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Abstract. The numerical solution of the scalar wave equation, arising, for instance, in geophysics

and seismic engineering, by means of the spectral finite element method (SFEM) based on the Gauss-

Lobatto-Legendre quadrature has been receiving great popularity. The SFEM can be viewed as a higher-

order finite element method (FEM) with some advantages such as mass-lumping and less dispersion

errors. However, when common explicit time-stepping schemes are employed, the critical time step

becomes too restrictive as the polynomial degree increases. In this context, an explicit time-stepping

scheme based on numerical Green’s functions is presented to circumvent this drawback. The Green’s

functions are explicitly computed taking into account the Runge-Kutta (RK) scheme and a time substep

procedure. Unlike the standard Runge-Kutta scheme, the present methodology allows the use of large

time steps without loss of accuracy. Numerical simulations of a heterogeneous seismic model in an

unbounded medium are presented and analyzed in order to illustrate the effectiveness of the proposed

formulation.
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1 INTRODUCTION

In seismic engineering, the efforts for developing highly accurate numerical techniques for

the solution of acoustic and elastic wave equations have been increased.

Finite difference methods, that are the most commonly used approach in this area, may

require a large number of grid points to achieve the high accuracy (Virieux, 1986; Kelly and

Marfurt, 1990). In practice a balance between numerical accuracy and computational cost is

required.

The FEM is often used in engineering but not for seismological studies because of the low

accuracy (Komatitsch et al., 2005; Lysmer and Drake, 1972). Although the FEM has advantages

for the definition of numerical models such as flexibility in creating meshes owning to the geo-

logical structures, the low-order FEM exhibits poor dispersion properties (Marfurt, 1984), while

higher-order classical FEM, present some problems such as the occurrence of high oscillations,

known as the Runge phenomenon (Boyd, 2001).

Recently, higher-order methods like the SFEM, have been introduced to simulate the acoustic

and elastic wave propagation in seismology (Komatitsch et al., 2004). These methods have the

geometric flexibility of the FEM, and are able to achieve the expected accuracy using few grid

points per wavelength (Komatitsch and Vilotte, 1998). In these methods, the accuracy depends

strongly on the choice of the collocation nodal points (Boyd, 2001; Kudela et al., 2007). It is

also known, that a limitation of this kind of approach is that the non-uniform points used to

construct the algebraic polynomials can place severe restrictions on the time-step length (Khaji

et al., 2009).

This paper describes an explicit time-stepping scheme called Explicit Green’s Approach that

is based on numerical Green’s functions (Loureiro and Mansur, 2010; Loureiro, 2011), allowing

the use of larger time steps while the accuracy is still maintained. The unbounded domain is

simulated by introducing absorbing boundary conditions (Cohen, 2002). At the end of the paper,

a numerical example is studied to show the potentialities of the discussed methodology.

2 ACOUSTIC WAVE EQUATION

Time-dependent acoustic problems in a semi-infinite two-dimensional domain are consid-

ered here. The unbounded domain is truncated into a computational domain Ω ⊂ R
2 surrounded

by a smooth boundary Γ = ∂Ω. Let I = (0, T ] be the time domain of the analysis, the acoustic

wave equation considering a nonhomogeneous density can be written as (Morse and Feshbach,

1953; Graff, 1991):

1

κ(x)
p̈ (x, t)−∇ ·

(

1

ρ(x)
∇p (x, t)

)

= b (x, t) , in Ω× I. (1)

where ∇ stands for the gradient operator and over dots indicate time derivatives. Furthermore,

p (x, t) denotes the scalar field representing the acoustic pressure, b (x, t) is the source term,

ρ > 0 and κ > 0 are the mass density and bulk modulus, respectively. The velocity c of the

wave propagation is given by the relation

c(x) =

√

κ(x)

ρ(x)
(2)

In addition to Eq. (1), we must supply the initial conditions:

p (x, 0) = p0 (x) , in Ω, (3)

ṗ (x, 0) = q0 (x) , in Ω (4)
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where p0 (x) and w0 (x) are prescribed initial conditions that in geophysics problems both of

them are null.

