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Abstract.The direct numerical simulation of a fully developed turbulent flow with heat transfer and
the direct numerical simulation of a perturbed turbulent channel flow with heat transfer, has been per-
formed. Buoyancy effects were neglected, thus the temperature was considered as a passive scalar. For
the first calculation, for non-perturbed flow, the isoflux, constant temperature, and uniform energy source
boundary conditions has been used for the thermal field. Mean and turbulence values of velocity and tem-
perature fields are compared with data from the literature for the isoflux case. The second calculation
for the perturbed channel flow simulation with heat transfer, has been performed to investigate velocity
and temperature fields dissimilarity. For this second calculation the uniform energy source case for the
thermal field was used. Perturbations were applied into the flow locally by blowing from a span-wise
slot at the lower wall, and suction from a similar slot at the upper wall. In this first work on perturbed
turbulent channel flow, no developing calculation was used, rather thanvery small values of the transpi-
ration velocity and slot width has been used in conjunction with a long periodic computational domain.
The main results from this study show that the skin-friction and the Stanton number suffer clear changes
owing to local blowing or suction. While local blowing yields a decreases of the skin-friction and the
Stanton number, local suction increases these coefficients. Qualitatively the effects on both coefficients
are similar for every perturbation. The local extremes, however, for theskin-friction are smaller than
those for St. And also the region of velocity field affected by the perturbation is larger than for the
temperature field. The budgets for the axial mean velocity and for the mean temperature show that the
main source of dissimilarity for blowing is the mean pressure gradient and the convection terms. Mean
pressure gradient make mean velocity to change in the wall region in a slight smoother way than mean
temperature. This small differences in the variation of mean velocity and temperature yields dissimilari-
ties in the turbulence production in the budget of the second moment of the fluctuations of axial velocity
and temperature. The perturbed mean flow transfers energy to turbulence spreading out its effect into a
larger region than those affected in the thermal field. The responsible forthese differences in the mean
flow and mean thermal field is the non-local effect of the mean pressure gradient on convection terms
of the mean momentum equation. For the fluctuations of axial velocity and temperature fields the main
causes of dissimilarity are the small differences in the behavior of the gradient of the mean values, which
yields dissimilarity mainly in the turbulence production term.
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1 INTRODUCTION

Turbulent heat transfer is a phenomenon of fundamental interest and technological relevance to
a range of mechanical, aerospace, and chemical engineeringprocesses in addition to a range
of applications encountered in physics, biological and environmental sciences. Nevertheless,
heat transfer predictions for most applications in practice utilize simplistic approaches based
on Reynolds analogy, which implies similarity between momentum and heat transfer. This ap-
proach is computationally efficient since heat transfer predictions are essentially obtained from
the turbulent velocity field at relatively little additional computational cost. However, most
flows encountered in practice are far from equilibrium, the direct analogy between momentum
and heat transfer fails, and use of the Reynolds analogy for predicting turbulent heat transfer can
be very inaccurate (Spalart and Strelets, 2000; Kong, Choi, and Lee, 2001; Inaoka, Yamamoto,
and Suzuki, 1999). Previous works show that there is a clear need to examine in detail the dis-
similarities between heat and momentum transfer and to develop new approaches to predicting
turbulent heat transfer in wall-bounded flows.

Since some time ago velocity and temperature fields dissimilarity in turbulent flows has been
studied experimentally for different situations (Fulachier and Dumas, 1976; Antonia, 1980;
Subramanian and Antonia, 1981; and Antonia, Krishnamoorthy and Fulachier, 1988). More
recently, and as a consequence of the advance of large scale computers, a number of direct
numerical simulations, DNS, have been performed addressing different aspects of heat transfer
in turbulent flows. The first works computing a turbulent flow with heat transfer using DNS
has been for developed thermal field (Kim and Moin, 1989; Kasagi, Tomita and Kuroda, 1992;
Kasagi and Ohtsubo, 1993; Kawamura, Abe, and Matsuo, 1999; Na, Papavasiliou, and Hanratty,
1999; Zhou, Cui, and Zhang, 2002). In one of these works Kim andMoin (1989) studied the
scalar transport in a developed turbulent channel flow for different boundary conditions for the
temperature field, presenting results for the isoflux case orconstant wall heat case. In another
work, Kasagi, Tomita, and Kuroda (1992) have done an extensive and well documented DNS
of a developed turbulent channel flow with heat transfer using also the isoflux case. And more
recently Prandtl,Pr, and Reynolds,Rτ , numbers effects in turbulent heat transfer has been
addressed in developed turbulent flow. Kawamur, Abe and Matsuo(1999) used DNS of a fully
turbulent channel flow with the objective to study thePr andRτ effects on the turbulent Prandtl
number,Prt. They found that near the wall thePrt is approximately1.0, and independently
of Reτ andPr, if Pr > 0.2. They show that the effect ofPr on Prt is more important for
lower values ofPr. In another work Na, Papavassiliou, and Hanratty (1999) used DNS in
order to study the effect ofPr on temperature field, in a turbulent channel flow. As boundary
conditions they used a heated lower wall and a coled upper one. They studied the effect of
Pr in the range0.3 − 10.0 using an Euler approach, and in the range0.1 − 2400 with a
Lagrangian formulation. They found that forPr > 1 and fory+ > 5, the influence ofPr on
the eddy diffusivity is quite small. On the other hand, however, large effects were found ofPr
on the velocity and temperature correlation fields, temperature and temperature variance. They
suggest that theνθ = νt assumption, which meansPrt = 1.0, is a good approximation for the
buffer region, outside the viscous layer, and for the logarithmic region only. In contrast, for the
core regionνθ > νt, or Prt < 1.0. All these results for developed turbulent channel flow.

