Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXXIII, págs. 1025-1039 (artículo completo) Graciela Bertolino, Mariano Cantero, Mario Storti y Federico Teruel (Eds.) San Carlos de Bariloche, 23-26 Setiembre 2014

RESPUESTA DINÁMICA DE VIGAS TIMOSHENKO ROTANTES DE MATERIALES CON PROPIEDADES VARIANDO FUNCIONALMENTE

Gonzalo J. Gilardi^{a,b}, Diana V. Bambill^{a,b}, Carlos A. Rossit^{a,b}, Daniel H. Felix^a, Alejandro Rattazzi^a

^a Departamento de Ingeniería, Instituto de Mecánica Aplicada, (IMA), Universidad Nacional del Sur, Alem 1253,8000 Bahía Blanca, Argentina, <u>http://www.uns.edu.ar</u>

^b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Palabras-clave: Vigas rotantes, vigas Timoshenko, Cuadratura Diferencial, MCD, FGM

Abstract. A lo largo de la Historia, el hombre ha buscado nuevos materiales o combinaciones de ellos que respondan con eficiencia a las necesidades que su propio desarrollo genera. Así han surgido últimamente materiales cuyas propiedades varían gradualmente con alguna de sus dimensiones (FGM por su nombre en inglés: Functionally Graded Materials). En el presente trabajo se analizan las vibraciones transversales de vigas Timoshenko rotantes con cambios en sus secciones transversales y constituidas por este tipo de materiales. En el modelado se considera que las propiedades varían a lo largo del eje de la viga. A través de un estudio numérico implementado con el Método de Cuadratura Diferencial, combinado con la técnica de descomposición de dominios, se evalúan distintas combinaciones de variación de las propiedades de los materiales de manera de mejorar la performance dinámica de la viga.

1 INTRODUCCIÓN

La utilización de materiales compuestos en el diseño de elementos estructurales cubre una amplia gama de aplicaciones. Si se requiere que el material a emplear tenga dureza y a la vez ductilidad y no es conocido un material de esas características en la naturaleza, es posible combinar dos metales o un metal con un material no metálico para lograrlo. Es conocida la notable trascendencia histórica que constituyó la aleación entre cobre y estaño para generar el bronce, dando lugar a la denominada "Edad de Bronce" en el cuarto mileno A.C. Mejorar el comportamiento del material para enfrentar diversas situaciones estructurales dio origen a los materiales compuestos (composite materials), formados por dos o más materiales combinados en estado sólido, con propiedades físicas y químicas distintas a los materiales parentales individuales. No obstante las enormes ventajas comparativas que presentan frente a materiales convencionales, los compuestos pueden fallar en condiciones extremas de esfuerzo a través del proceso separación de las fibras de la matriz, lo que impide la transmisión de esfuerzos, Wang (1983). Este problema fue resuelto por investigadores japoneses a mediados de los ochenta, al recurrir a un nuevo tipo de material, Niino et al., (1987), funcionalmente gradual o funcionalmente graduados, denominados en inglés como Functionally Graded Materials (FGM).

Este estudio trata sobre vigas rotantes Timoshenko (Bambill et al. 2010, 2013), construidas parcial o totalmente de estos materiales y analiza sus vibraciones libres en el plano transversal. El material se asume variable en el sentido longitudinal de la viga (AFG), Rajasekaran (2012), Felix et al. (2013). También se considera la presencia de cambios bruscos (escalón) o graduales en la sección transversal de la viga. Se analiza el efecto de la velocidad de rotación y del radio del eje de rotación de la viga ("hub") en los seis primeros coeficientes de frecuencia natural.

2 ECUACIONES GOBERNANTES

El modelo analizado es el de una viga empotrada por uno de sus extremos a un eje que rota con velocidad angular constante, Figura 1. Se considera en el análisis una sección transversal de la viga con doble simetría. El eje x coincide con el eje de la viga en la posición sin flexionar, el eje y es el eje de rotación del sistema y el eje z yace en el plano de rotación. La longitud R_0 corresponde al radio del eje material de rotación.

Figura 1: Viga Timoshenko rotante de varios tramos y material AFG.

El esfuerzo de corte de una sección incluyendo la deformación por corte está dado por:

$$Q_k(x) = N_k(x) \frac{dw_k}{dx} + \kappa_k(x) G_k(x) A_k(x) \left(\frac{dw_k}{dx} - \psi_k\right);$$
(1)

con $x = x_k \in [0, L_k]$; donde w_k es el desplazamiento en la dirección de y, y ψ_k es el giro de la sección debido a la flexión; κ_k es el factor de corrección del esfuerzo de corte; G_k es el módulo de elasticidad transversal del material, A_k es el área de la sección transversal y N_k es el esfuerzo axial que se genera en la viga al rotar con velocidad η :

$$N_{k}(x) = \int_{x_{k}}^{L_{k}} \eta^{2} \rho_{k}(x) A_{k}(x) (R_{k} + x) dx + N_{k+1}; \qquad (2)$$

 ρ_k es la densidad del material, R_k es la distancia de la sección del tramo k más cercana al eje de rotación y N_{k+1} es la fuerza axil que transmite el tramo k+1 a la sección del tramo k más alejada del eje de rotación. El momento flector está dado por la expresión:

$$M_k(x) = E_k(x) I_k(x) \frac{d\psi_k}{dx};$$
(3)

donde E_k es el módulo de elasticidad e I_k es el momento de inercia de la sección k.

