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Abstract. Conditions for discontinuous bifurcation in limit states of thermodynamically consistent
microplane theory for cohesive-frictional materials like concrete are evaluated by means of analytical
methods. Explicit solutions for brittle failure conditions in the form of discontinuous bifurcation are
proposed. Numerical analysis are comparatively assessed for different limit stress states regarding both
microplane and macroscopic response. Macroscopic critical values are computed by analytical and geo-
metrical methods. The results in this work illustrate the capabilities of the thermodynamically consistent
microplane theory to reproduce localized failure modes in uniaxial tension, uniaxial compression and
simple shear regimes of cohesive-frictional materials like concrete.
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1 INTRODUCTION

The termlocalizationrefers to the formation of restricted failure zones with high concentra-
tion of deformations while the rest of the structure might even exhibit unloading. The failure
process begins with the formation of micro-cracks and micro-voids whose accumulation with
progressive load results in zones of strongly localized distortions. Quasi-brittle materials like
concretes and soils exhibit spatial discontinuities of the kinematic fields when they are suffi-
ciently deformed into the inelastic regime conducing to highly anisotropic material response
(Kuhl et al.(2000)).

It becomes necessary to distinguish failure mechanisms that characterize tension, compres-
sion and shear regimes. Failure mechanism in tensile regime is fully controlled by the frac-
ture energy release process in one single crack while the material outside the crack remains
practically undamaged and subjected to elastic unloading, see a.o.Planas and Elices(1986,
1989); Guo and Zhang(1987); Phillips and Binsheng(1993); Etse and Willam(1994). While
in compressive regime the failure mechanism is characterized by both the appearance of several
micro-cracks in the normal direction to the local maximum principal stress and the evolution of
damage processes in zones located in between cracks or micro-cracks, see a.o.Hurlbut (1985);
van Geel(1998); Sfer et al.(2002); Lu (2005); van Mier(1984).

Localized failure mechanisms on quasi-brittle materials, depending on governing stresses as
well as mechanical and chemical features, have been experimentally observed by a. o.Var-
doulakis(1980); Petersson(1981); Oda and Kazama(1988); Ehlers and Volk(1997); van Mier
(1997).

From the analytical point of view, regarding smeared-crack theories for constitutive mod-
elling of engineering materials, it is possible the mathematical evaluation of brittle or localized
failure modes described by means of discontinuous bifurcations or jumps in the velocity gradi-
ents. After the original works byHadamard(1903); Nadai(1950); Thomas(1961); Hill (1962);
Rudnicki and Rice(1975), many authors have studied the problem in a systematic manner de-
veloping mathematical conditions and indicators that signalize the initiation of localized failure
modes in the form of discontinuous bifurcation, see a.o.Sobh(1987); Períc (1990); Willam
and Etse(1990); Ottosen and Runesson(1991); Rizzi and Willam(1995); Pijaudier-Cabot and
Benallal(1993); Jirásek and Rolshoven(2009); Vrech and Etse(2006).

The present work is focused on the comparison of the localized failure characteristics of the
well-known macroscopic Drucker-Prager plasticity formulation with the microplane-based one
with the aim to demonstrate the capabilities of the microplane theory to reproduce localized
failure modes.

In first place, constitutive equations of the thermodynamically consistent macroscopic plas-
ticity model are summarized. After a brief description of the analytical discontinuous bifur-
cation conditions, the geometrical interpretation is deduced. Later, thermodynamically consis-
tent microplane-based plasticity model is developed and localized failure properties in terms
of discontinuous bifurcation are analyzed. Critical directions in macro and micro-plasticity
frameworks of limit stress states corresponding to tension, compression and shear regimes are
compared.

