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Abstract. Viscoelastic problems deserve great interestamg@utational Mechanics literature. In the
last years different approaches have been progosadler to model viscoelastic problems, as in the
case of the generalized Maxwell model and its nizakimplementation.

In particular Kaliske and Rothert (M. Kaliske andRbthert, Comput. Mech., 19(3): 228-239 (1997))
discussed basic reological models and the fornuratf a generalized Maxwell model and the
corresponding implementation of three dimensiomsdoelastic model both for small and large strain
cases.

The numerical implementation addressed by Kalisiek Rothert is quite simple for small strain case
and can be extended to a large strain format aneimalbe included in finite element codes SOGDE
and Metafor.

The implementation of the discussed model in a Hpstitutive model, written in Matlab, is
addressed. The well known relaxation and crees t&@st simulated and compared with analytical
results. Furthermore, the influence of constitutiparameters on the viscoelastic response is
discussed. In addition, the model is implementeBiinte Element codes and the obtained results are
compared with the 1D ones.
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1 INTRODUCTION

Materials with both elastic and viscous behaviaes asually called "viscoelastics". An
essential feature of them is the time-dependemporese. These materials have received great
scientific and technological interest due to theedsity of its applications and consequently
different approaches have been proposed to modebefastic response, see Fancello et. al
(2006,2008) and Bonet (2001) for instance. Somencomapplications of these materials are
human cervical spine (Shim et. al, 2005), bovingical bone (Bekker et. al, 2014), vibration
absorbers (Saidi, 2011), tires (Lee, 2011), amadhgrse.

There several differential constitutive models ¢9&n, 2005; Drozdov, 1996) able to
represent the response of viscoelastic materiais.S0ch model is the Kelvin-Voigt, currently
implemented in Metafor code (Ponthot, 1995, 200®)more general is the so called
generalized Maxwell or Wiechert model. A feature tbé latter is to consider that the
relaxation occurs at a distribution of times.

Applications related to biomechanics, for instanteke it necessary to implement this
constitutive model numerically in large strain fenielement codes such as SOGDE (Garcia
Garino, 1993; Careglio et. al, 2005; Garcia Gaehal, 2006) and Metafor.

In this work we performed the numerical implementatiddressed by Kaliske and Rothert
(1997) of the generalized Maxwell model. In partgecuthis model is implemented in a one-
dimensional code as well as a finite element one.

Several numerical experiments are performed. Itiquéar, relaxation and creep problems
are studied and the results are compared with @celpnes. Then, the case of constant strain
rate is studied with the different numerical imptartations that have been made in this work.

In addition, sensitivity to constitutive parameteifsthe generalized Maxwell model and
numerical implementation from Kaliske and Roth&A97) are presented.

A summary of the viscoelastic and numerical moaets briefly presented in section 2 of
this paper. The results of numerical simulatiores trown in section 3. Finally, in section 4
the conclusions of the work are provided.

2 VISCOELASTIC AND NUMERICAL MODELS

In this section, the viscoelastic model used amdrihmerical model is briefly described,
and can be found in greater detail in the work afiske and Rothert (1997).

The viscoelastic model corresponds to a generalizaxivell one, as shown in Figure 1,
wherey is the elastic material constant of the so caledke-element ang; are the elastic
material constant of the Maxwell-element with jAlL.For these elements the coefficient of
viscosity isn;. This coefficient can be expressed in terms ofd¢exation timer; asn; = T; 1.
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Figure 1: Generalized Maxwell model.

In the numerical model for linear viscoelasticitydeone-dimensional case the current state
of stress is computed by:

N
0.n+1 — /Jo £n+1 +zh;1+1 (l)
j=1

wheree™ is the current strain and'H are the internal stress variables given by:

l—exp{—AtJ
n+ At | . g n+ n
h* = ex;{—7jhj +y, —'[JO ! —JO] (2)

At
i =

I

Equations (1-2) have been implemented in a onertBioral code for one Gauss point.
The extension to the three-dimensional case is:

N
g™ =gyt + 3 3)
j=1
with:
Q_gﬂ. = Ce §n+l (4)

l—exp{—AtJ
At T,
h'.1+1 = - h+vy S N A

I

lor -7 (5)

where C° is the constitutive elastic tensor age/lo is the normalized elastic material
constant. The constitutive viscoelastic ter€3f" is given by:
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2™ 1- exr{-ftj (6)
N )
Qv,nﬂ — ao-nﬂ - 1+ z J/J At ] ge,n+1
= § = At =
Ti

Equations (3-6) have been implemented in a filgenent code.
Alternatively, the three-dimensional case, in ortierbe initially considered for large
strains, it can be conveniently expressed as:

N
Q_n+1 — K|£+1 1—+ de\ggﬂ + Zb?+1 (7)
j=1
1—exp{—m]
n+ At n I n+ n
bj = EX[{_7JDI' Y Tj[de\go ' —dew, (8)
i —
1y
1-ex _At
C'™ =k(101)+ 1+iy. ey 1-1aoy) (9)
= =2 =i At 3T
I

wherek is the bulk modulus andev denote the deviatoric part of the tensors. Findhge
equations (7) to (9) have been preliminarily impéerned in Metafor.
3 NUMERICAL SIMULATIONS

In this section several problems are consideredriter to evaluate the response of the
numerical model described above and the differaptementations.
3.1 Benchmarks

Several benchmarks are performed in this sectiba.résults are compared with analytical
ones. Both relaxation and creep tests are considereich are usually used to assess the
time-dependent behavior of viscoelastic materials.