Según la teoría de Timoshenko, las dos ecuaciones diferenciales parciales que gobiernan el movimiento de vibración libre en el plano xy de un tramo k de la viga rotante son:

$$-\frac{dQ_k}{dx} = \omega^2 \rho_k(x) A_k(x) w_k(x); \qquad (4)$$

$$-Q_{k}(x)+N_{k}(x)\frac{dw}{dx}-\frac{dM_{k}}{dx}-\eta^{2}\rho_{k}(x)I_{k}(x)\psi_{k}=\omega^{2}\rho_{k}(x)I_{k}(x)\psi_{k} ; \qquad (5)$$

donde ω es la frecuencia natural circular de vibración transversal de la viga en radianes por segundo.

Las condiciones de borde en el extremo vinculado al eje de rotación son desplazamiento transversal y rotación nulos:

$$w = 0; \quad \psi = 0.$$
 (6)

Y en el extremo libre, esfuerzos de corte y momento flector nulos:

$$Q = 0; \ M = 0.$$
 (7)

Las condiciones de continuidad entre tramos de viga, en la sección donde se une el tramo k al tramo siguiente k+1, son continuidad de desplazamiento y giro, así como continuidad de esfuerzos internos de corte y momento flector:

$$w_k = w_{k+1}; \ \psi_k = \psi_{k+1}; \ Q_k = Q_{k+1}; \ M_k = M_{k+1}.$$
 (8)

Se supone una viga cuyas propiedades elásticas y de densidad en las secciones varían en la dirección axial por la combinación de dos materiales "a" y "b", según una ley preestablecida.

Si se supone que T(x) es una propiedad genérica del material resultante, como ρ , $E \circ G$, en una sección cualquiera será una combinación de las propiedades respectivas de los materiales constitutivos T_a y T_b . Por ejemplo, para una variación lineal o exponencial, en función del exponente *n*, será:

$$T_{k}(x) = T_{a} + (T_{b} - T_{a}) \left(\frac{x}{L_{k}} \right)^{n}.$$
(9)

En este caso la sección x=0 es de material "*a*", mientras que para $x = L_k$ la sección es del material "*b*". En el resto de las secciones los dos materiales están presentes en proporciones acordes con la ley de distribución que se establezca. En particular si n=1 la composición varía linealmente a lo largo de la longitud L_k .

Cuando la viga está vibrando en uno de sus modos normales puede expresarse:

$$v = \overline{W} e^{i\omega t}; \ \psi = \Psi e^{i\omega t}; \tag{10}$$

donde \overline{W} y Ψ dependen de la variable espacial solamente.

También se definen expresiones adimensionales para la deflexión de la forma:

$$W = \frac{W}{L}.$$
(11)

Y el parámetro de frecuencia natural adimensional viene dado por:

$$\Omega = \sqrt{\rho_a A / (E_a I)} L^2 \omega; \qquad (12)$$

donde *A* e *I* corresponden a la geometría de la sección de la viga rotante más cercana al eje de rotación.

Se define el parámetro $s = L\sqrt{A/I}$ como el factor de esbeltez.

El problema planteado de la viga Timoshenko rotante de material funcionalmente graduado en la longitud se resuelve utilizando el método de cuadratura diferencial, Felix *et al.* (2013).

3 MÉTODO DE CUADRATURA DIFERENCIAL

Como es sabido el Método de Cuadratura diferencial, MCD, permite resolver sistemas diferenciales discretizando el dominio de interés. En este caso, la viga Timoshenko no homogénea es discretizada en una grilla de *p* puntos utilizando la expresión de Chebyshev – Gauss – Lobato (Zong and Zhang, 2009):

$$x_i = \left\{ 1 - \cos\left[(i-1)\pi/(p-1) \right] \right\} / 2 , \ i = 1, 2, ..., p;$$
(13)

donde x_i es la coordenada que ubica la posición del nodo *i*.

