by LxF scheme for reference mesh at t = 1 sec.

Figure 3: Solution using OpenFOAM R© in base mesh at t = 1 sec.
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Figure 4: Solution by LxF scheme for base mesh at t = 1 sec.

Figure 5: Solution by Rusanov scheme for base mesh at t = 1 sec.
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Figure 6: Solution by Roe scheme for base mesh at t = 1 sec.

Figure 7: Solution by KT scheme with constant reconstruction for base mesh at t = 1 sec.
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Figure 8: Solution by KT scheme with Minmod reconstruction for base mesh at t = 1 sec.

Figure 9: Solution by KT scheme with van Leer reconstruction for base mesh at t = 1 sec.
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Figure 10: Solution using OpenFOAM R© in base mesh at t = 8 sec.

Figure 11: Solution by LxF scheme for base mesh at t = 8 sec.
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Figure 12: Solution by Rusanov scheme for base mesh at t = 8 sec.

Figure 13: Solution by Roe scheme for base mesh at t = 8 sec.
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Figure 14: Solution by KT scheme with constant reconstruction for base mesh at t = 8 sec.

Figure 15: Solution by KT scheme with Minmod reconstruction for base mesh at t = 8 sec.

S. MARQUEZ DAMIAN, G.C. BUSCAGLIA468

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 16: Solution by KT scheme with van Leer reconstruction for base mesh at t = 8 sec.

task. The Lax-Friedrichs scheme performed overdiffusively in all cases. The schemes of Ru-

sanov and Kurganov and Tadmor with constant reconstruction showed better performance but

still have too much diffusion for practical cases. The scheme implemented in OpenFOAM R© was

promissory at first stages but presented many spurious oscillations and the dense-packed phase

fraction was not preserved. Its main advantage is to avoid the calculation of the flux jacobians

and the associated eigenvalues and eigenvectors. The best results were obtained by the schemes

of Roe and Kurganov and Tadmor with Minmod and van Leer reconstructions.

The method of Roe has a wide range of applicability giving accurate solutions at all times

but requires the evaluation of eigenvalues and eigenvectors which is is huge task. On the other

hand, Kurganov and Tadmor schemes are simple since they only require the evaluation of the

spectral radius, this calculation can be simplified, for example, using the Gelfand’s formula.

The only drawback in this case is the necessity of calculate this value twice in each interface.

In view of the presented results the recommended scheme for Population Balance Equations

integration is Kurganov and Tadmor with TVD reconstruction. The solution of these equations

will be used as a basis for a coupled flux and phase-distribution solver capable to manage

sedimentation problems in continuous regime and not only in batch cases.
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