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Abstract. Nanosensors are simple engineering devices designed to detect and convey informations
about nanoparticles and biomolecules. The nanosized mass sensors are based on the fact that the resonant
frequency is sensitive to the resonator and the attached mass. The change of the attached mass on the
resonator causes the resonant frequency to deviate from its original value. The key challenge in mass
detection is in quantifying the changes in the resonant frequencies due to the added masses. The present
note deals with the variational problem of the nanotube bounded at the ends, with translational and
elastic constraints, and attached mass, located in a generic position. Closed-form non local frequency
expression is derived; the resonant frequencies and corresponding shift frequencies are calculated and
numerical results for different boundary conditions are illustrated.
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1 INTRODUCTION

Carbon nanotubes (CNTs) constitute a prominent example of nanomaterials and nanostruc-
tures and their discovery by Iijima (1991), has stimulated several studies in nanotechnology
applications and nano-scale engineering materials. The extraordinary mechanical and physical
properties in addition to the large aspect ratio and low density have made carbon nanotubes
(CNTs) ideal components of nanodevices. As a result, progressive research activities regarding
CNTs have been ongoing in recent years and there is a wide range of applications, as nanooscil-
lators, nanoelectronics, nanocomposites and nanosensors, in which the vibrational character-
istics of CNTs are significant. Moreover, such features make CNTs promising candidates for
resolution mass sensor and several studies have investigated the use of CNTs as a mass sensor
(Jensen et al., 2008). For example Wu et al. (2006) investigated the resonant frequency and
mode shapes of a single-walled carbon nanotube (SWCNT) based mass sensor.

Mechanical behaviors of single-walled carbon nanotubes (SWCNTs) or multi-walled carbon
nanotubes (MWCNTs) have been the subject of numerous recent studies. Due to the discrete-
ness of nanostructures, atomistic methods such as molecular dynamics theory are generally
applied to study the structural behavior of nanostructures and many researchers have explored
the potential of using single-walled carbon nanotubes (SWCNTs) as nanomechanical resonators
in atomic scale as shown in Joshi et al. (2010) and Mehdipour et al. (2011). Multiwalled carbon
nanotubes (MWCNTs) resonators are easier to manipulate and they have different mechani-
cal structures than SWCNTs ones, due to the interaction between the nanotubes such as the
van der Waals (vdW) force and since they are both longer and have largers diameters than
SWCNTs. Georgantzinos and Anifantis (2010) predicted the vibrational behavior of single and
multiwalled carbon nanotubes when a nanoparticle is attached to them by using a spring-mass-
based finite element formulation. Elishakoff et al. (2011) studied the vibrations of a cantilever
double-walled carbon nanotubes (DWCNTs) with attached bacterium and the effective stiffness
and mass of a DWCNT mass sensor. Mateiu et al. (2005) developed an approach for building a
mass sensor based on MWCNTs. Kang et al. (2009) and Kang et al. (2011) examined frequency
change of frequency nanomechanical resonators based on DWCNTs with different wall lengths
employing molecular dynamics simulations. De Rosa and Lippiello (2014a) developed two dif-
ferent numerical approaches to detect the free vibration frequencies of coaxial DWCNTs: the
CDM method and the optimized version of the classical Rayleigh quotient.

Owing to the difficulty of controlled experiments on the nanoscale, and the great difficulty of
molecular dynamics (MD) simulations, especially for large-scale systems, continuum mechan-
ical models have been effectively used to study mechanical behaviors of CNTs. For example,
the classical Euler-Bernoulli beam theory was employed to model a nanomechanical resonator
(Elishakoff and Pentaras, 2009; Elishakoff et al., 2011). Although the classical continuum the-
ory is able to predict the behaviors of nanostructures, it is found to be inadequate because of
ignoring the small size effects. Recently, nonlocal elastic continuum models have been used for
studying the mechanical behaviour of CNTs including beam models. Their application to the
analysis of CNTs allows to evaluate of the small-scale effects influence. Along this line, Lee
et al. (2010) used the nonlocal Euler-Bernoulli beam theory to analyze the frequency shift of
carbon nanotube based upon mass-sensors.