La derivada de orden q de los desplazamientos W y Ψ en el nodo i de la grilla, de acuerdo con las reglas del método, (Bert and Malik, 1996) se expresan:

$$\left. \frac{d^{(q)}W}{dx^{q}} \right|_{x_{i}} = \sum_{j=1}^{p} C_{ij}^{(q)} W_{j};$$
(14)

$$\left. \frac{d^{(q)}\Psi}{dx^{q}} \right|_{x_{i}} = \sum_{j=1}^{p} C_{ij}^{(q)} \Psi_{j};$$
(15)

donde W_j y Ψ_j son los desplazamientos del nodo, y $C_{ij}^{(q)}$ son los coeficientes de ponderación obtenidos a través de las funciones de interpolación de Lagrange (Karami et al. 2003):

$$\Pi(x_i) = \prod_{j=1}^{p} \prod_{j \neq 1}^{p} (x_i - x_j);$$
(16)

$$C_{ij}^{(1)} = \frac{\Pi(x_i)}{(x_i - x_j) \Pi(x_j)}, \ q = 1; C_{ij}^{(q)} = C_{ii}^{(q-1)} C_{ij}^{(1)} - \frac{C_{ij}^{(q-1)}}{x_i - x_j}, \ q > 1; \text{ con}$$

$$i, j = 1, 2, \dots, p, \text{ para } i \neq j;$$
(17)

$$C_{ii}^{(1)} = -\sum_{j=1}^{n} C_{ij}^{(1)}, \ q = 1; \ C_{ii}^{(q)} = -\sum_{j=1 \text{ with } j \neq i}^{n} C_{ij}^{(q)}, \ q > 1; i, j = 1, 2, \dots, p \text{, para } i = j.$$
(18)

Las reglas de cuadratura definidas en (14) y (15) se aplican para obtener las ecuaciones análogas de las ecuaciones gobernantes del problema que resultan:

$$-\frac{\kappa s^{2} s_{k}^{2} E_{i} A_{i}}{2(1+\nu_{i})} \left(\sum_{j=1}^{p} C_{ij}^{(1)} W_{j} - \Psi_{i}\right) - \eta^{2} \rho_{i} I_{i} \Psi_{i} - \frac{s^{2}}{L_{k}^{2}} \left(E_{i} \frac{dI_{i}}{dx} + \frac{dE_{i}}{dx} I_{i}\right) \sum_{j=1}^{p} C_{ij}^{(1)} \Psi_{j} - \frac{s^{2}}{L_{k}^{2}} E_{i} I_{i} \sum_{j=1}^{p} C_{ij}^{(2)} W_{j} = \Omega^{2} \rho_{i} I_{i} \Psi_{i};$$

$$\eta^{2} \rho_{i} A_{i} \left(R_{k} + x\right) \sum_{j=1}^{p} C_{ij}^{(1)} W_{j} - \frac{\kappa_{i} s^{2}}{2(1+\nu_{i}) L_{k}^{2}} \left(E_{i} \frac{dA_{i}}{dx} + \frac{dE_{i}}{dx} A_{i}\right) \left(\Psi_{i} + \sum_{j=1}^{p} C_{ij}^{(1)} W_{j}\right) - \frac{s^{2} N_{k} \sum_{j=1}^{p} C_{ij}^{(2)} W_{j} - \frac{\kappa_{i} s^{2} E_{i} A_{i}}{2(1+\nu_{i}) L_{k}^{2}} \left(\sum_{j=1}^{p} C_{ij}^{(2)} W_{j}\right) - \Omega^{2} s A W$$
(19)

$$-\frac{s^2 N_k}{L_k^2} \sum_{j=1}^p C_{ij}^{(2)} W_j + \frac{\kappa_i s^2 E_i A_i}{2(1+\nu_i) L_k^2} \left(\sum_{j=1}^p C_{ij}^{(1)} \Psi_j - \sum_{j=1}^p C_{ij}^{(2)} W_j \right) = \Omega^2 \rho_i A_i W_i$$

Las ecuaciones precedentes, juntamente con las condiciones de borde en los extremos de la viga y las condiciones de continuidad constituyen el sistema diferencial que permite determinar las frecuencias naturales de la viga Timoshenko con material funcionalmente graduado en la dirección axial (conocido como AFG por su sigla en inglés), Figura 1.

4 EJEMPLOS NUMÉRICOS DE VIGAS ROTANTES AFG

En la Figura 2 se muestra una viga rotante de dos tramos. El tramo de longitud L_1 es de material AFG conformado con acero (*ac*) y alúmina (*alum*) de acuerdo a una ley lineal de tal forma que el módulo de elasticidad y la densidad se obtienen de las expresiones:

$$\frac{E(x)}{E_{ac}} = 1 + \left(\frac{E_{alum}}{E_{ac}} - 1\right) \frac{x}{l}; \quad \frac{\rho(x)}{\rho_{ac}} = 1 + \left(\frac{\rho_{alum}}{\rho_{ac}} - 1\right) \frac{x}{l}; \quad 0 \le x \le l$$
(21)

para el tramo 1, $l = L_1$; las propiedades de cada material constituyente son:

$$E_{ac} = 210GPa; \ \rho_{ac} = 7800 \frac{kg}{m^3}; \ v_{ac} = 0.30;$$
$$E_{alum} = 390GPa; \ \rho_{alum} = 3960 \frac{kg}{m^3}; \ v_{alum} = 0.30.$$

donde v_{ac} y v_{alum} son los coeficientes de Poisson.