More recently, dissimilarity between velocity and temperature fields has been addressed nu-
merical and experimentally in disturbed, or non-equilibrium, turbulent flows (Suzuki, Suzuki,
and Sato (1988); Inaoka, Yamamoto, and Suzuki, 1999; Kong, Choi and Lee, 2001). Non-
equilibrium turbulent flow means a turbulent flow where the equilibrium between turbulence
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production and dissipation, that nominally exists in the wall region, has been disrupted by some
kind of perturbation. These perturbations can consist of, for example, wall blowing or suction,
transverse pressure gradient, stream-wise curvature, wall roughness, wall temperature varia-
tions, or with the insertion of an obstacle into a boundary layer. In one of his work Suzuki,
Suzuki, and Sato (1988) studied the skin friction and heat transfer coefficient differences with
the insertion of a cylinder into a boundary layer, and found that hot outward and cold wall-
ward interactions were intensified more strongly than were sweeps and ejections of momentum
in this kind of perturbation. Also, they found that near the wall the sweep/ejection process
modification contribute negatively to momentum transfer, and that hot outward/cold wallward
phenomena were more intense that momentum sweep/ejection.Then, based on this previous
work, Inaoka, Yamamoto, and Suzuki (1999) addressed numerical and experimentally the influ-
ence of the von Karman vortex street behind a square road in a boundary layer. And they found
that while a reduction of the skin friction downstream of theinserted cylinder was measured,
there was on the other hand a significant enhancement of heat transfer. They have given the
explanation that suppression of the von Karman vortex reduces significantly the heat transfer
behind the road, thus decreasing the momentum/heat transfer dissimilarity. And the main rea-
son for this phenomena is a decouple betweenu′ andv′ in the Reynolds stress〈u′v′〉, in contrast
to the thermal stress〈v′θ′〉 in turbulent heat transfer. Also Kong, Choi and Lee (2001) have
addressed the velocity and temperature fields dissimilarity in a perturbed turbulent boundary
layer using DNS. The perturbation was provided into the boundary layer by local blowing or
local suction from a spanwise slot. They found that the skin friction and the Stanton number
were significantly changed due to blowing and suction. Abovethe slot they found that the main
source of dissimilarity was the mean pressure gradient. Whereas downstream of the slot the
source of dissimilarity was mainly due to the velocity-pressure gradient second moment.

In the present work results from the DNS of a developed turbulent flow with heat transfer
and the DNS of a perturbed turbulent channel flow with heat transfer are presented. In both
calculations the temperature was considered as a passive scalar. For the first calculation, with
non-perturbed flow, the isoflux, constant temperature, and uniform energy source boundary
conditions has been used, however mean and turbulence values of velocity and temperature
fields only for the isoflux case are presented. The second calculation with heat transfer has
been performed addressing the velocity and temperature fields dissimilarity, using the uniform
energy source case as boundary condition. Perturbations are applied into the flow by local
blowing from a span-wise slot at the lower wall, and local suction from a similar slot at the
upper wall. In this first work on perturbed turbulent channelflow with heat transfer presented by
the authors, no inflow-outflow boundary conditions were usedfor the channel flow. Rather than
a very small values for the transpiration dimensionless velocity of v+ = 0.20, and very small
dimensionless spanwise slot widthW+ = 60, were used in conjunction with a long periodic
computational domain equal to7π. The following is a detail of the sections in this work. In
§2 the numerical procedure is presented for the case of fully developed turbulent channel flow
with heat transfer in first term, and then for the perturbed case with heat transfer. Then in§3,
in a first subsection, mean values for velocity, temperature, and turbulence values, for the fully
developed turbulent channel are shown and compared with similar data from the literature. Then
in a second subsection, results and discussion for the perturbed turbulent channel flow with heat
transfer are presented. And finally in§5 the main conclusions are commented.
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2 NUMERICAL PROCEDURE

In this section a description of the numerical aspects of thesimulations, first for the fully devel-
oped turbulent channel flow, and second for the perturbed turbulent channel flow are presented.
In this paper,u, v, andw are the instantaneous velocities in the streamwise(x), wall-normal
(y), and spanwise(z) directions, respectively. All instantaneous variables are decomposed in a
mean value and a fluctuation; e.g.u = U + u′.

2.1 Developed Turbulent Channel Flow

Figure 1:Computational domain for fully developed turbulent channel flow.