Nanosensors are simple engineering devices designed to detect and convey informations
about nanoparticles and biomolecules. The nanosized mass sensors are based on the fact that
the resonant frequency is sensitive to the resonator and the attached mass. The change of the
attached mass on the resonator causes the resonant frequency to deviate from its original value.
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The key challenge in mass detection is in quantifying the changes in the resonant frequencies
due to the added masses. Recently, mass detection based on the resonating nanomechanical
tools has been subject of growing interests as for example in Chowdhury et al. (2009) and
Murmu and Adhikari (2012). This paper makes the effort to study the resonant frequencies of a
SWCNT with an attached nanoparticle, and nonlocal elasticity theory is applied to analyze the
vibrational behavior. In Adhikari and Chowdhury (2010), the Authors examined the potential of
single-walled CNTs as biosensors using a continuum mechanics-based approach and derived a
closed-form expression to calculate the mass of biological objects from the frequency shift. The
present note deals with the variational problem of the nanotube bounded at the ends, with trans-
lational and elastic constraints, and attached mass, located in a generic position. Closed-form
nonlocal frequency expression is derived; the resonant frequencies and corresponding shift fre-
quencies are calculated and numerical results for different boundary conditions are illustrated.

2 ANALYSIS OF THE PROBLEM

Let us consider a cantilever nano-tube (Fig. 1) with span L, cross sectional area A, second
moment of area I, Young modulus E, mass density ρ and distributed added mass M located
between γ1L and γ2L.

The nano-tube is supposed to be constrained at the ends by elastically flexible springs, with
transverse stiffness kTL and rotational stiffness kRL at left and transverse stiffness kTR and
rotational stiffness kRR at right.

KRL KRR

KTL KTR

L

Γ1L
Γ2L

Figure 1: Geometrical properties of the nanotube

According to Hamilton Principle it is possible to write:∫ t2
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where
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is the kinetic energy of the structure. It is given by the sum of the kinetic energies of the three
sections, and of the kinetic energy of the additional mass (Fig. 1). The three displacements
functions v1, v2 and v3 vary between (0, γ1L), (γ1L, γ2L), and (γ2L,L), respectively. The total
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potential energy can be expressed as:

E = L− P =
1
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where L is the sum of the strain energy of the nanotube and of the four strain energies of the
elastically flexible springs, P is the potential energy of the inertial force

(
ρA∂2v(z,t)

∂t2

)
due to the

additional displacement (e0a)2 ∂2v(z,t)
∂z2

(De Rosa and Lippiello, 2014b), where e0 is a constant
which has to be experimentally determined for each material, a is an internal characteristic
length. In that following, one sets η = (e0a).

The first variation of these two energies can be easily calculated as, so that (1) gives:
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All the terms in (4) should be integrated by parts, as follows:
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−
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∂z2
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∂z4
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−
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t1

∫ L

γ2L

EI
∂2v3(z, t)

∂z2
δ
∂2v3(z, t)

∂z2
dz dt = −

∫ t2

t1

[
EI
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∂z2
δ
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∂z
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[
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∂z3
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0
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EI
∂4v3(z, t)

∂z4
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Finally, a system of three equations of motion can be defined:

EI
∂4v1(z, t)

∂z4
− η2ρA∂

4v1(z, t)

∂z2∂t2
+ ρA

∂2v1(z, t)

∂t2
= 0, 0 < z < γ1L

EI
∂4v2(z, t)

∂z4
− η2ρA∂
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∂z2∂t2
+ (ρA+M)
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− η2ρA∂
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∂z2∂t2
+ ρA

∂2v3(z, t)

∂t2
= 0, γ2L < z < L; (12)

together with the following general boundary conditions:

−EI
∂3v1(0, t)

∂z3
+ η2ρA

∂3v1(0, t)

∂t2∂z
− kTLv1(0, t) = 0. (13)

EI
∂2v1(0, t)

∂z2
− η2ρA∂

2v1(0, t)

∂t2
− kRL

∂v1(0, t)

∂z
= 0 (14)

for z = 0 and for z = L:

