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Abstract. Viscoelastic models have been used to solve problems in different areas, as in structural

damping problems or to simulate the mechanical behavior of biological tissues.

In order to properly simulate the behavior of these materials, the frequency dependency of theirs

mechanical properties must be taken into account. In that way, one of the first steps to achieve a fair vis-

coelastic model is to curve fit mechanical parameters, adjusting experimental data from characterization

tests. Traditionally this curve fitting procedure is made through minimum least squares methodologies.

It this work, three alternative curve fitting strategies for viscoelastic materials are studied: Artificial

Neural Networks, Genetic Algorithms and Particle Swarm Optimization. These strategies are analyzed

and the quality of each curve fitting procedure, based on real experimental data, is evaluated pointing the

advantages and disadvantages of each methodology.
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1 INTRODUCTION

Due to the frequency dependence of mechanical properties, time domain based models for

viscoelastic materials (VEM) are not as numerous as frequency domain methods. In spite of

that, because the facilities that time domain methods may directly provide, such as the maxi-

mum displacement range in a structural model analysis, many researchers have been developing

numerical methods to simulate the dynamical response of VEM in time domain. The most suc-

cessful models are the ones that introduce extra dissipation coordinates or internal variables in

a Finite Element model. Due to its simplicity and capability to virtually model any complex

geometry, this kind of methodology has been applied in several situations such as the ones pre-

sented by Wang et al. (2000), Roy et al. (2008), Friswell et al. (2010) and Wang and Inman

(2013). Among the dissipation coordinates based methods it is possible to observe that Golla-

Hughes-McTavish (GHM) method (Golla and Hughes, 1985; McTavish and Hughes, 1993) and

Anelastic Displacement Field (ADF) method (Lesieutre and Mingori, 1990; Lesieutre, 1992;

Lesieutre and Bianchini, 1993; Lesieutre and Govindswamy, 1996; Lesieutre and Lee, 1996)

are frequently chosen in order to simulate the dynamic response of VEM.

The first step, in order to properly simulate the dynamical behavior of VEM, is to charac-

terize the material’s dynamical properties. There are several methodologies to do it, such as:

ASTM method (ASTM, 1993), Direct Method (Faisca et al., 2001), Indirect Method (Master-

son and Miles, 1995), using transmissibility functions (Soula et al., 1997) and measured strains

(Mousavi et al., 2004), although the ASTM method is the most employed. In general, these

characterization tests excite dynamically specimens registering its behavior along the time in

order to determine the value of complex modulus at a specific frequency.

The characterization tests must be carried out several times at each analyzed frequency, due

to tests errors. These errors may appear because of materials’ mechanical properties variability;

geometric variability of specimens; reading errors, such as signal saturation, low ratio sig-

nal/noise, intermittent noise, spurious trends, influence of electric power distribution network

frequency and singular points or other external interferences. It leads the results to show dis-

persions, in other words, a mean value and a standard deviation at each frequency analyzed.

Once the characterization process is done, the next step is to find the parameters that adjust the

experimental curves.

The most usual curve fit methods are the ones based in the least squares theory, as could

be seen in the works of Hillström et al. (2000), Barbosa and Farage (2008) and Felippe et al.

(2012). Another possibility is to use methods like Artificial Neural Networks (ANN), Genetic

Algorithms (GA) and Particle Swarm Optimization (PSO). They may achieve good results with-

out the typical problems of the usual methods, such as being trapped in local minimums or the

need to ensure the same number of parameters to be fitted and experimental points.

In this work, three curve fitting strategies based in nature-inspired algorithms will be ana-

lyzed, namely ANN, GA and PSO, and the main features of each method will be pointed. They

will be applied to viscoelastic modelling with GHM model.

2 CURVE FITTING PROBLEM

Traditionally, the curve fit problem searches for specific coefficients from a closed form

function in order to approximate it to given data points. It is a process that could be summarized

by the balance between two conflicting elements: Accuracy and Simplicity. These elements,

accuracy and simplicity, can be measured through the distance between the fitted curve and the

data points and by the number of parameters in the curve, respectively.
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At first glance, one would chose a curve with a large number of parameters, which will ensure

a great fit at data set. In this way, the fitted curve could be overfitted and the model will miss its

predictive function, trends and regularities could fall away. On the other hand, curves with few

parameters can make false assumptions about the true behaviour of the model. The best way,

then, is to chose a simple model (a model with few parameters) that presents a reasonable fit to

the data.