2 THERMODYNAMICALLY CONSISTENT MACROSCOPIC ELASTO-PLATICITY

Starting from the additive decomposition of the strain tensorε = ∇symu into the elastic and
plastic components

ε = εe + εp (1)
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and the definition of a macroscopic free energy potentialΨmac in terms of the elastic strain
tensor and the internal variableκ in case of isotropic plasticity

Ψmac(εe, κ) =
1

2
εe : Ee : εe +

∫ κ

0

φ(κ)dκ (2)

beingEe the fourth order elastic tensor, from the Clausius-Duhem inequality the expressions
for the stress tensorσ and yield stressφmac result

σ =
∂Ψmac

∂εe
⇒ σ̇ = Ee : [ε̇− ε̇p]

φmac =
∂Ψmac

∂κ
⇒ φ̇mac = H̄κ̇

(3)

beingH̄ the hardening/softening modulus.
A convex yield functionΦmac(σ, φmac) ≤ 0 and a plastic potentialΦ∗mac(σ, φmac) ≤ 0 that

differs is the non-associated case are defined, being its normal vectors

ν =
∂Φmac

∂σ
and µ =

∂Φ∗mac

∂σ
(4)

respectively. The evolution of the loading surfaces is governed by the plastic strain tensor rate

ε̇p = λ̇µ (5)

and satisfies the Kuhn-Tucker conditions

Φmac ≤ 0 , λ̇ ≥ 0 , Φmacλ̇ = 0 (6)

as well as the consistency conditionΦ̇macλ̇ = 0, from which it is possible to deduce the plas-
tic parameter ratėλ to obtain the analytical expression for the elasto-plastic tangent material
operator

Eep =
∂σ

∂ε
= Ee − 1

h
Ee : µ⊗ ν : Ee , h = ν : Ee : µ + H̄ (7)

3 ANALYTICAL SOLUTION FOR LOCALIZED FAILURE

In the realm of the smeared crack approach, localized failure modes are related to discon-
tinuous bifurcations of the equilibrium path, and lead to lost of ellipticity of the equations that
govern the static equilibrium problem. The inhomogeneous or localized deformation field ex-
hibits a plane of discontinuity that can be identified by means of the eigenvalue problem of
the acoustic or localization tensor, see a.o.Ottosen and Runesson(1991) andWillam and Etse
(1990). Analytical solutions for the discontinuous bifurcation condition based on original works
by Hadamard(1903); Thomas(1961); Hill (1962) are described in this section.

Firstly, the jump of the gradient displacement rate is expressed according Maxwell’s com-
patibility condition

[|∇u̇|] = ξm⊗ n −→ [|ε̇|] = ξ[m⊗ n]sym (8)

beingξ de jump amplitude,m the unit jump vector andn the unit normal vector to the failure
surface.
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Moreover, the equilibrium condition of the traction vectors across the discontinuity surface
t = n · σ states

[|ṫ|] := ṫ
+ − ṫ

−
= 0 −→ [|ṫ|] = n · [|σ̇|] = n · [|Eep : ε̇|] = 0 (9)

Substituting Eq. (8-b) in (9-b) the localization condition is obtained and expressed as

ξQep ·m = 0 , Qep := n ·Eep · n (10)

beingQep the elasto-plastic localization or acoustic tensor. The necessary condition for the
onset of localization indicating the loss of ellipticity is characterized by the singularity condition
of the acoustic tensor

det(Qep) = 0 (11)

It leads to the analysis of the spectral properties of the tensor defined as

Qep = Qe − 1

h
a∗ ⊗ a , Qe := n ·Ee · n (12)

beingQe the elastic localization tensor. The smallest eigenvalue ofQep with respect to the
metric defined by[Qe]−1 is

λ(1) = 1− a(n) · [Qe(n)]−1 · a∗(n)

h
= 0 (13)

with the vectorsa anda∗ defined as

a = ν : Ee · n , a∗ = n ·Ee : µ (14)

By replacing Eq. (7-b) in (13), the necessary condition for localization and the corresponding
critical hardening/softening modulus̄Hc is obtained

H̄c + ν : Ee : µ− a · [Qep]−1 · a∗ = 0 (15)

3.1 GEOMETRICAL INTERPRETATION

The approach follows the original proposal byBenallal(1992), which was further developed
by a.o. Pijaudier-Cabot and Benallal(1993), Benallal and Comi(1996), Liebe and Willam
(2001) for classical plasticity.