EI
∂3v3(L, t)

∂z3
− η2ρA∂

3v3(L, t)

∂t2∂z
− kTRv3(L, t) = 0 (15)

−EI
∂2v3(L, t)

∂z2
+ η2ρA

∂2v3(L, t)

∂t2
− kRR

∂v3(L, t)

∂z
= 0 (16)

The boundary conditions for z = γ1L are:

v1 (γ1L, t) = v2 (γ1L, t)

∂v1 (γ1L, t)

∂z
=
∂v2 (γ1L, t)

∂z

η2ρA
∂3v1 (γ1L, t)

∂t2∂z
− EI

∂3v1 (γ1L, t)

∂z3
− η2ρA∂

3v2 (γ1L, t)

∂t2∂z
+ EI

∂3v2 (γ1L, t)

∂z3
= 0

η2ρA
∂2v1 (γ1L, t)

∂t2
− EI ∂

2v1 (γ1L, t)

∂z2
− η2ρA∂

2v2 (γ1L, t)

∂t2
+ EI

∂2v2 (γ1L, t)

∂z2
= 0 (17)

M.A. DE ROSA, C. FRANCIOSI, M. LIPPIELLO, M.T. PIOVAN1534

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



and at z = γ2L:

v2 (γ2L, t) = v3 (γ2L, t)

∂v2 (γ2L, t)

∂z
=
∂v3 (γ2L, t)

∂z

η2ρA
∂3v2 (γ2L, t)

∂t2∂z
− EI

∂3v2 (γ2L, t)

∂z3
− η2ρA∂

3v3 (γ2L, t)

∂t2∂z
+ EI

∂3v3 (γ2L, t)

∂z3
= 0

+η2ρA
∂2v2 (γ2L, t)

∂t2
− EI ∂

2v2 (γ2L, t)

∂z2
− η2ρA∂

2v3 (γ2L, t)

∂t2
+ EI

∂2v3 (γ2L, t)

∂z2
= 0 (18)

The solutions of equations (12) can be expressed as:

vh(z, t) = vh(z)eiωt, h = 1, 2, 3 (19)

The non-dimensional abscissa ζ = z
L

can be introduced, so that the three equations of motion
(12) become:

∂4v1
∂ζ4

+ η2Ω4∂
2v1
∂ζ2
− Ω4v1 = 0 for 0 < ζ < γ1

∂4v2
∂ζ4

+ η2Ω4∂
2v2
∂ζ2
− (1 + λ)Ω4v2 = 0 for γ1 < ζ < γ2

∂4v3
∂ζ4

+ η2Ω4∂
2v3
∂ζ2
− Ω4v3 = 0 for γ2 < ζ < 1 (20)

with:

m = ρA; λ =
M

m
; µ =

η

L
; Ω =

√√
ω2mL4

EI
(21)

The boundary conditions in the presence of constraints are given by:

−∂
3v1(0)

∂ζ3
− µ2Ω4∂v1(0)

∂ζ
−KTLv1(0) = 0

∂2v1(0)

∂ζ2
+ µ2Ω4v1(0)−KRL

∂v1(0)

∂z
= 0 (22)

v1 (γ1) = v2 (γ1)

∂v1
∂ζ

(γ1) =
∂v2
∂ζ

(γ1)

µ2Ω4∂v1 (γ1)

∂ζ
+
∂3v1 (γ1)

∂ζ3
− µ2Ω4∂v2 (γ1)

∂ζ
− ∂3v2 (γ1)

∂ζ3
= 0

µ2Ω4v1 (γ1) +
∂2v1 (γ1)

∂ζ2
− µ2Ω4v2 (γ1)−

∂2v2 (γ1)

∂ζ2
= 0 (23)
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v2 (γ2) = v3 (γ2)

∂v2
∂ζ

(γ2) =
∂v3
∂ζ

(γ2)

µ2Ω4∂v2 (γ2)

∂ζ
+
∂3v2 (γ2)

∂ζ3
− µ2Ω4∂v3 (γ2)

∂ζ
− 1

∂3v3 (γ2)