The usual way to measure the Accuracy of a curve fit could be stated by Equation (1), the

error metric function:

f(X) =

√

√

√

√

Npts
∑

i=1

(

h(X, ωi)− hi
)2
, (1)

where ωi is the i−th abscissa of the data point set; h(X, ωi) is the equation tho be fitted, written

as a function of whose parameters in vector X and ωi; hi is the i− th ordinate of data point set

and; Npts is the number of data points.

Curve fitting is a preliminary activity to many techniques to model and solve problems,

such as simulation, predictive modeling, and statistical inference. The VEM modeling is not

different, before any simulation is performed, one needs to determine the parameters of the

adopted model. When modeling a VEM with GHM model the curve to be fitted is not one but

two and they are given by:

G′(ω) = G0 +
N
∑

j=1

αj

ω2(ω2 − δj + β2
j )

(δj − ω2)2 + β2
jω

2
, (2)

η(ω) =
1

G′(ω)

N
∑
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αjβjδjω

(δj − ω2)2 + β2
jω

2
. (3)

where ω is the frequency, N is the number of GHM terms, i =
√
−1 and αj , βj , δj and G0 are

the parameters to be adjusted.

As the GHM model behaviour is described by two Equations, then Equation (1) need to be

re-written as:

f(X) = ψ1

√

√

√

√

Npts
∑

i=1

(

G′(X, ωi)−G′
i

)2
+ ψ2

√

√

√

√

Npts
∑

i=1

(η(X, ωi)− ηi)
2
, (4)

where ψ1 and ψ2 are weights to balance the values magnitude of functionsG′(ω) and η(ω). This

equation will be employed in GA, PSO and ANN curve fit strategies as described in sections

3.1, 3.2 and 3.3.

3 CURVE FITTING ALGORITHMS

The three approaches considered will be discussed in this section and an investigation about

theirs best parameters configuration will be performed. In order to accomplish this investigation,

some numerical tests will be performed considering the data set on Table 1.
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Frequency (Hz) G′(ω) (MPa) η(ω)

3 0.1437 0.2784

50 0.4269 0.5120

100 0.5370 0.3489

250 0.6376 0.1823

300 0.6489 0.1557

Table 1: GA curve fitting results summary.

3.1 Genetic Algorithm curve fit

GA was firstly described by Holland (1975) and DeJong (1975). It is a global heuristics based

optimization method to find a point that minimizes a function, called objective function. Once

the curve fit problem searches curve parameters in order to minimize de distance between the

experimental data and the fitted curve, the GA strategy could be applied to this kind of problem

straight forward, as shown in Manela et al. (1993), Gulsen et al. (1995) and Morbiducci et al.

(2005).

GA tries to mimic the evolutionary processes observed in Nature, where the best individuals

survive and procreate. Under this paradigm, rather than generating a sequence of candidate

solutions once at a time, a population of candidate solutions is maintained. Each population

member, or individual, is described accordingly to a chromosome, a data structure with the

problem parameters to be determined where each of these parameters are called gene. This

algorithm starts generating a random initial population. At each iteration, or generation, the

individuals are selected by the value obtained accordingly to the objective function, the fitness

value. The best individuals are selected to procreate (crossover) and new individuals are gener-

ated, substituting the worst ones. Some of the best individuals are maintained (Elitism) and a

mutation is imposed to the others. Then the next generation is obtained with the ones created

by crossover, mutation and elitism.

In order to curve fit Equations (2) and (3), the objective function will be the one given by

Equation (4). The genes will be the model’s parameters αj , βj , δj andG0 then the chromosomes

can be represented in the following vector way:

X =
{

G0, α1, β1, δ1, α2, β2, δ2, . . . , αj, βj, δj, . . . , αN , βN , δN
}

, (5)

where N is the number of terms adopted in Equations (2) and (3).

The chromosomes can be coded in two different ways: binary and real. For each chro-

mosome coding type, there are a large variety of crossover operators algorithms, as shown by

Hasançebi and Erbatur (2000), Pendharkar and Rodger (2004) and Deep and Thakur (2007),

among others.