El tramo de longitud L_2 es homogéneo, con el acero como único material.

Se adoptó un material AFG cuyas propiedades varían de acuerdo a la ley indicada en la Ec. (9) con n=1, ya que de acuerdo con resultados de trabajos anteriores para la viga cantiléver, Felix et al., 2013, los coeficientes de frecuencia que se obtienen de esta forma son mayores que para vigas semejantes con material AFG según la expresión (9) con n=2 o n=3 para el tramo 1.

En la Tabla 1 se muestran los coeficientes de frecuencia fundamental correspondientes a los seis primeros modos de vibración natural. La relación de longitudes es $L_1/L_2 = 2$, y en cada tramo la sección transversal rectangular es uniforme. La relación entre las alturas de los tramos se adopta como $h_1/h_2 = 5/4$, manteniéndose constante el ancho de la sección de la viga. Se consideran distintos parámetros de esbeltez, comenzando con una viga de esbeltez exagerada (s=2500) de manera que el modelo de la viga Timoshenko represente el comportamiento de la viga Bernoulli-Euler hasta un valor de s=25. Para esta Tabla se adopta $\kappa = 5/6$.

Figura 2: Viga escalón rotante, tramo 1 de material funcionalmente graduado y tramo 2 homogéneo, $R_0 = 0$

El parámetro de velocidad de rotación asume valores entre 0 (viga en reposo) hasta $\eta = 12$. Puede observarse que los coeficientes de frecuencia disminuyen cuando la viga posee menor factor de esbeltez *s* para casos de las mismas características. Esto es de esperarse pues las vigas con *s* menores influyen más los efectos de la inercia rotatoria y del corte que tiene en cuenta la teoría de vigas de Timoshenko.

También es posible observar el efecto rigidizante de la velocidad de rotación, que al incrementarse eleva los coeficientes de frecuencia natural.

En esta Tabla no se considera el efecto del radio R_0 del eje de rotación. Se adoptó $R_0 = 0$.

η	$s = L \sqrt{A/I}$	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	$\Omega_{_6}$
0	2500	4.41967	27.7316	65.7681	139.814	223.226	332.662
	75	4.41301	27.4245	64.2787	133.342	208.809	302.240
	37.5	4.39315	26.5638	60.4110	118.631	179.121	247.609
	33.3	4.38619	26.2790	59.2177	114.571	171.505	234.872
	25	4.36073	25.3017	55.3971	102.712	150.317	201.406
4	2500	6.17007	29.6193	67.7131	141.719	225.114	334.683
	75	6.16155	29.3122	66.2310	135.284	210.754	304.355
	37.5	6.13634	28.4552	62.3962	120.704	181.273	250.052
	33.3	6.12755	28.1727	61.2173	116.695	173.734	237.429
	25	6.09563	27.2083	57.4575	105.020	152.814	204.336
8	2500	9.61357	34.6654	73.2290	147.275	230.683	340.667
	75	9.59838	34.3508	71.7569	140.931	216.478	310.605
	37.5	9.55430	33.4829	67.9852	126.695	187.562	257.223
	33.3	9.53924	33.2000	66.8368	122.816	180.227	244.910
	25	9.48573	32.2457	63.2086	111.615	160.012	212.820
12	2500	13.4397	41.7170	81.5675	156.058	239.662	350.396
	75	13.4133	41.3785	80.0858	149.823	225.671	320.722
	37.5	13.3395	40.4609	76.3431	136.025	197.538	268.686
	33.3	13.3152	40.1667	75.2179	132.311	190.480	256.812
	25	13.2318	39.1904	71.7012	121.689	171.172	226.074

Tabla 1: Coeficientes de frecuencia fundamental de la viga rotante escalón, con material AFG en el tramo 1, en función de η y s, con $\kappa = 5/6$

La altura de la sección puede variar linealmente, y se asume que para un tramo de longitud L_i sea:

$$h_i(x) = h_i(0) - [h_i(0) - h_i(L_i)]\frac{x}{L_i};$$
(22)

con $0 \le x \le L_i$. En tanto que el ancho de la viga se adopta uniforme para toda la longitud de la viga, en todos los casos analizados.