The computational domain for the DNS of the fully developed turbulent flow and the co-
ordinate system are shown in Figure 1. Then, the governing equations in dimensionless form
are the continuity, the unsteady Navier-Stokes and the energy equations for incompressible flow
and heat transfer
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where the nondimensionalization was done using the friction velocityvτ and half channel dis-
tance between wallsδ, and the friction temperatureTτ = qw/ρ cp uτ . Whereθ is the dimen-
sionless temperature, which has a different nondimensionalization for every thermal case as it
is explained below,qw is the heat flux at the wall, andcp andρ are the constant pressure specific
heat coefficient and the density, respectively. In these equationPr, andRτ are the molecular
Prandtl and turbulent Reynolds numbers, respectively, andSe is a dimensionless energy source
term, which is different for every thermal case as it is explained below.

The computational domain for the fully developed turbulentflow was chosen to be4π and
4π/3 (1885, and 628 in wall units) inx andz directions, respectively. The size of the compu-
tational domain in x and z-directions was checked using two-point velocity correlation. This
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computational domain is discretized with a128 × 128 × 128 grid, which in wall units means
∆x+ = 14.72, ∆y+ = 0.09 − 6.72, and∆z+ = 4.90, in the three directions respectively. In
comparison, the Kim and Moin’s (1989) and Kasagi, Tomita, and Kuroda’s (1992) discretization
used in their spectral resolutions are respectively∆x+ = 17.7, ∆y+ = 0.05 − 4.4, ∆z+ = 5.9,
and∆x+ = 18.4, ∆y+ = 0.08 − 4.9, ∆z+ = 7.4. And, using also a spectral code Kim, Moin
and Moser (1987) used∆x+ = 12, and∆z+ = 7, using a 192x129x160 grid. The time step
was0.0008δ/uτ or 0.12ν/u2

τ .
The unsteady Navier-Stokes equations were solved numerically at a Reynolds numberRτ

equal to 150, based on thevτ wall friction velocity and half channel distance between walls δ.
The DNS code used in the present work for the velocity fields was developed by Prof. Kyle
Squires’ group at ASU. In this code the incompressible momentum equation are discretized
by the second-order accurate central-difference scheme. The Poisson equation for the pressure
field is Fourier-transformed with respect to the streamwiseand spanwise periodic directions and
the resulting three-diagonal equations are solved directly for each time step. The flow field is
advanced in time using a fractional-step method, with the Adams-Bashforth scheme for the time
discretization. For the thermal field a numerical code has been presently developed, in which
the spatial derivatives of the diffusion term are approximated using the same discretization of
the flow field, while the convection terms are approximated using the QUICK scheme (Leonard,
1979). The time advance for temperature, on the other hand, is done with the same scheme used
for the flow field.

For the velocity field periodic boundary conditions are usedin the spanwise and in the
streamwise direction, and non-slip boundary conditions atboth walls. As initial condition,
an instantaneous velocity field of a developed turbulent flowwas supplied from a previous
calculation for a turbulent channel flow with the same DNS code.

After the velocity field is calculated at each time step, the temperature field was obtained
integrating the energy equation. The working fluid is air, with a Prandtl numberPr = 0.71. Any
buoyancy effect was neglected, thus temperature was considered as a passive scalar. Inx and
z direction, as for velocity, periodic boundary condition were used for temperature, whereas
at walls three cases with different boundary conditions were used. The constant heat flux or
isoflux case, the constant wall temperature, and the uniformheat source cases were solved.
The dimensionless temperature,θ, and the energy source term in the energy equation,Se, are
different for every case. For constant wall heat flux,θ = (Tw − T )/Tτ , andSe = u1/U1,
thusθ = 0 as boundary condition at walls. For the constant wall temperature case, with heat
flux from the upper to the lower wall,Se = 0, and the dimensional boundary conditions are
TLW = (1 − α)Tτ , TUW = (1 + α)Tτ . WhereLW andUW mean lower-wall and upper-
wall, respectively, andα is some arbitrary absolute value less than 1. Thus dimensionless
temperature,θ = (T − TLW )/Tτ , boundary conditions areθLW = 0, andθUW = 2α. The
uniform scalar source case solved in the present work is similar to case I solved in Kim and
Moin (1989), who used a source term equal to2/ReτPr. In the present study, however, the
source is a constant energy source uniformly distributed inthe domain, equal toqw/δ, which
in dimensionless form isSe = 1.0. The boundary condition at walls for this case isθ = 0,
as for the isoflux case. As initial conditions for the thermalfield a mean temperature from
the law of the wall,θ+ = 2.785 ln(y+) + 2.09, was given for the isoflux case. Then a fully
developed thermal field from this last calculation is given for the scalar source and for the
constant wall temperature cases. For the constant wall temperature, however, it should be done
a transformation of this developed thermal field using the absolute value of the constantα.

Preliminary computations were conducted on a coarse grid64 × 128 × 64 and then the
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flow and thermal fields were interpolated onto the128 × 128 × 128 grid. The time integration
was repeated until the velocity(temperature) field was judged to be fully developed in the new
simulation using the mean velocity (temperature), the Reynolds stresses (thermal stress) and the
wall shear stress (wall heat flux). A time of about1, 000ν/u2

τ was required to reach a stationary
state, but in all cases time of2, 400ν/u2

τ were running before the averaging process was taken.
Then the statistics time integration was taken equal to32δ/uτ , 40, 000 computational time step,
or 3, 600ν/u2

τ , in order to define mean values.