The localization condition in Eq. (15) defines an ellipse

(σ − σ0)
2

A2
− τ 2

B2
= 1 (16)

in theσ − τ Mohr’s coordinates

σ = n · σ · n , s = n · S · n (17)

τ 2 = (n · S) · (n · S)− (n · S · n)2 (18)

beingS the deviatoric stress tensor andn the normal to the plane where the Mohr components
are evaluated. The localization ellipse and Mohr’s circle parameters are shown in Fig.1.
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Figure 1:Mohr’s circle and localization ellipse.

The tangency between the largest Mohr’s circle of stresses and the geometric representa-
tion of Eq. (15) determines the geometrical localization condition. The maximum harden-
ing/softening parameter̄Hc and the critical directions for localizationθc, are obtained when the
Mohr’s circle of stresses

(σ − σc)
2 + τ 2 = R2 (19)

contacts the elliptical localization envelope. The center and radius are computed as

σc =
σ1 + σ3

2
and R =

σ1 − σ3

2
(20)

with σ1 andσ3 the major and minor principal stresses, respectively.
According toLiebe(1998) three different failure modes may be distinguished depending on

the contact points location: mode I, mode II and mixed mode.
The critical failure directions for localizationθc, obtained from the tangential contact be-

tween the elliptical localization envelope of Eq. (16) and the major Mohr’s circle of Eq. (19),
are deduced from

tan2(θc) =
R− (σc − σ0)/(d

2 − 1)

R + (σc − σ0)/(d2 − 1)
; d2 =

A2

B2
(21)

4 DRUCKER-PRAGER PLASTICITY

The expressions of the second order Drucker-Prager yield criterium (seeDrucker and Prager
(1952)) and the adopted plastic potential have the form

Φmac = J2 + αmac
F I1 − φmac = 0

Φ∗mac = J2 + αmac
Q I1 − φmac = 0

(22)

beingI1 the first invariant of the stress tensorσ andJ2 the second invariant of the deviator
stress tensorS. The parametersαmac

F andφmac represent the friction angle and yield stress,
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respectively. Expressed in terms of the uniaxial compressive and tensile strengthfc andft, they
result

αmac
F =

fc − ft

3
, φmac =

fcft

3
(23)

whereasαmac
Q = ηαmac

F corresponds to the dilatancy angle, beingη the non-associated coeffi-
cient.

Normal vectors to the yield and plastic potential surfaces are expressed as

ν = S + αmac
F I

µ = S + αmac
Q I

(24)

4.1 LOCALIZATION ANALISYS OF DRUCKER-PRAGER PLASTICITY

0 1

Localization ellipse 
Mohr’s circle τ /f t

=0ºcθ2

σ/f t

Figure 2:Localization ellipse for uniaxial tension test.

Localization properties of the thermodynamically consistent Drucker-Prager plasticity for
the plane strain state whenσz = ν(σx + σy) where published by the authors, seeVrech and
Etse(2006). Critical localization directions as well as critical hardening/softening parameter
for different strength ratiosfc/ft and Poisson’s modulus were computed by both analytical and
geometrical methods for different limit stress states.

In this section, considering the following material properties:
Elastic modulus - E= 19305.3 MPa
Poisson’s ratio -ν= 0.2
Compressive strength -fc= 22.0 MPa
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Tensile strength -ft= 2.75 MPa
Non-associated coefficient -η= 0

localization ellipses and Mohr’s circles corresponding to the limit stress states of uniaxial ten-
sion, uniaxial compression and simple shear tests are shown in Figs.2 to 6. Obtained critical
directions given by curves tangency are computed as:

θc= 0◦ and 180◦ for uniaxial tension;
θc= 31.5◦ and 148.5◦ for uniaxial compression; and
θc= 15.75◦ and 164.25◦ for simple shear test.