In order to determine which chromosome coding and which crossover operator suit better for

the problem of curve fitting GHM model’s parameters, some preliminary tests were carried out.

The characterization data points presented in Table 1, an initial population of 200 individuals

and the limit of 500 generations were considered in these tests.

The individuals able to reproduce were selected using the algorithm Stochastic Uniform

Selection (SUS) (Baker, 1987). This selection is performed by mapping the individuals into a

continuous segment of line, where each individual’s segment is proportional to its fitness value

(the better fitness gets more space at this line); Equally spaced pointers are placed over the

line as many as there are individuals to be selected. If one has n individuals to select, then
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the distance between the pointers would be 1
n

and the position of the first pointer is given by a

random number in [0, 1
n
]; The selected individuals are those pointed.

Other algorithm parameters adopted were: Chromosome with 7 genes (N = 2); ψ1 = 1 and

ψ2 = 7.89× 10−7; 80% of the new population is created by crossover; 2 individuals of the new

population are Elite individuals and 38 new individuals are obtained by mutation.

Firstly, a real coded chromosome was considered and four crossover algorithms: Single

point, Two point, Heuristic and Arithmetic. The single point algorithm works by selecting a

random point shared by the two parents chromosomes and then swapping the genes after this

point in order to generate two children. This algorithm is the simplest and most used crossover

operator. On the Two point crossover, both parents chromosomes are split at two random points,

the children are generated swapping the middle part of the parents chromosomes. When using

this crossover operator, one can expect poorer performance results because good chromosomes

are more likely to be disrupted. On the other hand, when one uses this crossover algorithm, the

problem search space could be explored widely on early ages and when population becomes

homogeneous, on the last generations, it explores a smaller region which provides an refinement

of the solution (Dumitrescu et al., 2000).

The Heuristic crossover generates a child, βc, taking two parents, βp1 and βp2 , where βp1 has

better fitness value, using the following equation:

βc = βp1 + α (βp1 − βp2) , (6)

where α is a random number in interval [0, 1]. If the new individual is infeasible or its gens are

out of the boundaries, then the parent βp1 is taken as the new one. This algorithm generates

offspring close to the best parent, with the objective to lead the search process towards the most

promising zones in the search space (Herrera et al., 1996).

The Arithmetic crossover takes the weighted sum of two parents chromosomes obtained via:

βc1 = αβp1 + (1− α)βp2 ,

βc2 = αβp2 + (1− α)βp1 ,
(7)

where βc1 and βc2 are the children chromosomes, βp1 and βp2 are the parents chromosomes and

α is a random weight in interval [0, 1] (Dumitrescu et al., 2000; Eiben and Smith, 2003).

Four hundred independent runs of the GA were performed for each configuration and the

population’s best historic fitness value was registered after each run. At the end of these tests the

results could be summarized, as shown in Table 2. In this table are presented the mean values,

x̄, standard deviations, σ, minimum and maximum values for each configuration considered.

As can be seen, the GA with Heuristic crossover had a better performance in terms of its mean

value and presented the lowest standard deviation, despite all variants presented close minimum

values.

Crossover algorithm x̄ σ Minimum Maximum

Heuristic 0.8722 0.1600 0.6409 1.4402

Arithmetic 1.2923 0.2357 0.7000 2.9106

Single point 1.1725 0.3327 0.6682 2.4887

Two point 1.0293 0.2349 0.6552 1.7758

Table 2: Test’s results summary for GA curve fitting with real coded chromosomes.

The same approach was conducted to test the performance of the binary coded GA, but, in

Mecánica Computacional Vol XXXIII, págs. 1557-1570 (2014) 1561

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



this case, the crossover functions were: Single point, Two point and Scattered; and each gen

was represented with a binary number with 28 bits. The Scattered crossover operator generates

a random auxiliary binary vector; It selects the genes where the auxiliary vector is 1 form the

first parent, and where it is 0 from the second parent in order to create a new child. The results

are summarized in Table 3. As can be seen, the GA with Scattered crossover had a better

performance in terms of its mean value. It is interesting that all variants presented the same

minimum and maximum values.