Figure 2:Computational domain for the perturbed turbulent channel flow.

2.2 Perturbed Turbulent Channel Flow

In the present work, the computational domain, Figure 2, forthe perturbed case was similar to
the non-perturbed case, with the exception of theLx period of the channel in the axial direction.
In this FigureW is the spanwise slot width used for local blowing or suction,which has its start
point at the middle of theLx axial period. The remain aspects of the numerical procedureare
the same as for the fully developed turbulent channel flow. Inthe following,W+ andv+ are
these values nondimensionalized with the wall variables,uτ andν. Blowing and suction were
provided using a transpiration velocity as boundary condition for the normal wall velocity at
the spanwise slots. The energy equation was solved for the uniform heat source case, for which
the boundary condition areθ = 0, andSe = 1, as it is commented above.

As it is mentioned in the abstract, being these the first results presented by the authors for
perturbed turbulent channel flow, no developing turbulent channel flow simulation was used.
In other words, rather than to use an inflow-outflow DNS for theperturbed channel flow, with
inflow boundary condition from a developed turbulent flow from a parallel calculation, a long
computational domain with periodic boundary condition in the axial direction, in conjunction
with very small value for the magnitude of the transpirationvelocity and very small width for
the spanwise slot with blowing or suction, was used. Next results on this ongoing work on
velocity and temperature fields dissimilarity will be obtained using an inflow-outflow DNS,
using a parallel DNS for developed turbulent channel flow in order to have fully developed
inflow boundary conditions.

In the present work, however, different tests were done to define the axial dimensionLx,
changing the magnitudes of transpiration velocity, and theslot width. These tests were done
checking the mean velocity(temperature), the skin-friction(Stanton number) at both walls, and
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Figure 3: Comparison of mean values for fully developed and perturbed turbulent channel flow.
(a)Distribution of mean velocity. Solid line, fully developed;· · · · · · , perturbed1000 wall units up-
stream of slot. (b)Distribution of dimensionless total, viscous and Reynolds stresses. Fully developed
flow: solid line, total;− − − − −, 〈u′v′〉; · · · · · · , viscous. Perturbed flow1000 wall units upstream of
slot.◦ · ◦ · ◦ · ◦, total; · · · · · · , 〈u′v′〉; B · B · B · B, viscous. (c)Comparison of mean velocity
above the slots with fully developed flow: Solid line, fully developed flow;· · · · · · , above the
slot with blowing;+ · + · + · +, above the slot with suction.

the Reynolds(thermal) stresses at a point1000 wall units upstream of the slot. And the computa-
tional domain finally chosen wasLx = 7π, with v+ = 0.20 for the dimensionless transpiration
velocity andW+ = 60 for the dimensionless spanwise slot. These values yields differences in
the mean values(first order and second order moments) almostimperceptible, as it is shown in
Figures 3(a) -3(b), which show mean values of velocity and Reynolds stress1000 wall units
upstream of the spanwise slot. It can be seen in Figure 3(a) for the mean velocity only slight
differences in the core of the channel. The Reynolds stress atthe same point upstream in Fig-
ure 3(b) presents no differences with the fully developed flow. On the other hand, Figure 3(c)
shows the distribution of the mean velocity for the fully developed turbulent channel flow in
comparison with the distribution above the blowing slot andabove the suction slot. In this Fig-
ure it is clear that above the slots perturbations affect basically the mean flow only in the buffer
region. The velocity through the logarithmic sub-region presents, on the other hand, a minor
effect due to suction, and a slight effect due to blowing.

3 RESULTS AND DISCUSSION

3.1 Results for Fully Developed Turbulent Channel Flow

The mean and turbulence values for the fully developed channel flow are presented in this
subsection. Mean values here means Reynolds averaged mean value in thex− z plane. Kasagi,
Tomita, and Kuroda’s (1992), and Kim, Moin, and Moser’s (1987) results forReτ equal to150
and180, respectively, are used for comparison. The resultant Reynolds number for the present
calculation based on the mean velocity and 2δ is 4552, which is in good agreement with Kasagi
et al.’s (1992) calculation bulk Reynolds equal to 4580. The dimensionless mean and turbulence
values for the velocity and temperature fields are shown in Figures 4(a) -6(c) as a function of
y+ = yuτ/ν. The agreement of the mean velocity with Kim at al.’s (1987),and Kasagi at
al.’s (1992) values, and the law of the wall in Figure 4(a) is good with a very small under
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Figure 4: (a)Distribution of dimensionless mean velocity for fully developed turbulent channel flow.
Solid line, present calculation,Reτ = 150; ◦ · ◦ · ◦ · ◦, Kasagi, Tomita, and Kuroda (1992),Reτ =
150; · · · · · · , Moser, Kim, and Mansour (1999),Reτ = 180; − − − − −, law of the wall
U+ = ln(y+)/0.41 + 6.0 ,and U+ = y+. (b)Distribution of dimensionless mean temperature
for fully developed turbulent channel flow for the isoflux case. Solid line, present calculation,
Reτ = 150, Pr = 0.71; ◦ · ◦ · ◦ · ◦, Kasagi, Tomita, and Kuroda (1992),Reτ = 150, Pr = 0.71;
· − · − · − ·, Kader (1981);−−−−−, θ+ = 2.78 ln(y+) + 2.09, andθ+ = Pr y+.

prediction of the mean velocity in the core region of the channel. Temperature mean values for
the developed thermal field are shown in Figures 4(b) for the isoflux case, in comparison with
Kasagi et al’s (1992) results, the law of the wall,θ+ = 2.78 ln(y+) + 2.09, and Kader’s (1981)
empirical polynomials. As it is shown in Figure 4(b) the agreement of the mean temperature is
excellent.