∂ζ3
= 0

µ2Ω4v2 (γ2) +
∂2v2 (γ2)

∂ζ2
− µ2Ω4v3 (γ2)−

∂2v3 (γ2)

∂ζ2
= 0 (24)

∂3v3(1)

∂ζ3
+ µ2Ω4∂v3(1)

∂ζ
−KTRv3(1) = 0

−∂
2v3(1)

∂ζ2
− µ2Ω4

1v3(1)−KRR
∂v3(1)

∂z
= 0 (25)

where the following non-dimensional stiffness coefficients are defined as:

KTL =
kTLL

3

EI
; KRL =

kRLL

EI
; KTR =

kTRL
3

EI
; KRR =

kRRL

EI
(26)

The general solutions of these equations are given by:

v1(z) = A1 cos(αζ) + A2 sin(αζ) + A3 cosh(αζ) + A4 sinh(αζ)

v2(z) = B1 cos (α1ζ) +B2 sin (α1ζ) +B3 cosh (β1ζ) +B4 sinh (β1ζ)

v3(z) = C1 cos(αζ) + C2 sin(αζ) + C3 cosh(βζ) + C4 sinh(βζ) (27)

with:

α =

√
1

2

(
µ2Ω4 + Ω2

√
4 + µ4Ω4

)
; β =

√
1

2

(
−µ2Ω4 + Ω2

√
4 + µ4Ω4

)
;

α1 =

√
1

2

(
µ2Ω4 + Ω2

√
4 + 4λ+ µ4Ω4

)
; β1 =

√
1

2

(
−µ2Ω4 + Ω2

√
4 + 4λ+ µ4Ω4

)
(28)

The twelve constants can be found by imposing the boundary conditions (23)-(25). The
governing system is homogeneous and the non-triviality of the solution requires the coeffi-
cients’ determinant to be equal to zero. Solution of this equation system yields the desired
non-dimensional natural frequencies Ωi.

2.1 FREQUENCY SHIFT

Once non-dimensional frequencies have been obtained, in particular the first frequency value
Ω1, it is possible to derive the first resonant frequency:

f1 =
ω1

2π
=

Ω2
1

2π

√
EI

mL4
(29)
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The aim is to derive the added mass value, so that the relative frequency shift is calculated
by the following expression:

∆f

f0
=
f0 − f1
f0

(30)

where f0 is the resonant frequency of the nano-tube without added mass and neglecting the
nonlocal effect.

Known the resonant frequency, in the absence of mass and nonlocal effect, and the reso-
nant frequency in the presence of mass and nonlocal effect, it is possible to derive the relative
shift frequency and from theoretical curves (λ (γ2 − γ1), ∆f/f0) the nondimensional mass λ is
determined, which in turn makes possible to deduce the M value.

3 NUMERICAL EXAMPLES

Let us consider the clamped free single-walled carbon nano-tube with attached mass, as-
suming that the nondimensional transverse and rotational stiffness, at left end, are large enough
while the non-dimensional transverse and rotational stiffness, at right end, are equal to zero.

Assuming the calibration constants derived from the paper of Adhikari and Chowdhury
(2010) and solving the differential equations system given in (20), the numerical comparison is
performed. The material and geometrical properties of single-walled carbon nano-tube, so as
deduced from the paper Reddy and Pang (2008), are reported in Table 1.

SWCNT properties density Symbol Value Unit
Cross section area A 7.85 10−19 m2

Radius R 0.5 10−9 m
Length L 9 10−9 m
Moment of inertia I 4.91 10−38 m4

Density ρ 2300 Kg/m3

Young’s modulus E 1000 109 Pa

Table 1: Geometrical and material properties of the nano-tube

In this case, one assumes a fixed location of attached mass, at the free end, and setting
γ = γ2−γ1 and γ2 = 1, it is possibile to increase the value of γ varying γ1.The non-dimensional
mass is so defined:

λ =
M

m
= 1 (31)

The relative frequency shift, as deduced from the work of Adhikari and Chowdhury (2010),
is given by the following expression:

∆f

f0
= 1− 1√

1 + cmλ
(32)

where cm is mass calibration constant which is a function of the length of the attached mass
γ = (γ2 − γ1) as shown in Table 1 of the paper of Adhikari and Chowdhury (2010).