Este segundo modelo de viga Timoshenko de dos tramos tiene las siguientes características. En el tramo 1 la altura de la sección transversal varía de acuerdo a la Ec. (22) con *i*=1 y está constituido de material funcionalmente graduado (acero y alúmina) de acuerdo a la expresión (21) con $l = L_1$. El segundo tramo de viga de longitud L_2 , es homogéneo (acero) y tiene una sección rectangular constante (altura h_2). Ver Figura 3. En la Tabla 2 se presentan los coeficientes de frecuencia cuando la viga rota con velocidad $\eta = 8$. Se adopta una esbeltez $s = 100/3 \cong 33.3$ y se presentan distintas combinaciones de las características geométricas de la viga: cuatro longitudes diferentes de tramos y siete relaciones de altura entre tramos.

El factor de tensiones de corte considerado para vigas de sección rectangular se genera con la expresión:

$$\kappa = \frac{10(1+\nu)}{12+11\nu} \,. \tag{23}$$

donde v es el coeficiente de Poisson.

Figura 3: Viga rotante de dos tramos, con material AFG en el tramo 1 y material homogéneo en el tramo 2

	$\frac{h_1(0)}{h_2}$	Ω_1	Ω_2	$\Omega_{_3}$	$\Omega_{_4}$	Ω_5	Ω_6
	1.0	9.31638	32.1437	72.7080	121.767	185.422	245.348
	1.1	9.35566	31.1306	69.9059	116.460	178.538	236.712
	1.3	9.42676	29.5725	65.2507	107.613	166.470	221.556
0.50	1.4	9.45934	28.9686	63.2933	103.909	161.152	214.917
	1.6	9.51982	28.0097	59.9406	97.6182	151.687	203.218
	1.8	9.57522	27.2933	57.1772	92.4986	143.534	193.269
	2.0	9.62649	26.7465	54.8667	88.2633	136.464	184.711
	1.0	9.34603	34.6751	72.5135	129.393	192.764	256.791
	1.1	9.39563	33.6802	69.5250	124.683	185.757	248.808
	1.3	9.48646	32.0415	64.6933	116.728	173.507	234.849
0.66	1.4	9.52845	31.3614	62.7171	113.326	168.137	228.737
	1.6	9.60697	30.2138	59.4119	107.400	158.654	217.930
	1.8	9.67943	29.2880	56.7605	102.392	150.575	208.668
	2.0	9.74690	28.5299	54.5881	98.0880	143.645	200.618
	1.0	9.53844	33.2416	79.1326	139.092	207.298	279.759
	1.1	9.59475	32.5576	76.6799	134.818	201.359	272.390
	1.3	9.69736	31.4305	72.6328	127.619	191.156	259.521
0.90	1.4	9.74453	30.9596	70.9386	124.549	186.728	253.857
	1.6	9.83212	30.1554	68.0386	119.215	178.920	243.761
	1.8	9.91217	29.4924	65.6381	114.720	172.227	235.009
	2.0	9.98598	28.9351	63.6104	110.864	166.400	227.330
	1.0	9.75161	33.9774	80.1515	140.388	210.039	285.857
1.00	1.1	9.80695	33.3776	77.9581	136.570	204.773	279.396
	1.3	9.90584	32.4037	74.3763	130.225	195.887	268.346
	1.4	9.95042	32.0029	72.8925	127.555	192.099	263.579
	1.6	10.0317	31.3285	70.3778	122.973	185.527	255.231
	1.8	10.1042	30.7834	68.3238	119.175	180.010	248.147
	2.0	10.1694	30.3341	66.6117	115.969	175.302	242.046

Tabla 2: Coeficientes de frecuencia fundamental de la viga rotante con material AFG en función de $h_1(0)/h_2$ y L_1/L con s = 33.3; $R_0 = 0$; $\eta = 8$.

El coeficiente de frecuencia fundamental aumenta cuando la relación de altura, $h_1(0)/h_2$, crece, para todas las relaciones de longitud L_1/L mostradas. El mayor coeficiente se produce cuando $h_1(0)/h_2 = 2$. En tanto los coeficientes de frecuencias superiores decrecen al aumentar la relación $h_1(0)/h_2$.

Los casos presentados a continuación son similares pero se incorpora el efecto del radio del eje de rotación R_0 .

La Tabla 3 es análoga a la Tabla 2, para la obtención de los coeficientes se considera el radio del eje de rotación, con $R_0 = 0.10L$ y la Tabla 4, con $R_0 = 0.20L$.