Reynolds stresses and thermal Reynolds stresses are shown in Figures 5(a)-5(b). The agree-
ment of Reynolds stresses is good. As regarding thermal Reynolds stresses and for the fully
developed channel flow for the isoflux case, the wall-normal heat flux balance can be deduced
from the Reynolds averaged energy equation as

1

Pr

∂θ+

∂y+
− 〈u′+θ′+〉 = {1 −

∫ y+

0
U+ dy+

∫ Reτ

0
U+ dy+

} (4)

whereU+ is the dimensionless Reynolds averaged mean axial velocity.
In equation (4) on the left-hand side, the first term is the molecular heat flux, and the second

one is the turbulent heat flux. The term on the right-hand sideis the Reynolds averaged source
term for the isoflux case. All these terms are shown in Figure 5(b). In this Figure it is shown
that the thermal Reynolds stresses of the present work show a good agreement with Kasagi et
al’s (1992) results, although there is a very slight over predictions of the turbulent flux〈v′θ′〉
approximately aty+ = 30.

Figures 6(a) show the root-mean-square, rms, of the fluctuations of velocity,u′+, v′+, and
w′+. These results present a slight under predictions in comparison with Kasagi et al.’s (1992)
results. Fromy+ = 20 to the center of the channel the rms present a small under prediction
with maximum values less than3%, mainly for the fluctuation of the axial velocity. These dif-
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Figure 5: (a) Distribution of dimensionless total, viscous and Reynolds stresses for fully developed
turbulent channel flow. Present calculation,Reτ = 150. Solid line, total;− − − − −, 〈u′v′〉; · · · · · · ,
viscous. Kasagi, Tomita, and Kuroda (1992),Reτ = 150. ◦·◦·◦·◦, total;�·�·�·�, 〈u′v′〉; C·C·C·C,
viscous. (b)Distribution of dimensionless molecular, Reynolds and total thermal stresses, for
fully developed turbulent channel flow for the isoflux case. Present calculationReτ = 150,
Pr = 0.71; solid line, total stresses;· − · − · − ·, molecular;−−−−−, 〈v′θ′〉; · · · · · · , rhs of
Equation( 4). Kasagi, Tomita, and Kuroda (1992),Reτ = 150, Pr = 0.71. B · B · B · B, total
thermal stress;◦ · ◦ · ◦ · ◦, 〈v′θ′〉; ∗ · ∗ · ∗ · ∗, rhs of Equation( 4).

ferences are attributed to the better precision for very high-frequency components of turbulent
fluctuations, of the spectral codes used by Kasagi et al. (1992) in their calculation in compari-
son with the second-order central differences used in the present work. Then Figures 6(b) - 6(c)
show the rms of the thermal fluctuationsθ′+ and the heat fluxes〈u′θ′〉+, and〈v′θ′〉+. In these
Figures there is an under prediction of the present results of approximately9% at the maximum
value of the turbulent heat flux〈u′θ′〉, and in the order of5% for the rms of the fluctuations of
temperature. As regarding these differences, however, it is worth to mention that Kasagi et al.’s
(1992) results for the turbulent heat flux〈u′θ′〉+, and for the rms of fluctuation of temperature,
present an over predicted in comparison with Kim and Moin’s (1989) results of approximately
5%, which are not presented here (Figure 4, and 5, in Kasagi, Tomita, and Kuroda, 1992).

3.2 Results for Perturbed Turbulent Channel Flow

In this section the mean and turbulence values for the perturbed velocity and temperature fields
are presented. Mean values in this subsection means Reynoldsaveraged in the spanwise direc-
tion, z, and the results presented are for the transpiration velocity v+ = 0.20, and slot width
W+ = 60, both in wall units. The energy equation, on the other hand, is solved for the uniform
heat source case, as it is commented above, which means that the dimensionless source term
Se = 1. Thus, for fully developed flow, the solutions of the axial momentum and energy equa-
tions differ only in the diffusion term owing to thePr, which value is0.71. Thus for a fully
developed turbulent channel flow the similarity between axial momentum and energy is almost
complete, and this is the base flow which is perturbed by blowing or suction. Although both
results for blowing and suction are presented, for space reason discussion is focused on blowing
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Figure 6:(a)Distribution of dimensionless rms of velocity fluctuations for the fully developed turbulent
channel flow. Present calculation,Reτ = 150. Solid line,u′+; − − − − −, v′+; · · · · · · , w′+. Kasagi,
Tomita, and Kuroda (1992),Reτ = 150. ◦·◦·◦·◦, u′+; �·�·�·�, v′+; B·B·B·B, w′+.(b)Distribution
of dimensionless rms of temperature fluctuations for fully developed turbulent channel flow for
the isoflux case. Solid line, present calculation;◦ · ◦ · ◦ · ◦, Kasagi, Tomita, and Kuroda (1992).
(c)Distribution of dimensionless axial and wall normal turbulent heat flux for fully developed
turbulent channel flow for the isoflux case. Present calculation, solid line,〈u′θ′〉; · − · − · − ·,
〈v′θ′〉. Kasagi, Tomita, and Kuroda (1992),◦ · ◦ · ◦ · ◦, 〈u′θ′〉; · − · − · − ·, 〈v′θ′〉.

effects in the present work.