To complete the statement of the problem, the boundary conditions are given by:

α (x, t) p (x, t) + β (x, t)
∂p

∂n
(x, t) + γ (x, t) ṗ (x, t) = g (x, t) , on Γ× I (5)

where α (x, t), β (x, t) and γ (x, t) stand for functions to be set according to the choice of

the boundary condition, n is the outward unit normal vector to the boundary and g (x, t) is

the prescribed function on the boundary (e.g., α = 1, β = γ = 0 for a Dirichlet boundary

condition). In order to simulate an infinte domain the standard first-order absorbing boundary

condition (i.e., α = 0, β = 1, γ = 1/c and g = 0) is employed here (Cohen, 2002). The idea

for the absorbing boundary condition is the application of an artificial boundary, that makes the

pressure of the reflected wave be zero (Kelly and Marfurt, 1990).

3 EXPLICIT GREEN’S APPROACH (EXGA) EXPRESSION

The major idea of the ExGA method is to adopt the Green’s function of the problem un-

der consideration as the test function to enforce the governing equation in a weighted integral

sense over the space-time domain Ω× I . For the acoustic wave propagation problem governed

by Eq. (1), the ExGA formulation starts from the following integral statement (Loureiro and

Mansur, 2010; Loureiro, 2011):

t+
∫

t0

∫

Ω

(

1

κ(x)
p̈ (x, t)−∇ ·

(

1

ρ(x)
∇p (x, t)

)

− b (x, t)

)

G (x,y, t− τ) Ωdτ = 0 (6)

where G (x,y, t− τ) is the Green’s function of the problem.

The Green’s function can be interpreted as the response due to an instantaneous source ap-

plied at a point y (source point) and at an instant τ , which is mathematically represented by

s(x, t) = δ(x − y)δ(t − τ). Herein, Green’s functions that obey homogeneous boundary con-

ditions of the model problem (Eq. (5)) are employed. Thus, the governing equation for the

Green’s function as well as its boundary and initial conditions read:

1

κ(x)
G̈ (x,y, t− τ)−∇ ·

(

1

ρ(x)
∇G (x,y, t− τ)

)

= δ(x− y)δ(t− τ), in Ω, t > τ, (7)

α (x, t)G (x,y, t− τ) + β (x, t)
∂G

∂n
(x,y, t− τ) + γ (x, t) Ġ (x,y, t− τ) = 0, on Γ, t > τ,(8)

G (x,y, t− τ) = 0 in Ω, t < τ, (9)

Ġ (x,y, t− τ) = 0 in Ω, t < τ. (10)

In the ExGA method, the problem domain Ω is partitioned into nel non-overlapping element

domains Ωe, i.e., Ω̄ = Ω̄h =
nel
⋃

e=1

and Ωe

⋂

∀e 6=e′
Ωe′ = ∅. Then an approximation for Green’s

functions and pressure, e.g., ph (x, t) =
∑

i

Ni (x) pi (t) is employed. Thus, after adopting some

mathematical steps into Eq. (6) as shown by Loureiro and Mansur (2010); Loureiro (2011), the

following expression arises:

P(t) = (G(t)C+ Ġ(t)M)P(0) +G(t)MṖ(0) +

t
∫

0

G(t− τ)F(τ)dτ (11)
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where G and P stand for the Green’s function matrix and pressure vector, respectively whose

entries correspond to their nodal values in the time domain. Moreover, M, C and F (considering

g = 0) are defined, respectively, as (notice that the integral concerning matrix C are carried out

only along the absorbing boundary).