Crossover algorithm x̄ σ Minimum Maximum

Single point 0.7954 0.0286 0.7826 0.8926

Two point 0.7913 0.0248 0.7826 0.8926

Scattered 0.7899 0.0232 0.7826 0.8926

Table 3: GA curve fitting with binary coded chromosomes test results summary.

3.2 Particle Swarm Optimization curve fit

Some recent researchers successfully applied PSO algorithms to curve fit problems as Adi

and Shamsuddin (2009), Islam et al. (2009) and Gálvez and Iglesias (2011). This algorithm was

firstly proposed by Kennedy and Eberhart (1995). Its working process mimics a flock of birds

collectively foraging for food. In this manner, a PSO algorithm places a user specified number

of simple entities, the particles, over the problem’s search space and the objective function is

evaluated at each particle position. The particles, then, determine theirs movement through the

search space. For that to happen, the knowledge of its own current and best historic locations

and those of one or more particles are combined with random perturbations. Each iteration

begins after all particles take their new place and new movements’ directions are established.

This process is repeated until the particles converge to the optimum point or some stop criterion

is met. A comprehensive description of this process can be found in Poli et al. (2007).

The i− th particle’s velocity and position are changed according to the following equations:

vi = w1vi +U (0, φ1)⊗ (pi − xi) +U (0, φ2)⊗ (pg − xi) , (8)

xi = xi + vi, (9)

where vi and xi are respectively the velocity and position of the i− th particle; pi is the i− th

particle’s historic best position; pg is the global historic best position; U (0, φi) represents a

vector of random numbers uniformly distributed in [0, φi], which is randomly generated at each

iteration for each particle; parameters φ1 and φ2 balance the importance of particles’ historic

best position and importance of global historic best position, respectively. The parameter w

could be interpreted as a inertia weight and; ⊗ represent a multiplication of two vectors element

by element. Particles’ velocity components are limited to a maximum value given by the vector

vmax; If some component j, vi(j), on the velocity vector exceeds vmax(j) then the velocity

vi(j) is set vmax(j).
As can be seen, PSO algorithm has fewer parameters to be adjusted comparing to the Genetic

Algorithm. Considering a simple PSO algorithm, these parameters are: Maximum number of

iterations, number of particles, w, φ1, φ2 and vmax. In the preliminary tests, the maximum

number of iterations was adopted 500, the number of particles on each run was 50 and the

constants ψ1 = 1 and ψ2 = 7.89× 10−7 were adopted in Equation (4).
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Two different strategies for inertia weight, w, were tested: Constant weight and Linear de-

creasing strategy (Xin et al., 2009). The constant weight strategy was presented by Shi and

Eberhart (1998). They stated that a large inertia weight facilitates a global search while, on

the other hand, a small inertia weight facilitates a local search. This strategy will be evaluated

taking w = 1.0, as originally proposed by Kennedy and Eberhart (1995), and w = 0.7 (Shi and

Eberhart, 1998). In the case of Linear decreasing strategy, w will vary from 0.9 to 0.4, (Xin

et al., 2009) stated that it provided the best results with some benchmark functions.

Nine configurations were adopted for parameters φ1 and φ2: φ1 = 0.5 and φ2 = {3.5, 3.0, 2.5};

φ1 = 1.0 and φ2 = {3.0, 2.5, 2.0} and; φ1 = 2.0 and φ2 = {2.0, 1.5, 1.0}. The maximum ve-

locity was adopted equal to the length of the search space for all particles’ velocity vector

components (Kennedy and Eberhart, 1995; Chen et al., 2005).

Four hundred independent runs of the algorithm were performed, as done with GA strategy,

and the best historic value of objective function was registered after each run. With these results

the values in Tables 4, 5 and 6 could be obtained. In these tables are presented the mean

values, x̄, standard deviation, σ, maximum and minimum values of the best particle for each

configuration. As can be seen, in general, the lower is the sum φ1 + φ2 the best are the results;

Strategies with Linear decreasing weight andw = 0.7 found the minimum value 0.0001 in seven

of nine different configurations studied. In general, the maximum values found with w = 0.7
were smaller than the ones found with the others strategies. The best mean was obtained with

φ1 = 2.0, φ2 = 1.5 and w = 0.7.