As can be seen in Table 2, with the increase in the value of γ, the relative frequency shift
value deduced from the approximate formula approaches the value obtained from the exact
solution; whereas for the values of equal to 0.7 and 0.8, the approximate and exact relative
frequency shift values coincide.
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γ ∆f/f0 ∆f/f0
Adhikari and Chowdhury (2010)

0.1 0.13853 0.13908
0.2 0.20947 0.21007
0.3 0.24918 0.24956
0.4 0.27163 0.27180
0.5 0.28375 0.28380
0.6 0.28965 0.28966
0.7 0.29206 0.29206
0.8 0.29277 0.29277

Table 2: Numerical comparison with the paper of Adhikari and Chowdhury (2010).

In the following numerical examples, one evaluates the influence on the resonant frequency
(f1 = ω1

2π
) of nonlocal effect µ for varying values of the length of the attached mass.

For all subsequent examples, the same material and geometrical data, given in Table 1, are
adopted. Considering a clamped free nanotube, the first numerical example is performed. As
is shown, the clamped free nano-tube represents a peculiar numerical case because it is the
single numerical example in which the resonant frequency increases when the nonlocal effect
increases. In Table 3 the first resonant frequency f1 value is reported and the value the lenght
of the attached mass varies between 0 and 0.9 and the non local effect values µ are [0, 0.1, 0.3,
0.5].

γ µ = 0 µ = 0.1 µ = 0.3 µ = 0.5

0 3.60268 1010 3.61834 1010 3.75909 1010 4.18895 1010

0.1 3.10162 1010 3.11245 1010 3.20756 1010 3.46665 1010

0.2 2.84585 1010 2.85418 1010 2.926 1010 3.10933 1010

0.3 2.7036 1010 2.71057 1010 2.77009 1010 2.91661 1010

0.4 2.62348 1010 2.6297 1010 2.68251 1010 2.80985 1010

0.5 2.58023 1010 2.58605 1010 2.63527 1010 2.75263 1010

0.6 2.55911 1010 2.56473 1010 2.6122 1010 2.72473 1010

0.7 2.55048 1010 2.55602 1010 2.60277 1010 2.71335 1010

0.8 2.54791 1010 2.55342 1010 2.59996 1010 2.70995 1010

0.9 2.54749 1010 2.55301 1010 2.59951 1010 2.70941 1010

Table 3: The first resonant frequency value for a clamped free nano-tube and for different values of length γ of the
attached mass and nonlocal effect µ

The first four values of the resonant frequency, reported in Table 3 and for γ = 0, can be
compared with those obtained to the formula (163) in the article Reddy and Pang (2008). As one
can see, the results are coincident. For the other numerical results, the following considerations
apply:

- if (γ λ) increases, the first resonant frequency value decreases;

- if the nonlocal effect non-dimensional parameter increases, the first resonant frequency
value increases.

In the following numerical example the supported-supported nano-tube is considered.
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γ µ = 0 µ = 0.1 µ = 0.3 µ = 0.5

0 1.01129 1011 9.64802 1010 7.35945 1010 5.43094 1010

0.1 9.2364 1010 8.87827 1010 7.00047 1010 5.28184 1010

0.2 8.5832 1010 8.29364 1010 6.70323 1010 5.15073 1010

0.3 8.0997 1010 7.85503 1010 6.46528 1010 5.04043 1010

0.4 7.74741 1010 7.53245 1010 6.28171 1010 4.95195 1010

0.5 7.49823 1010 7.30279 1010 6.14649 1010 4.88483 1010

0.6 7.33083 1010 7.14784 1010 6.05314 1010 4.83752 1010

0.7 7.22794 1010 7.05235 1010 5.99475 1010 4.80753 1010

0.8 7.17408 1010 7.00229 1010 5.9639 1010 4.79156 1010

0.9 7.15385 1010 6.98347 1010 5.95225 1010 4.78552 1010

Table 4: The first resonant frequency value for a supported-supported nanotube and for different values of length
γ of the attached mass and nonlocal effect µ.