Mi,j =

∫

Ω

Ni

1

κ
NjdΩ; Ci,j =

∫

ΓA

Ni

1

ρc
NjdΓ; Fi =

∫

Ω

NibdΩ (12)

The solution of Eq. (11) is carried out in a step-by-step manner. In this way, splitting the

total time analysis I into N equal time intervals, i.e., [0, T ] =
N−1
⋃

k=0

[tk, tk+1] with 0 = t < t0 <

t1 < . . . < tN = tf , ∆t = tk+1 − tk = tf/N and tk+1 = (k + 1)∆t, Eq. (11) and its time

derivative can be written as (Mansur et al., 2007):

Pk+1 = (G(∆t)C+ Ġ(∆t)M)Pk +G(∆t)MṖk +

∆t
∫

0

G(∆t− τ)F(tk + τ)dτ

Ṗk+1 = (Ġ(∆t)C+ G̈(∆t)M)Pk + Ġ(∆t)MṖk +

∆t
∫

0

Ġ(∆t− τ)F(tk + τ)dτ

(13)

The above convolution integrals concerning G and Ġ are approximated by the composite

Newton-Cotes rule, yielding (Mansur et al., 2007)

∆t
∫

0

A(∆t− τ)F(tk + τ)dτ ≈
{

n
∑

j=1

(

1
2
ψ1 (j) +

1
2
ψ1 (j − 1)

)

}

Fk + (14)

{

n
∑

j=1

(

1
2
ψ2 (j) +

1
2
ψ2 (j − 1)

)

}

Fk+1 (15)

where ψ1(j) =
∆t
n
A

(

∆t− j∆t

n

) (

1− j

n

)

, and ψ2(j) =
∆t
n
A

(

∆t− j∆t

n

)

j

n
, with n being the

number of substeps that will be addressed later on subsection 4.2. In a great deal of wave

propagation applications, it is quite common to apply only the source term to excite the system

that, in most cases, are punctual (or concentrated) sources. In this way, the summations of

Eq. (15) are readily evaluated keeping in mind that only Green’s functions associated with

nodal points of the source function need to be computed.

4 GREEN’S FUNCTIONS COMPUTATION

In this section, the spatial and time discretization of the Green’s functions are presented as

well as considerations and characteristics of the method.

4.1 Variational formulation and Spatial discretization by the SFEM

To derive the variational form of the problem described by Eqs. (7-10), we start by defining

the following discrete space of admissible solutions, where the solution Gh is sought

Sh =
{

Gh ∈ H1(Ω) : Gh = 0 on Γ1 × I and Gh|Ωe
◦ Fe ∈ P(Λ)

}

(16)
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and the function space V h of the test functions w:

V h =
{

wh ∈ H1(Ω) : wh = 0 on Γ1 and wh|Ωe
◦ Fe ∈ P(Λ)

}

(17)

where H1 is the classical Sobolev space that denotes the space of square-integrable functions

with square-integrable generalized first derivatives (Adams and Fournier, 2003).

The discrete Green’s function for a given source point is expressed as Gh (x,y, t− τ), Γ1

denotes the part of the boundary related to the Dirichlet boundary condition, Fe is the mapping

function between the reference element Λ (biunit square) and a local coordinate system ξ of the

element Ωe, such that x(ξ) = Fe(ξ) and P(Λ) is taken to be the space generated as the tensor

product space of all polynomials of degree ≤ p (Canuto et al., 2007; Gopalakrishnan et al.,

2007).

Thus, the discrete variational form of the problem reads: find Gh ∈ Sh, such that ∀t > τ and

∀wh ∈ V h (Hughes, 2000)

(

wh,
1

κ
G̈h

)

+

(

wh,
1

ρc
Ġh

)

ΓA

+ a
(

wh, Gh
)

= 0 (18)

Notice that the term with respect to the absorbing boundary condition appears in the left hand

side of above equation, and the source term was substituted by the follow initial conditions as

described by Loureiro and Mansur (2010); Duffy (2001):

(

wh, Gh (x,y, t− τ) |t=τ

)

= 0 (19)
(

wh, 1
κ
Ġh (x,y, t− τ) |t=τ

)

=
(

wh, δ(x− y)
)

(20)

where (·, ·) is the clasical L2 inner product, and the H1 bilinear form a(·, ·) is the inner product

described as:

a
(

wh, Gh
)