φ1 φ2 x̄ σ Minimum Maximum

0.5

3.5 0.2785 0.3026 0.0084 2.9783

3.0 0.1267 0.2251 0.0001 2.4088

2.5 0.0975 0.1907 0.0001 1.2030

1.0

3.0 0.1379 0.2302 0.0019 2.7456

2.5 0.0933 0.1747 0.0001 1.2499

2.0 0.1082 0.2093 0.0001 0.9531

2.0

2.0 0.0893 0.1672 0.0001 0.9537

1.5 0.0833 0.1606 0.0001 0.9511

1.0 0.0928 0.1386 0.0001 0.9510

Table 4: Tests’ results summary for PSO curve fitting with constant weight strategy (w = 0.7).

φ1 φ2 x̄ σ Minimum Maximum

0.5

3.5 3.1851 1.4674 0.2806 8.8549

3.0 2.7162 1.3379 0.3910 7.1626

2.5 2.4817 1.3028 0.2746 7.4504

1.0

3.0 2.7069 1.3378 0.2230 7.0968

2.5 2.3890 1.2761 0.1798 7.8184

2.0 1.9271 1.0690 0.1272 6.0814

2.0

2.0 2.3959 1.2491 0.1194 6.9791

1.5 1.8868 1.1035 0.0847 7.1447

1.0 1.6088 1.0112 0.1623 8.2313

Table 5: Tests’ results summary for PSO curve fitting with constant weight strategy (w = 1.0).
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φ1 φ2 x̄ σ Minimum Maximum

0.5

3.5 0.4923 0.7008 0.0048 4.8828

3.0 0.1146 0.1910 0.0001 1.0175

2.5 0.1334 0.2373 0.0001 1.9385

1.0

3.0 0.1802 0.3148 0.0002 2.7079

2.5 0.1060 0.2289 0.0001 3.5339

2.0 0.1056 0.1892 0.0001 1.3653

2.0

2.0 0.1300 0.2613 0.0001 3.6992

1.5 0.1342 0.1645 0.0001 0.9526

1.0 0.1423 0.2445 0.0001 2.0380

Table 6: Tests’ results summary for PSO curve fitting with Linear decreasing weight strategy.

3.3 Artificial Neural Network curve fit

Artificial Neural Networks (ANN) represent an alternative computational method in which

a problem’s solution is learned from a set of examples. The idea of neural computing relies

over a mathematical model of a biological neuron. This model receives an input signal, x;

each component xi is multiplied by a weight, wi; all of these multiplied components and an

additional parameter b, the bias, are summated, producing the υ signal then; the output, y, is

generated applying υ in an activation function, ϕ (υ).
A single neuron is not able to learn and generalize complex problems, but it can be extended

to an artificial neural network. Associating neurons accordingly to a specific architecture this

structure over-comes this limitation. A relatively simple and widely used network architecture

type is known as Multi Layer Perceptron (MLP). An MLP is a network organized in layers as

illustrated in Figure 1, where each circle is a neuron and the lines represent the linkage between

them. The MLP network illustrated has input signal with three parameters, four neurons on

hidden layer, two in output layer and a two valued output signal. This layout can be extended

indefinitely, adding more hidden layers. Cybenko (1989) had prof that an MLP is an universal

approximator.

y1

y2

x1

x2

x3

Hidden
layer

Output
layer

Output
signal

Input
signal

Figure 1: Multi Layer Perceptron network (Adapted from Haikyn (1994)).

This kind of neural network has its weights and biases determined with training algorithms.

The general guidelines of these algorithms are: initialize the network, with random values for

weights and biases; Present the input signals from the training group, the examples, to the

network; Compares the outputs obtained with the desired outputs; Apply a correction over the

weights and biases. This process is repeated until some convergence criterion is met.

Preliminary tests were performed in order to investigate the best configuration, in the same
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way as done with GA and PSO strategies. Here, the ideal neuron distribution was pursued in

order to determine the parameters of Equations (2) and (3). A data set consisting of 400 unique

pairs of input signals and theirs corresponding desired output signals was used as training set.

This training set was generated taking some of the outputs obtained during the investigation

performed with GA and PSO algorithms.

Each input signal has 10 elements, where the first half are the values of function G′(ω) and

the last half are the values of function η(ω), both were evaluated at the same frequencies of

characterization data from Table 1. The output signal has seven elements, where each of these

elements are the curve parameters G0, αj , βj and δj , with j = 1 . . . 2.