	$\frac{h_1(0)}{h_2}$	Ω_1	Ω_{2}	$\Omega_{_3}$	$\Omega_{_4}$	Ω_5	Ω_6
	1.0	9.80260	32.9948	73.7959	122.948	186.865	246.875
	1.1	9.84252	32.0056	71.0080	117.667	179.983	238.255
	1.3	9.91496	30.4883	66.3820	108.873	167.929	223.135
0.50	1.4	9.94823	29.9017	64.4397	105.195	162.622	216.515
	1.6	10.0101	28.9719	61.1181	98.9539	153.191	204.857
	1.8	10.0670	28.2785	58.3863	93.8789	145.081	194.948
	2.0	10.1196	27.7500	56.1072	89.6838	138.061	186.428
	1.0	9.87626	34.5316	70.5107	125.914	187.031	250.318
	1.1	9.82608	35.5167	73.4853	130.628	194.048	258.310
	1.3	9.96822	32.9124	65.7055	117.957	174.777	236.349
0.66	1.4	10.0108	32.2417	63.7417	114.556	169.410	230.234
	1.6	10.0904	31.1120	60.4590	108.635	159.939	219.426
	1.8	10.1639	30.2025	57.8278	103.636	151.882	210.166
	2.0	10.2324	29.4589	55.6733	99.3451	144.975	202.121
	1.0	10.0807	33.3126	77.6173	135.916	202.593	273.749
	1.1	10.0233	33.9967	80.0751	140.205	208.556	281.149
	1.3	10.1853	32.1849	73.5626	128.694	192.352	260.828
0.90	1.4	10.2334	31.7136	71.8657	125.615	187.908	255.143
	1.6	10.3227	30.9085	68.9615	120.266	180.074	245.013
	1.8	10.4044	30.2446	66.5583	115.761	173.361	236.234
	2.0	10.4797	29.6863	64.5290	111.897	167.519	228.535
	1.0	10.2540	34.7020	81.0327	141.440	211.258	287.245
1.00	1.1	10.3104	34.1019	78.8331	137.607	205.969	280.753
	1.3	10.4111	33.1271	75.2414	131.238	197.047	269.654
	1.4	10.4566	32.7258	73.7537	128.559	193.243	264.867
	1.6	10.5394	32.0504	71.2324	123.961	186.645	256.484
	1.8	10.6134	31.5042	69.1732	120.150	181.107	249.372
	2.0	10.6799	31.0539	67.4568	116.933	176.383	243.249

Tabla 3: Coeficientes de frecuencia fundamental de la viga rotante con material AFG en función de $h_1(0)/h_2$ y

$$L_1 / L \operatorname{con} s = 33.3; \eta = 8; R_0 = 0.10L$$

	$\frac{h_1(0)}{h_2}$	Ω_1	Ω_2	$\Omega_{_3}$	Ω_4	Ω_5	$\Omega_{_6}$
	1.0	10.2651	33.8222	74.8641	124.114	188.292	248.39
	1.1	10.3056	32.8550	72.0896	118.859	181.411	239.785
	1.3	10.3793	31.3751	67.4907	110.116	169.371	224.700
0.50	1.4	10.4133	30.8042	65.5625	106.463	164.076	218.100
	1.6	10.4765	29.9005	62.2695	100.268	154.677	206.481
	1.8	10.5346	29.2277	59.5667	95.2350	146.608	196.610
	2.0	10.5886	28.7153	57.3160	91.0775	139.635	188.127
	1.0	10.4852	34.7337	81.0038	141.306	209.803	282.528
	1.1	10.5436	34.0494	78.5410	137.003	203.816	275.096
	1.3	10.6502	32.9208	74.4788	129.758	193.536	262.125
0.90	1.4	10.6993	32.4489	72.7791	126.670	189.077	256.419
	1.6	10.7904	31.6427	69.8707	121.307	181.218	246.256
	1.8	10.8737	30.9775	67.4647	116.791	174.485	237.451
	2.0	10.9505	30.4181	65.4336	112.920	168.629	229.732
	1.0	10.7322	35.4099	81.9013	142.481	212.467	288.622
	1.1	10.7897	34.8092	79.6956	138.633	207.155	282.100
1.00	1.3	10.8924	33.8333	76.0942	132.241	198.196	270.952
	1.4	10.9387	33.4315	74.6026	129.552	194.377	266.145
	1.6	11.0231	32.7548	72.0748	124.938	187.754	257.728
	1.8	11.0985	32.2075	70.0103	121.114	182.196	250.589
	2.0	11.1665	31.7561	68.2896	117.887	177.456	244.443

Tabla 4: Coeficientes de frecuencia fundamental de la viga rotante con material AFG en función de $h_1(0)/h_2$ y L_1/L con s = 33.3; $\eta = 8$; $R_0 = 0.20L$

El ejemplo siguiente consiste en un conjunto de vigas rotantes de dos tramos en las que se adoptó un material funcionalmente graduado para toda la longitud de la viga, $L = L_1 + L_2$. Figura 4. Se graficaron los coeficientes de las dos primeras frecuencias naturales para vigas rotando con velocidad $\eta = 8$. Figuras 5 y 6. Se adoptó s = 33.3 y $R_0 = 0.10L$ para calcular los coeficientes de frecuencia. La diferencia con los casos anteriores radica en que en este conjunto de vigas los dos tramos de la viga son de material funcionalmente graduado, según la ley (21) adoptando $l = L_1 + L_2$.