(a)Skin-Friction and Stanton Number:Figures 7(a) shows the axial distribution of half the
time-averaged skin-friction,f/2 = τw/(ρŪ2), and the time-averaged Stanton number,St =
h/ρcpŪ), for blowing and suction, normalized for its values for fully developed flow. Where
τw is the wall shear stress,ρ, the density,Ū the axial mean velocity in the whole domain,
h = qw/(Tb − Tw) is the convective heat transfer coefficient, andTb is the bulk temperature.

The skin-friction and the Stanton number suffer clear localchanges due to blowing or suc-
tion. While local blowing yields a decreases of the skin-friction and the Stanton number, local
suction increases these coefficients, although the local changes for blowing are smaller than
those for suction. There are however small dissimilaritiesbetween the skin-friction and the St.
The changes in St are abrupt, with its starting point almost coincident with the location of the
upstream border of the spanwise slot. On the other hand, the local maximum and minimum
for the skin-friction are smaller than the respectively values for the St. But the most important
difference is the smoother variation of the skin-friction,which means a smoother change of the
mean velocity in contrast with mean temperature. As it is shown below, this slight difference in
both mean fields is a source of dissimilarity in the turbulence production terms of velocity and
temperature fluctuation fields. And the primary reason for this dissimilarity is the mean axial
pressure gradient term, whose distribution is shown in Figure 7(b). The axial pressure gradient
is shown at the wallsy+ = 0, and at the beginning of the logarithmic region,y+ = 30. For blow-
ing the pressure gradient term at the wall presents a local maximum at approximately 30 wall
units upstream of the slot border, a local minimum above the slot, and a second local maximum
at 90 wall units downstream of the upstream slot border. In contrast, for suction there is two
local minimums, and a maximum value above the slot, in almostthe same locations. Thus, it
can be said that blowing causes qualitatively the opposite effect of suction on the axial pressure
gradient term. The slight differences are the absolute magnitudes of these extreme values.
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Figure 7:(a)Streamwise variations of the normalized skin friction and Stanton number due to blowing
and suction for v+

= 0.20, andW+
= 60. Skin-friction: · · · · · · , blowing; · − · − · − ·, suction.

Stanton number: solid line, suction;−−−−−, blowing. Dotted lines denote the spanwise slot location.
(b)Streamwise distribution of the dimensionless axial pressure gradient due to blowing and suction, for
v+

= 0.20, W+
= 60. Blowing: Solid line,y+

= 0; − − − − −, y+
= 30. Suction: · − · − · − ·,

y+
= 0; ◦ · ◦ · ◦ · ◦, y+ = 30. Dotted lines denote the location of the spanwise slot.

(b)Budget for the Mean Streamwise Velocity and Temperature Fields: Figures 8-9 show the
budgets for the mean streamwise velocity and temperature fields, equations (5-6), for the fully
developed channel flow, and for perturbed flow with parameters v+ = 0.20 andW+ = 60 at
the locations of the three extreme values of the mean axial pressure gradient term at the wall, as
shown in Figure 7(b). In equations (5-6), the first term on theright-hand side is the convection
term, the second is the turbulent transport, the third is thesource term for momentum(mean
axial pressure gradient) or heat,Se, respectively, and the last term is the diffusion term.

∂U

∂t
= −{U

∂U

∂x
+ V

∂U

∂y
} − {

∂〈u′u′〉

∂x
+

∂〈u′v′〉

∂y
} −

∂P

∂x
+ {

1

Rτ

∂2U

∂x∂x
} (5)

∂θ

∂t
= −{U

∂θ

∂x
+ V

∂θ

∂y
} − {

∂〈u′θ′〉

∂x
+

∂〈v′θ′〉

∂y
} + Se + {

1

PrRτ

∂2θ

∂x∂x
} (6)

Figures 8 shows that a local blowing yields a perturbation inthe convection terms of the
axial momentum equation, which is balanced mainly by the pressure gradient term. These
are the two terms that suffer the most important changes in the mean axial momentum budget
through the blowing region. In contrast, the diffusion and turbulent transport terms do not suffer
significantly due to blowing. For the energy budget, however, the convective and diffusion
terms suffer the most important changes and are almost balanced by each other. The turbulent
transport term in both budgets do not suffer any significant modification in comparison with
fully developed turbulent channel flow.