There are several MLP training algorithms, three of the most utilized were used to train the

networks: Gradient Descent Backpropagation (GD) (Rumelhart and McClelland, 1986); Scaled

Conjugate Gradient Backpropagation (SCG) (Moller, 1993) and; Resilient Backpropagation

(RP) (Riedmiller and Braun, 1993). The neurons’ activation function, ϕ (υ), adopted was the

hyperbolic tangent function, given by:

ϕ (υ) =
eυ − e−υ

eυ + e−υ
. (10)

Before the training sections start, each element of the data set (inputs and outputs) was

normalized between -1 and 1, in order to avoid values of ϕ (υ) become near its asymptotes.

The trained MLP networks have seven neurons on output layer (one for each parameter) and

the number of neurons on hidden layers were determined evaluating the results of 400 indepen-

dent training sections for each configuration adopted. These results are summarized on Figure

2(a) for a MLP with 1 hidden layer, X-7; in Figure 2(b) for a MLP with 2 hidden layers, where

there are 10 neurons on second hidden layer, X-10-7 and; in Figure 2(c) for a MLP with 2 hid-

den layers, with 20 neurons on second hidden layer, X-20-7. In these figures the lines represent

the mean values and the points the minimum values obtained on each configuration considered.

Traditionally a MLP performance is measured in terms of the Mean Squared Error (MSE) but,

to allow comparisons between the three curve fitting approaches studied in this paper, the values

presented at these figures were determined considering Equation (4) and adopting ψ1 = 1 and

ψ2 = 7.89× 10−7.

0 50 100 1502

4

6

8

10

12

14

16

18

Neurons on hidden layer

Pe
rfo

rm
an

ce

 

GD − mean
GD − min
SCG − mean
SCG − min
RP − mean
RP − min

(a) X-7 configuration
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Figure 2: MLP performance results for different layers configuration.

4 EXPERIMENTAL EVALUATION

In this section, the strategies presented will be applied to a problem with data obtained from

literature. Borges (2010) performed a wide program of laboratory studies. In these laboratory

Mecánica Computacional Vol XXXIII, págs. 1557-1570 (2014) 1565

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



studies, a viscoelastic material was characterized, the double face tape VHB 4955 made by

3M, and sandwich beams were tested with different layers configuration. The material was

characterized applying the Direct Method (Faisca et al., 2001) for frequencies between 0 and

800 Hz, as seen in Table 7.

Frequency (Hz) G′(ω) (MPa) η(ω)

11.17 0.895± 0.025 0.629± 0.047
62.58 1.204± 0.050 0.801± 0.094

171.88 2.468± 0.116 0.808± 0.249
538.38 2.687± 1.154 0.801± 0.374
800.50 3.334± 1.155 0.808± 0.305

Table 7: VHB 4955 characterization data. (Adapted from (Borges, 2010))

The mean values of this data set were presented to the three strategies, where the follow-

ing parameters were adopted: 1) GA: Real coded chromosome, Heuristic crossover, initial

population of 200 individuals, limit of 500 generations, 80% of the new population is cre-

ated by crossover, 2 Elite individuals and 38 new individuals obtained by mutation; 2) PSO:

w = 0.7, φ1 = 2.0, φ2 = 1.5, 50 particles and 500 iterations maximum; 3) ANN: 5-20-7

neurons configuration and SCG training algorithm. At all strategies were adopted ψ1 = 1 and

ψ2 = 2.4235× 10−7 on Equation (4). Each strategy was subjected to 400 independent runs and

after each one the best result was registered. These results are summarized in Table 8 in terms

of its statistical parameters. Analysing this table, one can see that PSO strategy presented the

best performance.

Strategy x̄ σ Minimum Maximum

GA 0.3458 0.0363 0.3297 0.5273

PSO 0.3297 0.0000 0.3297 0.3299

ANN 9.4635 4.1245 2.7438 13.4552

Table 8: VHB 4955 curve fitting results summary.

In Figure 3(a) one can see the best curves fitted with each strategy. GA and PSO curves fit

are almost coincident and both of them present a good agreement and the curve fitted with the

ANN strategy presented the worst agreement.