Figura 4: Viga rotante de dos tramos con material AFG en toda la longitud L

$\frac{L_1}{L}$	$\frac{h_1(0)}{h_2}$	Ω_1	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6
	1.0	10.2540	34.7023	81.0343	141.444	211.266	287.259
	1.1	10.2965	33.5723	77.5243	135.424	203.062	277.224
	1.3	10.3724	31.7599	71.7737	125.258	188.925	259.525
0.50	1.4	10.4069	31.0277	69.3858	120.932	182.796	251.692
	1.6	10.4702	29.8226	65.3316	113.466	172.034	237.711
	1.8	10.5277	28.8813	62.0136	107.262	162.883	225.619
	2.0	10.5804	28.1339	59.2439	102.037	154.998	215.072
0.66	1.1	10.3119	33.7333	77.7712	136.010	203.901	278.256
	1.3	10.4175	32.1223	72.4026	126.872	191.228	262.481
	1.4	10.4661	31.4451	70.1683	122.989	185.728	255.530
	1.6	10.5567	30.2850	66.3750	116.269	176.046	243.152
	1.8	10.6399	29.3275	63.2779	110.646	167.781	232.453
	2.0	10.7169	28.5244	60.7032	105.858	160.628	223.107
	1.1	10.3152	33.8387	78.0124	136.310	204.313	278.815
	1.3	10.4270	32.3986	73.0054	127.662	192.405	264.107
0.75	1.4	10.4786	31.7901	70.9045	123.983	187.261	257.654
	1.6	10.5747	30.7407	67.3077	117.614	178.238	246.186
	1.8	10.6630	29.8648	64.3371	112.287	170.565	236.279
	2.0	10.7449	29.1203	61.8399	107.757	163.943	227.609
	1.1	10.3148	34.0184	78.5461	137.112	205.288	279.920
	1.3	10.4249	32.8955	74.4451	129.836	195.087	267.220

La Tabla 5 contiene valores de frecuencia para una viga de dos tramos constituida de material AFG en su totalidad.

1.3

1.4

1.6

1.8

2.0

0.90

10.4753

10.5683

10.6527

10.7300

Tabla 5: Coeficientes de frecuencia natural de vigas rotantes con material AFG, Fig. 3, en función de $h_1(0)/h_2$ y $L_1 / L \operatorname{con} s = 33.3; \eta = 8; R_0 = 0.10L$

72.7303

69.7982

67.3746

65.3302

126.745

121.388

116.894

113.055

190.690

182.989

176.443

170.792

261.679

251.879

243.458

236.122

32.4283

31.6337

30.9824

30.4382

La Figura 5 presenta el coeficiente de frecuencia fundamental de este mismo conjunto de vigas rotantes para distintas relaciones L_1 / L en función de $h_1(0) / h_2$.

Figura 5: Variación de los coeficientes de frecuencia fundamental de vigas AFG rotantes de dos tramos con altura variable en el tramo 1, s = 33.3; $R_0 = 0.10L$; $\eta = 8$.

Figura 6: Variación de los coeficientes de la segunda frecuencia natural de vigas AFG rotantes de dos tramos con altura variable en el tramo 1, s = 33.3; $R_0 = 0.10L$; $\eta = 8$.

El siguiente ejemplo corresponde a vigas rotantes de tres tramos Figura 7.

Figura 7: Viga rotante de tres tramos, tramo 1 de material AFG, tramos 2 y 3 homogéneos

En la Tabla 6 se muestran los coeficientes de frecuencia para distintas velocidades de rotación η de vigas Timoshenko con s = 33.33 y considerando para el radio del eje de rotación $R_0 = 0.20L$. La viga rotante tiene el primer tramo de longitud $L_1 = L/3$ y altura variable de acuerdo a la Ec. (22) con $l = L_1$. La sección transversal del tramo 2 es constante, $h_2 = cte$ y la del tramo 3 varía linealmente desde el valor $h_3(0) = h_2$ hasta $h_3(L_3) = 2/3h_1(0)$. Las longitudes son con $L_2 = L_3 = L/3$. La primer parte de la Tabla corresponde a una viga donde solo el tramo 1 es de material funcionalmente graduado según la Ec. (1). Los otros tramos son homogéneos (acero).

La segunda parte de la Tabla 6 muestra el caso del mismo modelo geométrico de la viga, pero totalmente construida de material funcionalmente graduado, Ec. (21) con $l = L_1 + L_2 + L_3$. Para este último caso de la Tabla, la viga Timoshenko de material AFG, en la Figura 8 se presenta la variación de los coeficientes de frecuencia en función de la velocidad de rotación de la viga η .