3.1.1 Relaxation test with one branch of Maxwell

The first benchmark is the simulation of the reteoatest. The model consists of one
Hooke-element and one Maxwell-element. The modehiswn in Figure 2. The strain is
applied instantaneously and remained constanttower
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Figure 2: Generalized Maxwell model with one branch

For this case the analytic solution it can be esged as:

olt) = [ﬂo + pe }9

1183

(10)

The material properties are shown in Tabl@He applied strain is=2 while the interval

time is 0% t<1s withAt=0.1s.

Ho=10 N/mnf

H:=10 N/mnf

nN:=10 MPa s
T1=1s

Table 1: Material properties.

The stress history is shown in Figure 3. For nuca¢mesults the equations (1-2) are used,
while for the analytical ones the equation (10¢nsployed.. It can be seen that for relaxation
test numerical results are able to reproduce tiawer of the analytical ones with a good

agreement.
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Figure 3: Stress history for relaxation test.
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3.1.2 Relaxation test with one branch of Maxwell and diférent relaxation times

The second benchmarks correspond to the relaxtsdrand the same configuration model
of the Figure 2. In this case four different reléxa times are considered. The properties of
the material are shown in Table 2. In this casesthmulations are carried out wigs0.01, in
the interval Os t<20s for At=0.01s. For this case the relaxation times ®rel,5,10,20
seconds.

Ho=4 N/mnf
H=10 N/mnf
N:=10 MPa s1(;=1s)
N1=50 MPa s1;=5s)
N:=100 MPa s1;=10s)
N:=200 MPa s1;=205s)

Table 2: Material properties.

The analytical results are computed from equatid) éand compared with the numerical
ones. The evolution of the stress in time is ptbiteFigure 4. In all cases, the agreement of
the obtained results is excellent.

It can be seen from the curve correspondingitds that the numerical model is able to
reproduce the characteristic asymptotic behavidhefstress for some cases of the relaxation
test.
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Figure 4: Stress history for relaxation test.
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From a point of view of the sensitivity to constiie¢ parameters it can be said that when
relaxation timet; decreases due to viscosify decreases, the stress is lower for the same
time. Further, according as decreases the stress behavior tends to be asyenptot

The influence of relaxation timg on stress for the maximum time reached&20s) is
plotted in Figure 5. Consistent with results of g 4 whent; increases greater values of
stress are obtained.
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Figure 5: Sensitivity to relaxation time of the gealized Maxwell model with one branch.

3.1.3 Creep test with one branch of Maxwell

The third benchmark is the simulation of the creepblem for one Hooke-element and
one Maxwell-element. The stress is applied instedasly and remained constant over time.
For this case, the analytical solution is given by:

M 11
E(t) — (43 1- H efl[#oﬂaj (11)
H, Ho+ 1y

The material properties are the same as those bleTa. The applied stress is
06=100N/mnf in the time Os t<10s withAt=0.1s.

It should be clarified that the implemented codestimin-driven type. Taking this into
account, from equation (11) and previous data ssite to obtain the strain history that is
shown in Figure 6.
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Figure 6: Strain history for creep test.

It can be seen in Figure 7 that the numerical tesobtained from the strain-history
recovery the corresponding stress-history. Alsaaim be observed that a good agreement

between numerical and analytical values is reached.
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Figure 7: Stress history for creep test.
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3.2 Constant strain-rate test

From the good results obtained previously for tweib tests in viscoelasticity it is possible
to study other cases. In this subsection the viastie problem for the particular case of
constant strain-rate is addressed. This is anaflassic test for determining the mechanical
behavior of time-dependent materials.

First, the simulations are carried out with the lenpentation for one point of Gauss where
the sensitivity to constitutive parameters is stddiNext, the viscoelastic problem is studied
with the finite element implementations.

3.2.1 Constant strain-rate test with different number of Maxwell-elements

The influence of number of branches in the genszdliMaxwell model is studied in this
case.The numerical simulations are performed with onekéselement and different number
of Maxwell-elements, while the parametggs |y andt; are kept fixed. Thug; andn; are the
same in each branch of Maxwell.