−8 0

τ/ft

σ/f t

Localization ellipse 
Mohr’s circle

=63ºcθ2

Figure 3:Localization ellipse for uniaxial compression test.

5 MICROPLANE-BASED ELASTO PLASTICITY

This formulation is based on the thermodynamically consistent approach for the derivation
of macroscopic stresses and equilibrium equations given byCarol et al.(2001) andKuhl et al.
(2001) for the case of isotropic plasticity.

Assuming kinematic constraints, scalar volumetric strain and tangential strain vector at mi-
croplane level (εV andεT , respectively) are computed by means the following relationships

εV = V : ε , εT = T : ε (25)

beingε the macroscopic strain tensor projected on a microplane of normal directionn, see Fig.
5. The projection tensors are defined as

V =
1

3
I , T = n · Isym − n⊗ n⊗ n (26)
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τ /f t

=31.5º

σ/f t

cθ2

Localization ellipse
Mohr’s circle

Figure 4:Localization ellipse for simple shear test.

Figure 5:Strain components at the microplane level.

The strain vector at microplane level results

tε = εV n + εT (27)

Assuming the macro free-energy potential as the integral of the micro free-energy on a spher-
ical region of unit volumeΩ, the following micro-macro free-energy relationship is proposed

ψmac =
3

4π

∫

Ω

ψmicdΩ (28)

beingψmic=ψmic(εV , εT , κ) the free-energy potential at microplane level, expressed in terms of
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the strain components and the scalar internal variable. Assuming small strains and regarding
the additive decomposition of the macroscopic strain tensor of Eq. (1), the microscopic strain
components are expressed as

εV = εe
V + εp

V , εT = εe
T + εp

T (29)

Constitutive micro-stresses are computed as

σV : =
∂ψmic

∂εV

→ σ̇V = Ee
V [ε̇V − ε̇p

V ]

σT :=
∂ψmic

∂εT

→ σ̇T = Ee
T [ε̇T − ε̇p

T ]

(30)

while the dissipative stresses can be computed at microplane level as

φmic =
∂ψmic

∂κ
→ φ̇mic = H̄κ̇ (31)

As in case of macroscopic plasticity, both yield and plastic potential surfaces are set as

Φmic(σV ,σT , φmic) ≤ 0 with νV =
∂Φmic

∂σV

and νT =
∂Φmic

∂σT

Φ∗mic(σV ,σT , φmic) ≤ 0 with µV =
∂Φ∗mic

∂σV

and µT =
∂Φ∗mic

∂σT

(32)

and the evolution of the plastic strain components yields

ε̇p
V = λ̇µV , ε̇p

T = λ̇µT , κ̇ = λ̇ (33)

regarding the Kuhn-Tucker conditions of Eq. (6) and the consistency condition.
The homogenization of the microplanes energy of Eq. (28) leads to the definition of the

macroscopic stress tensor

σ =
∂ψmac

∂ε
=

3

4π

∫

Ω

V σV + T T · σT dΩ (34)

The analytical evaluation of this integral can be solved by numerical integration techniques
proposed byBažant and Oh(1986) .

The macroscopic tangent operator can be analogously obtained as

Eep =
dσ

dε
=

3

4π

∫

Ω

[
V ⊗ dσ

dεV

+ T T · dσ

dεT

]
dΩ (35)

resulting

Eep = Ee − 3

4π

∫

Ω

1

h

[
Ee

V V µV + Ee
T T T · µT

]⊗ [
νV V Ee

V + νT · T T Ee
T

]
dΩ (36)

with the elastic macroscopic tangent operator computed as

Ee =
3

4π

∫

Ω

Ee
V V ⊗ V + Ee

T T T · T dΩ (37)