Therefore the main source of dissimilarity in the budget forthe mean valuesU andθ, are
the main axial pressure gradient, and the convection, for the first variable, and the convection
and diffusion terms for the second one. Since changes in the mean temperature are abrupt the
diffusion term takes an important rule in the budget of the mean temperature. Thus, heat is
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Figure 8: Mean streamwise-velocity budget normalized byu2
τ/δ for (a) non-perturbed flow, and for

low wall blowing(y=0) and upper wall suction(y=2) forv+
= 0.20 W+

= 60 at three location: (b)35
wall unit upstream of the slot;(c) 38 downstream; (d)90 downstream of theslot beginning. Solid line,
convection term;− − − − −, diffusion term;· · · · · · , turbulent transport term;◦ · ◦ · ◦ · ◦, pressure
gradient term.

transfered by convection and diffusion in order to adjust inthe blowing region. In contrast in
the momentum budget the transference of momentum is basically due to convection, if pressure
gradient is thought as a convection potential. Therefore the main dissimilarity between mean
velocity and temperature fields are the higher gradient of the temperature field, and the source
for this difference is the main pressure gradient in the momentum budget, as it was expected.

(c)Budget of the Second Moment of Axial Velocity and Temperature Fluctuations:Figures 10-11
show the budgets for the second moment of the fluctuations of the streamwise velocity〈u′u′〉,
and temperature〈θ′θ′〉, equations (7-8). The budgets are shown for the fully developed turbulent
channel flow, and for blowing and suction with parametersv+ = 0.20, W+ = 60 . In
equations (7-8), the first term on the right-hand side is the convection term, the second is the
diffusion term, the third is the turbulent transport, the fourth is the turbulent production, the
fifth term is the turbulence dissipation, and the sixth term,which is only in equation (7), is the
velocity-pressure gradient term.
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Figure 9:Mean temperature budget normalized byθτuτ/δ for (a) non-perturbed flow, and for low wall
blowing(y=0) and upper wall suction(y=2) forv+

= 0.20 W+
= 60 case at three location: (b)35 wall

unit upstream of the slot beginning;(c) 38 downstream; (d)90 downstream. Solid line, convection term;
−−−−−, thermal diffusion term;· · · · · · , thermal turbulent transport term;◦ · ◦ · ◦ · ◦, source term.
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As it is known, in equations (7-8) the first, second, and thirdterms on the right-hand side are
transport terms; transport by convection, by diffusion, and by turbulent velocity(temperature)
fluctuations. All these terms redistribute turbulent kinetic energy and thermal energy, in both
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Figure 10:〈u′u′〉 budget normalized byu3
τ/δ for (a) non-perturbed flow, and for low wall blowing(y=0)

and upper wall suction(y=2) forv+
= 0.20 W+

= 60 at three location: (b)35 wall unit upstream of the
slot beginning;(c) 38 downstream; (d)90 downstream. Solid line, convection term;−−−−−, diffusion
term; + · + · + · +, turbulent production term;· · · · · · , turbulent transport term;◦ · ◦ · ◦ · ◦,
dissipation term;∗ · ∗ · ∗ · ∗, velocity-pressure gradient term.

budgets respectively, from one point in the flow to another. The sixth term, which is only in
equations (7), can be written as〈∂u′p′/∂x〉−〈p′∂u′/∂x〉, representing a redistribution of energy
in space, the first part, and a redistribution of energy amongdifferent velocity components, the
second part. Thus, only the fourth and fifth terms on the second line of these equations are
responsible for the production and dissipation of turbulence in both fields.

Therefore looking first at the production of turbulence in〈u′u′〉 and〈θ′θ′〉 budgets, in Fig-
ures 10-11, the first noteable dissimilarity between both fields is the locations where the produc-
tion terms present differences in comparison with the production term for fully developed flow.
For the blowing region the production term of〈u′u′〉 is greater in Figures 10-b, d, and smaller
than the developed flow value, in Figures 10-c. In contrast, the production term of〈θ′θ′〉, is
greater in Figure 10-c, and smaller than the developed flow value, in Figures 10-b and d. It
is important to mention that, based on results not presentedhere, these differences are more
clear for higher magnitude of the transpiration velocity. Therefore this seems to be the most
remarkable source of dissimilarity.

The follow try to be an explanation for this phenomenon. The turbulence production in
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Figure 11: 〈θ′θ′〉 budget normalized byT 2
τ uτ/δ for (a) non-perturbed flow, and for low wall blow-

ing(y=0) and upper wall suction(y=2) forv+
= 0.20 W+

= 60 at three location: (b)35 wall unit
upstream of the slot beginning;(c) 38 downstream; (d)90 downstream. Solid line, convection term;
− − − − −, diffusion term;+ · + · + · +, turbulent production term;· · · · · · , turbulent trans-
port term;◦ · ◦ · ◦ · ◦, dissipation term.

〈u′u′〉 receives contribution from the terms−{2〈u′v′〉∂U/∂y}, and−{2〈u′u′〉∂U/∂x}, while
for 〈θ′θ′〉 receive from−{2〈θ′v′〉∂θ/∂y}, and−{2〈θ′u′〉∂θ/∂x}. And it can be shown (by
results not shown here) that in both budgets the production associated with the wall normal
gradient of the mean values is one order of magnitude larger than those associated with the
axial gradient of mean values. Which is a known result for fully developed turbulent flow, and
it continues to be valid here for small perturbations. Thus,the major contribution to turbulence
production is coming from the term with wall normal gradientin both budgets. The major
dissimilarity, however, in both budgets is coming from the minor contribution of the production
term associated with the axial gradient of the mean values.