In Table 4 the resonant frequency values, varying the length of the attached mass and nonlo-
cal effect, are reported. The added mass is located at midpoint of length of the nano-tube and
for this case, for example for γ = 0.1, γ1 and γ2 are equal 0.45 and 0.55, respectively.

It is seen that the resonant frequency parameter of SWCNT decreases with increasing the
length of the attached mass and the nonlocal effect parameter.

This circumstance show that when one consider the boundary conditions different from can-
tilever case, the nonlocal effect plays a beneficial effect on the first resonant frequency.

Using the Tables 3 and 4, it is possible deduce the relative frequency shift (30) and plot the
theoretical curves (λγ,∆f/f0), varying µ. The curves (λγ,∆f/f0) are also useful to derive
the added mass value M (Adhikari and Chowdhury, 2010).

In the last numerical example, a nano-tube clamped at left and with the right side constrained
by an elastically flexible translation spring is considered, with non-dimensional stiffness coef-
ficient KTR, as given in (26). The distributed mass is located at the midpoint of nanotube, for
γ = 0.2, γ1 = 0.4 and γ2 = 0.6, respectively.

KTR µ = 0 µ = 0.1 µ = 0.3 µ = 0.5

0 3.43856 1010 3.45148 1010 3.56563 1010 3.88546 1010

0.5 3.70214 1010 3.71472 1010 3.82653 1010 4.14612 1010

1 3.945 1010 3.957 1010 4.06439 1010 4.37843 1010

5 5.43556 1010 5.43674 1010 5.45858 1010 5.60502 1010

10 6.70448 1010 6.68313 1010 6.53164 1010 6.34042 1010

50 1.06055 1011 1.03811 1011 8.98243 1010 7.33336 1010

102 1.18404 1011 1.14964 1011 9.52284 1010 7.47067 1010

103 1.31725 1011 1.2378 1011 1.00433 1011 7.59115 1010

104 1.3311 1011 1.28005 1011 1.0096 1011 7.60296 1010

105 1.33249 1011 1.28128 1011 1.01012 1011 7.60414 1010

1010 1.33264 1011 1.28141 1011 1.01018 1011 7.60427 1010

1015 1.33264 1011 1.28141 1011 1.01018 1011 7.60427 1010

Table 5: The first resonant frequency value for a clamped free nanotube and constrained by non-dimensional
elastically flexible spring KTR at the right end and nonlocal effect µ.

The first numerical results are obtained with non-dimensional transverse stiffness KTR = 0.
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Increasing the non-dimensional parameter µ and KTR, the resonant frequency increases. For
KTR within the range 5 < KTR < 10, the behavior of the nanotube switches from the clamped
free behavior, in which increasing values of the coefficient µ lead to increasing resonant fre-
quencies, to the clamped-supported behavior: actually, for higher KTR values the resonant
frequency decreases. In this particular case a small nondimensional transverse stiffness do not
modify the resonant frequency behavior, with respect to the clamped free nano-tube.

4 CONCLUSIONS

Based on the nonlocal elasticity theory, the free frequencies analysis has been performed for
the single-walled nano-tube case, bounded at the ends, with translational and elastic constraints,
and attached mass, located in a generic position. The closed-form nonlocal frequency expres-
sion has been derived by means of the Hamilton’s principle; then the resonant frequency and
corresponding shift frequency have been calculated. Numerical results for different boundary
conditions have been performed in order to evaluate the effect of the nonlocal coefficient on the
first resonant frequency value. The obtained results can be employed for finding the distributed
added mass, i.e. from resonant frequency value, in absence of mass and nonlocal effect, and the
resonant frequency value, in presence of the mass and nonlocal effect, it is possible to derive
the relative frequency shift and from theoretical curves calculate the non-dimensional mass λ
and then the relative added mass M .

The present approach can be applied to analyze the dynamic behavior of multi-walled carbon
nano-tubes (MWCNTs) and in the case of nano-tubes based upon the Timoshenko theory.
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