The material properties are shown in Table 3. Trarschanges linearly and has a value of
0< €<0.5 withAe=0.05. The time interval considered s &1 with At=0.1.

Hg=10 N/mnf
K;=10 N/mnf
n;=10 MPa s{j=1s)

Table 3: Material properties.

The evolution of stress with strain for differentmmber of Maxwell-elements is shown in
Figure 8. As can be seen the stress response Imemmnalthough the strain has a linear
variation with time.

Furthermore, when the number of Maxwell-elementsaases greater values of stress are
obtained. This is highlighted in Figure 9, in whitte influence of numbers of Maxwell-
elements on the maximum stresg.x reached it can be observed. The increase of Maxwel
elements leads to greater valuesgfx
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Figure 8: Stress versus strain for constant stati®- Different number of Maxwell-elements.
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Figure 9: Sensitivity 06, to the number of Maxwell-elements.
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3.2.2 Constant strain-rate test with different relaxation times

In this case the influence of different relaxationes on the generalized Maxwell model is
studied with a fixed number of branches. The nucaésimulations are carried out with ten
Maxwell-elements and the same relaxation time chdaranch. The material properties are
shown in Table 4 with j=1..10. The applied stramd ¢he time are the same as in 3.2.1.

Hg=10 N/mnf
;=10 N/mnf
ni=1 MPa s (;=0.1s)
n;=5 MPa s (;=0.5s)
n;=10 MPa s1=1s)
n;=50 MPa s1j=5s)
n;=100 MPa s1=10s)
n;=200 MPa s1=20s)
n;=200000 MPa st(=20000s)

Table 4: Material properties.

The stress-strain curves are shown in Figure I€aritbe seen that whenincreases (due
to the viscosityn; increases) greater values of stress are obtalinsldould be noted that for
values oft; higher to unity the responses are similar foredéht relaxation times and the
values of stress are close to each other. Mored\stould be noted that fay equal to 20000
the stress strain relation is closed to the lirgastic limit case fon; approaching to infinity.
The linear elastic limit case corresponds to elelastic parallel springs. Since all the springs
have equal elastic constant, the elastic equivaiemstant is 110 N/mfrfor the linear elastic
limit case.
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Figure 10: Stress versus strain for constant steti Different relaxation times.
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Sensitivity of omax to the different relaxation times is plotted inglie 11. It can be

observed for values af equal or less than unity;(=0.1,0.5,1) thabmax is very sensitive to
the change of relaxation time. Otherwise, for valoét; higher than unity=5,10,20) the

influence of this parameter @« is small.
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Figure 11: Sensitivity o6, to the different relaxation times.

3.2.3Finite element simulations with one branch of Maxwi
Finally, the results from 3.2.1 are taken as refegs to validate the implementations and
simulations carried out with 2D finite element cadel Metafor. Here, the same properties as
in 3.2.1 are considered together with a Poissatls equal to 0.4995. The geometry and
boundary conditions used in finite element codes sdlrown in Figure 12, where P is the
applied load and is equal to 10N. In the simulai@anplane strain problem with Q1 finite

element type is considered.

Figure 12: Geometry and boundary conditions.
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The results obtained with the three numerical cadesplotted in Figure 13. The results
from one point of Gauss/2D finite (linear) elememtplementations appear stiffer than
Metafor. From a point of view of the global respeiitscan be said that the three codes lead to
similar results. It can be seen from Figure 13 thatdifference reached for the stres=s0(05)
is approximately equal to 12%.

It can be noted that the implementations in théefielement codes are only preliminary.
Further studies are needed to validate these ingritations.

]
' 1 " One point of Gauss code
2D finte element code
Metafor code
08 | -
=
L
06 | e _
w e i
o
=
T &+
0.4 ”._‘," .f_____.-" i
A+
02 F ” 4
P
0 r-""‘.-- 1 | | |
0 0.01 0.02 0.03 0.04 0.05

£

Figure 13: Stress versus strain.

4 CONCLUSIONS

In this work one point of Gauss code based on timenical implementation addressed by
Kaliske and Rothert (1997), able to reproduce #sponse of viscoelastic materials that can
be modeled by a generalized Maxwell model have mreloped. This code has been
validated against classical tests used in viscbeitgssuch as relaxation and creep, yielding
very good results relative to analytical ones.

In addition, the generalized Maxwell model in twmite element codes has been
implemented, with good results. Nevertheless, @rrtlvork should focus on more detailed
comparisons for the large strains finite elemeiesomplementations.

Furthermore, the influence of constitutive paramsetelated to the viscoelastic behavior
has been studied. For the case of constant satenfor different numbers of Maxwell-
elements the increase of maximum stress occursigitgdHowever, for the case of constant
strain-rate with different relaxation times andieedl number of branches the increase of
maximum stress is not gradual, particularly foruesl of relaxation times equal or less than
unity.
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