=

∫

Ω

1

ρ

(

∇wh · ∇Gh
)

dΩ (21)

As described in foregoing equations, the original physical domain Ω is discretized into nel

non-overlapping element domains Ωe, and unknown fields are approximated in the space do-

main taking into account basis functions Ni(x). Here, the spectral element spatial discretization

is considered to construct these basis functions. In fact, the SFEM is characterized by the use

of high-order polynomials of degree p in each element.

d

Figure 1: Different kinds of 2D-SFE’s with respect to the polynomial order p: (a) 3× 3; (b)

5× 5; (c) 7× 7; (d) 9× 9.
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In this sense, to take advantage of efficient sum-factorization techniques, the set of (p + 1)2

basis points for P is taken to be the tensor product of the p+ 1 Gauss-Lobatto-Legendre (GLL)

points (the result can be seen in Fig. 1) (Komatitsch and Vilotte, 1998; Komatitsch and Tromp,

1999). Using a numerical quadrature based on the tensor product of 1-D GLL formulas (Zak

and Krawczuk, 2011), and choosing the quadrature points to be the same as the basis points,

result that for the p+1 quadrature points, all polynomials of degree ≤ 2p− 1 can be integrated

exactly (Komatitsch et al., 1998).

The piecewise polynomial approximation for unknown fields is then defined using the La-

grange interpolation operator on the GLL points, which is the unique polynomial of P(Λ) at

the (p+ 1)2 basis points. The corresponding basis functions Ni(x) in the reference domain (Λ)
are, therefore, the tensor product of two 1D Lagrange interpolants of degree p as clearly seen in

Fig. 2 for p = 7, contructed as:

Nk(ξ, η) = lpi (ξ)l
p
j (η) (22)

where lpi (ξ) denotes the characteristic 1D Lagrange polynomial of degree p associated with the

GLL point i of the corresponding one dimensional quadrature formula.

(a) (b) (c)

Figure 2: Interpolation functions Ni (ξ, η) for the 7× 7 SFE: (a) vertex; (b) edge; (c) bubble.

Finally applied this procedure to Eqs. (18-20) leads, like in classical finite element methods

(Hughes, 2000), to a system of second-order ordinary differential equations in time (Loureiro,

2011):

MG̈j (t) +CĠj (t) +KGj (t) = 0

Gj (0) = 0

Ġj (0) = M−11j

(23)

where now Gj(t) denotes the column j of the Green’s matrix with nnode × nnode components,

nnode being the total number of nodes. Matrices M and C have already been defined in the

previous section and matrix K is defined as:

Ki,j =

∫

Ω

1

ρ
∇Ni · ∇NjdΩ. (24)

Since nodal points are also adopt to perform the numerical integration by the GLL quadra-

ture, it is important to highlight that the mass matrix is naturally diagonal, yielding a very im-

portant property from a computational point of view when dealing with explicit time-stepping

techniques which is the inversion of the mass matrix in a straightforwardly manner. Notice that

this property is not presented in the standard FEM procedure and one needs to rely on special
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techniques to lump the mass matrix that for higher order elements leads to some numerical and

physical mass conservation problems.

4.2 Time discretization by the RK scheme using substeps

As can be observed in Eq. (13) Green’s matrices need to be computed only in the interval

[0,∆t]. These matrices are computed by employing the classical fourth-order RK scheme (Rao

and Yap, 1995). Instead of computing them directly from 0 to ∆t with just one time step, a

substep procedure, where the time step ∆t is divided into n equal substeps of length h = ∆t/n,

is carried out. This procedure not only improves the precision of the Green’s matrices but

also increases the stability constraints for the ExGA time-stepping method given by Eq. (13)

(Mansur et al., 2007). Hence, when the RK scheme is applied to solve the second order initial

value problem expressed by Eq. (23), one obtains the following time recursive expressions

(Mansur et al., 2007):

W1 = M−1
(

−KGt −CĠt
)