η	Material Tramo 1	Material Tramo 2	Material Tramo 3	$\Omega_{_1}$	Ω_2	Ω_3	Ω_4	Ω_5	Ω_6	
0				3.65232	18.8157	50.4213	93.7855	139.941	193.846	
4				6.18603	21.9531	53.8037	97.3587	143.734	197.907	
8	AFG	homogéneo	homogéneo	10.4087	29.3870	62.7129	107.227	154.447	209.515	
12				14.8169	38.6130	74.9289	121.569	170.522	227.249	
15				18.1492	46.0246	85.2895	134.233	185.094	243.584	
0				4.60343	24.4532	62.4374	113.270	173.536	241.532	
4	AFG	AFG			6.77477	26.6295	64.6926	115.716	176.220	244.441
8			AFG	10.8343	32.2657	70.9675	122.708	183.988	252.917	
12				15.2328	39.8539	80.1892	133.397	196.107	266.299	
15				18.5835	46.2175	88.4123	143.252	207.498	279.032	

Tabla 6: Coeficientes de frecuencias naturales de vigas rotantes AFG de tres tramos, para distintas velocidades de rotación η ; s = 33.33; $R_0 = 0.20 L$

Figura 8: Primeros seis coeficientes de frecuencia natural de la viga rotante de tres tramos de material AFG en función de la velocidad de rotación η ; s = 33.33; $R_0 = 0.20$

Se observa en la figura el efecto de la velocidad de rotación, que produce el aumento de los seis coeficientes de frecuencia natural.

5 CONCLUSIONES

En los ejemplos numéricos es posible observar que la utilización del material funcionalmente graduado adoptado (acero-alúmina) permite obtener para geometrías similares de viga, coeficientes de frecuencia más altos, sobre todo para la frecuencia fundamental. Como ejemplo de esta aseveración en la Tabla 6 se muestran resultados para una viga rotante de tres tramos con distintas velocidades de rotación. En todos los casos es posible observar que la viga construida de material FG en los tres tramos posee coeficientes de vibración mayores que la viga con material FG solo en el tramo más cercano al eje de rotación. También se evidencia que a medida que la velocidad de rotación aumenta, su efecto rigidizante tiende a reducir el efecto de las características del material FG. En particular para $\eta = 15$, los coeficientes de la primera y segunda frecuencia son prácticamente similares para la viga de con un tramo FG que para la viga con tres tramos FG. Las diferencias para los coeficientes de frecuencia superiores se ven menos afectadas con la velocidad de rotación, si bien también disminuyen al aumentar η . El comportamiento de los coeficientes de frecuencia frente al aumento del tamaño del radio del eje de rotación es similar al que se presenta en vigas homogéneas.

Otra conclusión es que la herramienta de cálculo elegida, el método de cuadratura diferencial, constituyó una herramienta versátil y eficaz en la solución de este tipo de problemas.

AGRADECIMIENTOS

Los autores agradecen el apoyo de la Universidad Nacional del Sur y del Consejo Nacional de Investigaciones Científicas y Técnicas para la realización de este estudio.

REFERENCIAS

- Bambill, D.V., Felix, D.H. and Rossi, R.E., Vibration analysis of rotating Timoshenko beams by means of the differential quadrature method. *Journal of Structural Engineering and Mechanics*, v.34 (2), p. 231-245, 2010.
- Bambill D.V, Rossit C.A., Rossi R.E... Felix D.H. and Ratazzi A.R., Transverse free vibration of non uniform rotating Timoshenko beams with elastically clamped boundary conditions. *Meccanica*, v. 48 p. 1289 1311, 2013.
- Bert C. and Malik M., Differential quadrature method in computational mechanics: A review. *Applied Mechanics Review*, 49:1–28, 1996.
- Felix D.H., Bambill D.V., Rossit C.A., Reta J., Vibration analysis of axially functionally graded rotating Timoshenko beams with general variation of cross section, with DQM and FEM", *Mecánica Computacional* Vol. XXXII, 2131-2152, 2013.
- Karami G., Malekzadeh P., and Shahpari S., A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions. *Engineering Structures*, 25:1169–1178, 2003.
- Niino M., Hirai T and. Watanabe R., The functionally gradient materials. *J Jap Soc Compos Mat*, vol.13, p. 257-264. 1987.
- Rajasekaran S., Free vibration of centrifugally stiffened axially functionally graded tapered
- Timoshenko beams using differential transformation and quadrature methods. *Applied Mathematical Modelling*, 00:1–24, 2012.
- Wang S.S., Fracture mechanics for delamination problems in composite materials. *Journal of Composite Materials*, vol. 17(3), p. 210-223, 1983.
- Zong Z. and Zhang Y.Y., *Advanced differential quadrature methods*. CRC Press, New York, USA. 2009.