Mecánica Computacional Vol XXXIII, págs. 1407-1419 (2014) 1415

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



5.1 MICROPLANE-BASED DRUCKER-PRAGER PLASTICITY

The relationship between microplane-based parameters and macroscopic ones for isotropic
elasticity has been established byKuhl et al.(2000) as

Ee
V = 3K and Ee

V =
10

3
G (38)

beingK andG the compressive and shear modules, respectively. Whereas the first invariant of
the macroscopic strain tensor can be expressed as

I1 = ε : I =
3

4π

∫

Ω

εV dΩ (39)

and the second invariant of macroscopic strain deviator as

J2 =
1

2
εdev : εdev =

3

4π

∫

Ω

3

10
εT · εT dΩ (40)

In the elastic regime, the same relationships hold for macroscopic stress invariants

I1 ≈ 3

4π

∫

Ω

σV dΩ and J2 ≈ 3

4π

∫

Ω

3

10
σT · σT dΩ (41)

The microplane-based friction coefficient and yield stress must be related to their macro-
scopic counterparts. With this aim the parabolic Drucker-Prager yield function of Eq. (22-a) is
rewritten as

Φmac ≈ 3

4π

∫

Ω

[
3

10
σT · σT +

fc − ft

3
σV − 1

3

fcft

3

]
dΩ (42)

whereas the microplane-based yield function as

Φmic =
1

2
σT · σT + αmic

F σV − φmic = 0 (43)

From the comparison between last equations arises

αmic ≈ 5

3

ft − fc

3
and φmic ≈ 5

9

fcft

3
(44)

5.2 MICROPLANE-BASED LOCALIZATION ANALISYS OF DRUCKER-PRAGER
PLASTICITY

The macroscopic localization condition of Eq. (11), can be rewritten for the case of microplane-
based plasticity as

det(Qep) = 0 with Qep = Qe − 3

4π

∫

Ω

a∗ ⊗ a

h
dΩ (45)

with the traction vectors computed as

a = [νV V Ee
V + νT · TEe

T ] · n
a∗ = n · [Ee

V V µV + Ee
T T · µT ]

(46)

and
h = H̄ + νV Ee

V µV + νT Ee
T · µT (47)
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Normal vectors to the micro-yield surface and plastic potential are computed as

νV =
∂Φmic

∂σV

= αmic and νT =
∂Φmic

∂σT

= σT

µV =
∂Φ∗mic

∂σV

= α∗mic and µT =
∂Φ∗mic

∂σT

= σT

(48)

Due to the complex structure of the acoustic tensor for microplane-based plasticity in Eq.
(45), analytical assessment becomes impossible. Numerical solutions are applied to compare
localization results with those corresponding to macroscopic analysis in Section4.1.

The results in Fig.6 show normalized values ofdet(Qep)/det(Qe) for microplane-based
Drucker-Prager plasticity. Critical directions for limit stress states of uniaxial tension, uniaxial
compression and simple shear test are evaluated. The obtained results:

θc= 0◦ and 180◦ for uniaxial tension and simple shear tests; and
θc= 31.5◦ and 148.5◦ for uniaxial compression test

demonstrate comparable response behavior and localized failure modes for the three cases.
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Figure 6:Bifurcation analysis for microplane-based Drucker-Prager platicity.

6 CONCLUSIONS

In this work, numerical conditions for discontinuous bifurcation in limit states of thermo-
dynamically consistent microplane theory for cohesive-frictional materials like concrete were
evaluated.
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The microplane based-elastoplastic localization condition was expressed in terms of the sin-
gularity of the acoustic tensor, obtained through integration of non-linear material processes on
each microplane over all posible orientations.

Then, for limit stress sates in simple traction, compression and shear regimes, critical local-
ization directions were evaluated

The results in this work illustrate the capabilities of the thermodynamically consistent mi-
croplane plasticity to reproduce localized failure modes an critical directions comparable with
those of macroscopic formulations.
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