W2 = M−1
(

−K
(

Gt + h
2
Ġt

)

−C
(

Ġt + h
2
W1

))

W3 = M−1
(

−K
(

Gt + h
2
Ġt + h2

4
W1

)

−C
(

Ġt + h
2
W2

))

W4 = M−1
(

−K
(

Gt + hĠt + h2

2
W2

)

−C
(

Ġt + hW3

))

Gt+h = Gt + hĠt + h2

6
(W1 +W2 +W3)

Ġt+h = Ġt + h
6
(W1 + 2W2 + 2W3 +W4)

(25)

Since the RK scheme is an explicit time-marching method, it is only conditionally stable

and, as a result, a stability criterion must be satisfied. This property is also transferred to the

ExGA method; however, unlike the RK scheme, the ExGA method allows the use of large time

steps due to the substep procedure. To better understand this issue, we define the following

dimensionless criterion:
cmax∆t

hmin

≤ β (26)

where cmax is the maximum wave velocity and hmin is the minimum distance between two

consecutives nodes. As a generally rule, explicit time-marching methods must satisfy the above

criterion for which the parameter β depends on the scheme adopted. For the classical fourth-

order RK method we have β =
√
2, whereas for the ExGA method the value is β = n

√
2

(for comparison purpose notice that β = 1 for the standard finite central difference method ).

In this way, the critical time-step length of the ExGA time-stepping method is less restrictive

in the sense that one can increase its value by just adjusting the number of time substeps n.

In practice, for two or three-dimensional meshes with irregular elements an estimation for the

time-step length to assure stability for the ExGA method can be readily calculated as:

∆t ≤ 2n
√
2

√

λe
max

(27)

where λe
max stands for the maximum element eigenvalue in the whole mesh.

The stability constraints of explicit methods is a very important issue when dealing with the

SFEM because the nodes are not equidistant and as the polynomial order p increases the distance

of the nodes becomes too restrictive as clearly seen in Fig. 1. Indeed, it can be shown that the

smallest distance between two nodes in the SFEM behaves as O (p−2) (Pozrikidis, 2005), as

Mecánica Computacional Vol XXXIII, págs. 585-596 (2014) 591

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



a consequence, the higher the value of p, the smaller is the critical time-step length. In such

cases, it may be advisable to use implicit time-marching schemes to reduce the number of time

steps required for the analysis. Thus, adopting the ExGA method in the analysis, this drawback

is circumvented by increasing the number of substeps, and one still has an explicit scheme with

all its advantages.

5 NUMERICAL RESULTS AND DISCUSSION

In this section, a numerical example related to wave propagation in geophysics is presented.

A computer program and a mesh generator for the SFEM for two-dimensional problems have

been developed. The code is able to handle both heterogeneous media and unstructured meshes

constructed from the standard FEM quadrilateral element. Furthermore, spectral finite elements

with polynomial order up to p = 9 (i.e., 9× 9 SFE) have been implemented.

source
receiver

220m

50m

30m
y

x

70m

receivers

Layer 1
Layer 2

Figure 3: Truncated semi-infinite acoustic model.

The solution of Eq. (1) for a two-layered medium representing a dome raising from the lower

layer is analyzed as sketched in Fig. 3. Along the boundary, a null pressure is prescribed at the

upper surface, the bottom surface is considered rigid while absorbing boundary conditions are

imposed on both sides. The material properties for the two layers are: ρ1 = 1000kg/m3,

c1 = 1500m/s, ρ2 = 1500kg/m3 and c2 = 2100m/s. The model is excited by a nodal source

of Ricker type pulse located at point (25,−4.65) of the form:

R (t) = −10−3
(

1− 2π2f 2(t− t0)
2) e−π2f2(t−t0)

2

(28)

where t0 = 0.01 and f = 160Hz stands for the central frequency. As depicted in Fig. 4, the

mesh is constructed with 440 7× 7 spectral elements yielding a total of 21939 nodes such that

there are at least 5 nodes per smallest wavelength considering the average over all the elements

of the mesh, recalling that the cut off frequency is about 400Hz.