The parameters obtained for each of these curves are shown in Table 9. Despite the curve fits

obtained with GA and PSO strategies are visually coincident and have the same performance,

the determined parameters are not close.

Strategy
E0 α1 α2 β1 β2 δ1 δ2

(×105) (×106) (×106) (×107) (×107) (×109) (×109)

GA 4.6456 1.4942 6.3910 4.1609 0.6532 2.5819 8.8884

PSO 4.6456 6.3896 1.4942 0.3304 6.2715 4.4947 3.8916

ANN 7.5936 4.5511 4.3988 1.1478 0.4539 12.9530 13.7570

Table 9: GHM model fitted parameters for VHB 4955 considering 2 GHM terms.

In order to investigate the influence of the parameters number, an additional curve fit was

made using PSO strategy, considering 5 GHM terms (16 parameters total) and the same pa-
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Figure 3: Materials curves obtained for VHB 4955 material.

rameters pointed before. The best curve fit was achieved with E0 = 4.2619 × 105, α1 =
4.1188× 106, α2 = 8.0078× 105, α3 = 2.9600× 106, α4 = 4.3845× 105, α5 = 9.6721× 105,

β1 = 1.1218 × 106, β2 = 5.6458 × 106, β3 = 1.4915 × 106, β4 = 7.1739 × 107, β5 =
1.3015 × 107, δ1 = 2.1199 × 109, δ2 = 5.9126 × 108, δ3 = 3.1934 × 109, δ4 = 1.0334 × 109

and δ5 = 3.3495 × 109. One can see a comparison of the fitted curves obtained with these

parameters and the experimental results in Figure 3(b). The adjusted curves are practically co-

incident with experimental data, specially the η(ω) curve which is visually coincident to the

experimental mean values. However, the models matrices size increased and, consequently, the

computational effort to solve the Finite Element model increased too.

Borges (2010) tested two specimens of viscoelastic sandwich beams. These beams have two

elastic layers, made of aluminium, (a base beam and clamped restraining layer) and one vis-

coelastic core layer. They have rectangular cross section and 1140 mm length; the beams work-

ing as elastic base structure have 16.1mm height; the viscoelastic layers have 2.0mm height;

and the elastic constraining layers have 3.17mm height. The first three experimental damping

rates are shown in Table 10 in comparison of the ones obtained with a Finite Element model

using the parameters found with PSO strategy considering 2 and 5 GHM terms. These models

have 9,660 dof (model with 2 GHM terms) and 14,844 dof (model with 5 GHM terms). As

can be seen, the results improved 8.15% for first vibration mode, 1.74% for second mode and

17.86% for third mode. These improvements are about 9.25% on average but systems matrices

enlarged 153.7%.

Strategy
ξ1 ξ2 ξ3
(%) (%) (%)

Experimental
4.98 4.90 4.39

4.44 4.32 3.28

PSO (N=2) 4.17 4.60 2.24

PSO (N=5) 4.51 4.68 2.64

Table 10: Experimental and numerical damping ratios comparisons.
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5 CONCLUSIONS

Three nature inspired strategies were presented to curve fit viscoelastic materials: Genetic

Algorithm, Particle Swarm Optimization and Artificial Neural Network; and the influence of

some parameters on each of them was investigated. Genetic Algorithm and Particle Swarm

Optimization showed a good performance during preliminary tests and on real data example.

The Artificial Neural Network had poor performance in comparison on the other ones. An study

about the damping rates obtained with GHM Finite Element models, when the number of GHM

terms are increased and its impact over the computational cost, was briefly presented.

The best performance of GA curve fit was obtained using real coded chromosomes and

Heuristic crossover operator; In case of PSO strategy the best configuration was w = 0.7,

φ1 = 2.0 and φ2 = 1.5. Among the preliminary tests and the real data example the PSO

presented a slightly better performance.

The number of terms and the performance of the model are strictly related but, due to the

characteristics of GHM model, the size of elemental matrices increases linearly. On models

with a great number of viscoelastic elements it could be prohibitive due to the processing time

required and the memory space required.

We could state that a good practice is investigating the performance of curve fits with differ-

ent numbers of GHM terms in a small Finite Element model and then, with the curve fit which

presents the best cost-effectiveness relationship, proceed the analysis with a larger model.
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