In other words, the basic turbulent production in both budget is coming from the term with
wall-normal gradient, but the dissimilarity is coming fromthe minor contribution of the axial
gradient. And the reason for this is thatU changes occur basically upstream and downstream
of the spanwise slot, Figure 7(a). While changes inθ are abrupt and basically above the slot.

Therefore, the axial gradient ofU with its minor contribution upstream and downstream of
the slot yields two maximum values of turbulent production at these locations. In contrast, the

Mecánica Computacional Vol XXV, pp. 263-280 (2006) 277

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



axial gradient ofθ, which change abruptly above the slot, yields a turbulence minor contribution
that produces a maximum of turbulence production above the slot, as it is seen in Figures 11-
c. With different words it can say that the maximum of turbulence production in both budgets
have different location and the responsible for this phenomenon is the axial gradient of the mean
velocity and temperature fields. It is worth to remember here, also, that the differences in the
axial behavior of the mean valuesU andθ is the mean pressure gradient term in theU budget.

As it is known, the production term in the velocity field apparently serves to exchange
kinetic energy between the mean flow and turbulence. The sameis true for the temperature
field. But while in thermal field the gradient are abrupt and theproduction is concentrated
above the slot, for the velocity field the change are smootherowing to the pressure gradient
term. Thus in the velocity field the energy coming from the mean flow is spread out in space in
a larger region than in the temperature field. And the causes for this dissimilarity are the small
differences of the wall normal and axial gradients of the mean fieldsU andθ.

The term that balances the turbulence production in the〈u′u′〉 budget is mainly dissipation,
but the terms that more contribute to dissimilarity are convection and the velocity-pressure gra-
dient terms. The velocity-pressure gradient term is not in the temperature field, and convection
is essentially different in both fields. On the other hand, in〈θ′θ′〉 budget, turbulent production
is mainly balanced also by dissipation. In spite of the importance of the dissipation, turbulent
transport, and diffusion terms, they have qualitatively the same behavior in both budgets, and
do not contribute significantely to dissimilarity.

Thus, in conclusion, it can be said that the main source of dissimilarity between the two
second moment budgets for the blowing zone are the turbulentproduction term, the velocity-
pressure gradient term, and the convection term. And the source of all these differences have
clearly its origin in the non-local transfer effect of mean pressure gradient, as it was expected, on
the other hand. It is important to remark here that much of theinformation of this dissimilarity
is in the gradient of the mean values,U andθ. And also that the dissimilarity occurs basically
owing to terms with minor contribution in both fields.

4 CONCLUSIONS

The DNS of a fully developed turbulent flow with heat transferand the DNS of a perturbed
turbulent channel flow with heat transfer, has been presented in this work. These calculations
have been performed forReτ = 150, andPr = 0.71. Any buoyancy effect was neglected, thus
the temperature was considered as a passive scalar in both calculations.

For the first calculation, the isoflux, constant temperature, and uniform energy source as
boundary condition has been used. Mean and turbulence values of velocity and temperature
fields were compared with data from the literature for the isoflux case.

The second calculation for the perturbed channel flow simulation with heat transfer, has
been performed to investigate velocity and temperature fields dissimilarity. The boundary con-
dition for the thermal problem was the uniform heat source. Perturbations were applied into
the flow by local blowing from a span-wise slot at the lower wall, and local suction from a
similar slot at the upper wall. Very small values of the transpiration velocity and slot width has
been used, in conjunction with a long period of the computational domain, in order to have at
some degree developed turbulent flow upstream of the span-wise slots. The main results from
this study show that the skin-friction and the Stanton number suffer clear changes owing to
local blowing or suction. While local blowing yields a decreases of the skin-friction and the

H.D. PASINATO, K.D. SQUIRES278

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Stanton number, local suction increases these coefficients. The local extremes of these two co-
efficients,however, are different. The Stanton number presents always higher extreme values.
The main source of dissimilarity, on the other hand, for blowing in the wall region, for the mean
velocity and temperature budgets, is the pressure gradientand the convection terms. While for
the turbulence of the axial velocity and temperature the dissimilarity are mainly owing to the
turbulent production term. Although with smaller contribution, also the velocity-pressure gra-
dient term, and the convection term increase the dissimilarity. These dissimilarities have clearly
its origin in the non-local transfer effect of the mean pressure gradient, as it was expected, on
the other hand. The mean pressure gradient yields a smootherof the perturbed mean velocity
field in comparison with those of the mean temperature. Although the main source of turbu-
lence production of the axial velocity and temperature is the wall-normal gradient of the mean
fields, small differences between the axial gradients yieldthe most important dissimilarity be-
tween the turbulence fields of velocity and temperature. In other words, in spite of its minor
contribution to the production of turbulence, the axial gradient of the mean fields is the most
important secondary source of dissimilarity.

Thus, it can say that the mean pressure gradient, as expected, is the primary source of
dissimilarity, and that the higher values of the gradient ofthe thermal field is the secondary
source of dissimilarity between the velocity and temparature fields.
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