The main goal of this example is to show the ExGA method with substeps can be very

efficient in wave problems with the SFEM to increase the time step length for a given analysis.

To do so, a comparison between the SFEM and the low-order quadrilateral FEM is examined.

The idea is to adopt the same time step length provided by the FEM into the SFEM. A FE mesh

composed of 22081 nodes, i.e., approximately the same number of nodes of the SFE mesh, is

employed. It is easily verified that the critical time step for the standard RK regarding the FE

mesh is ∆t ≤ 0.00038s, whereas for the SFE mesh the critical time step is ∆t ≤ 0.00013s, i.e.,

a reduction of about 66% in comparison with that from the FEM. On the other hand, the critical

time step for the ExGA method is given by ∆t ≤ n0.00013s where the number of substeps
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Figure 4: 7× 7 SFE mesh

n plays a significant hole in its value. Hence, in the present analysis, the chosen time step

length is ∆t = 0.00036s for the FEM and in order to achieve this time step for the SFEM it is

required only n = 3 substeps into the ExGA method. Since the RK scheme is applied for the

time advancement in the FEM, the mass matrix is lumped by taking into account the row sum

technique defined as Mi,i =
∑

j

Mi,j (Hughes, 2000).

0.000 0.025 0.050 0.075 0.100 0.125 0.150
-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

 

 

pr
es

su
re

time

 reference
 FEM- RK
 SFEM- ExGA

Figure 5: Pressure time-histories comparison at point (75,−8.5) considering the FEM and

SFEM.

Numerical results regarding the FEM with the RK scheme and the SFEM with the ExGA

method at the receiver point depicted in Fig. 3 is plotted in Fig. 5. Fig. 5 also shows a reference

solution obtained by considering a very fine FEM mesh. It is possible to see that the SFEM-

ExGA presents high accuracy results while accompanying the reference solution, differently

from the FEM-RK solution which introduces spurious oscillations and large errors into the

numerical solution due to the coarse mesh adopted. Thus, the SFEM-ExGA method has the

advantage of using the coarse SFE mesh while having a time-step length equal to that of the RK

scheme regarding the FE mesh.
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To better understand the physical phenomenon concerning the pressure field, Fig. 6 shows

the signals recorded along a line of receivers located at y = −0.25m (see Fig. 3). The first

record is due to the direct incident wave followed immediately by the reflection at the upper

boundary. Then, at time instant of about 0.04s, the reflected wave originated from the material

interface can initially be observed. The reflected wave front originated from the bottom bound-

ary starts to appear at time instant of about 0.068s. Afterwards, we can see many different wave

fronts originated from multiple reflections and diffractions with small amplitudes arriving at the

receivers. Fig. 7 shows snapshots of the pressure field taken at three different time instants. The

layer boundary is evidenced due to reflections and diffractions at the material interface. On the

other hand, Fig. 7c (at left hand side) shows incident waves at the lateral crossing the absorbing

boundary.

Figure 6: Synthetic seismogram.

6 CONCLUSIONS

In this paper, an explicit time-stepping scheme based on the ExGA method was applied in

combination with the SFEM to solve problems governed by the scalar wave equation. The

SFEM-ExGA formulation taking into account the fourth order RK scheme shows to be quite

effective. This stems from the geometric flexibility offered by the FE mesh together with the

spectral element accuracy for using few grid points per wavelength and large time steps fur-

nished by the ExGA method. Thus, having a smaller number of nodes than the standard FEM,

the matrices obtained have smaller dimensions, saving on the amount of memory allocated on

the computer, enabling us to also work with large-scale problems. The large time step allows

us to explore problems with large period of time in a smaller quantity of time steps without loss

of accuracy in the results.
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(a) t= 0.036s

(b) t = 0.054s

(c) t = 0.07668s

Figure 7: Snapshots for the pressure field p at different time instants.
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